The present invention belongs to the field of microgrid operation control, and specifically, relates to a decentralized voltage control method for a microgrid based on nonlinear state observers.
With the gradual exhaustion of earth resources and the increase of people's attention to environmental issues, the application of renewable energy resources is increasingly valued by countries around the world. The microgrid is an emerging energy organization mode that increases the permeability of renewable energy resources to provide uninterrupted power supply. The microgrid includes different types of distributed energy resources (DERs, including micro gas turbines, wind driven generators, photovoltaics, fuel cells, energy storages, etc.), user terminals of various electrical loads and/or thermal loads and related monitoring and protection devices.
The internal power supply of the microgrid mainly lies in the energy conversion by power electronic devices, where proper control is indispensable. With respect to the main grid, the microgrid can be considered as a controlled power unit, and meets the requirement of power quality and power supply security. The microgrid is connected to the main grid through the point of common coupling for energy exchange, and the both parties are mutually standby, which improves the reliability of power supplies. Since the microgrid is a small-scale power system and close to the load, it can greatly increase the reliability of power supplies, reduce the network loss and greatly enhance the energy efficiency, which meets the requirements of future development in smart grid.
Droop control algorithm is widely concerned because of the realization of communication-free power sharing, but the output voltage of each distributed generation may suffer from the steady-state deviation. At the same time, voltage droop control typically yields towards a poor performance in the reactive power sharing due to the difference in the output impedance of each distributed generation. Therefore, secondary voltage control is needed to improve the accuracy of reactive power sharing and the voltage performance in the microgrid system. The cooperative voltage control schemes have already undertaken, regarding centralized control and distributed control, both of which rely on communication technologies, However, the communication process is usually affected by information latency and data drop-out, and in the worst case the system stability is affected. Therefore, it is necessary to investigate a decentralized control system that does not rely on remote measurements or real-time communications to carry out reactive power sharing and voltage restoration of distributed generations, thereby improving the stability and dynamic performance of the microgrid and improving the power quality.
Technical problem: The technical problem to be solved by the present invention is: providing a decentralized voltage control method for a microgrid based on nonlinear state observers, in which the state observer of each distributed generation estimates the output voltages and reactive power values of other distributed generations in real time, and the secondary voltage control is started to achieve accurate reactive power sharing and average voltage restoration of the microgrid, thereby improving the stability and the performance of the microgrid.
Technical scheme: In order to solve the above technical problem, an embodiment of the present invention provides a decentralized voltage control method for a microgrid based on nonlinear state observers, including the following steps:
step 10), Suppose that there are N distributed generations in a microgrid. After scanning the connection/disconnection statuses of all DG (Distributed Generation) units and loads, and querying the corresponding parameters, establish, a large-signal model of microgrid, with distributed generations, a connection network and impedance-type loads
each distributed generation employs the droop control to generate the output voltage and frequency reference for individual inverters as shown in formula (1):
in formula (1), ωi denotes the local angular frequency of the ith distributed generation; ωn denotes the local angular frequency reference value of the distributed generation: rad/s; mPi denotes the frequency droop characteristic coefficient of the ith distributed generation: rad/s; Pi denotes the actual output active power of the ith distributed generation: W; kVi denotes the droop control gain of the ith distributed generation; {dot over (V)}o,magi denotes the change rate of the output voltage of the it distributed generation: V/S; Vn denotes the output voltage reference value of the distributed generation: V; Vo,magi denotes the output voltage of the ith distributed generation: V; nQi denotes the voltage droop characteristic coefficient of the ith distributed generation: V/Var; Qi denotes the actual output reactive power of the ith distributed generation: Var;
the actual output active power Pi and reactive power Qi of the ith distributed generation are obtained through a low-pass filter, as shown in formula (2):
in formula (2), {dot over (P)}i denotes the change rate of active power of the ith distributed generation: W/S; ωci denotes the low-pass filter cutoff frequency of the ith distributed generation: rad/s; Vodi denotes the d-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V; Voqi denotes the q-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V; iodi denotes the d-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A; ioqi denotes the q-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A; {dot over (Q)}i denotes the change rate of reactive power of the ith distributed generation: Var/S;
As the primary voltage control for each distributed generation enables the voltage magnitude on the q axis as zero, the secondary voltage control can be further obtained as formula (3)
in formula (3), {dot over (V)}odi denotes the change rate of the d-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V/S; Vni denotes the output voltage reference value of the ith distributed generation, and ui denotes the secondary voltage control input: V;
the dynamic equation of the output current of the distributed generation is as shown in formula (4):
in formula (4), iodi denotes the change rate of the d-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A/S; Rci denotes the connection resistance from the ith distributed generation to the bus i: Ω; Lci denotes the connection inductance from the ith distributed generation to the bus i: H; Vbusdi denotes the d-axis component of the voltage of the bus i in the dq reference coordinate of the ith distributed generation; {dot over (i)}oqi denotes the change rate of the q-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A/S; Vbusqi denotes the q-axis component of the voltage of the bus i in the dq reference coordinate of the ith distributed generation: V;
according to formulas (1) to (4), a dynamic equation of the ith distributed generation is obtained, as shown in formula (5):
in the formula, {dot over (x)}invi denotes the change rate of the state variable of the ith distributed generation, {dot over (x)}invi=[{dot over (δ)}i, {dot over (P)}i, {dot over (Q)}i, {dot over (V)}odi, {dot over (i)}odi, {dot over (i)}oqi]T; {dot over (δ)} denotes the change rate of δi; xinvi denotes the state variable of the ith distributed generation, xinvi=[δi, Pi, Qi, Vodi, iodi, ioqi]T; wherein δi denotes the phase angle difference between the dq axis of the dq reference coordinate of the ith distributed generation and the DQ axis in the common reference coordinate DQ of the microgrid: rad; finvi(xinvi) denotes a state function of the ith distributed generation, and kinvi(xinvi) denotes a voltage disturbance function of the bus i; VbusDQi=[VbusDi, VbusQi]T, and VbusDi denotes the D-axis component of the bus i in the common reference coordinate DQ: V; VbusQi denotes the Q-axis component of the bus i in the common reference coordinate DQ: V; ωcom denotes the angular frequency of the common reference coordinate: rad/s; hinvi denotes a connection matrix of the angular frequency of the common reference coordinate; ginvi denotes an input matrix of the it distributed generation; ioDQi=[ioDi, ioQi]T, ioDi denotes the D-axis component of the output current of the ith distributed generation in the common reference coordinate DQ, and ioQi denotes the Q-axis component of the output current of the ith distributed generation in the common reference coordinate DQ: A; Cinvi denotes an output matrix of the ith distributed generation;
a current dynamic equation of the ith line between the bus i and the bus j is as shown in formula (6):
in the formula, {dot over (i)}lineDi denotes the change rate of the D-axis component of the current of the ith line in the common reference coordinate DQ: A/S; rlinei denotes the line resistance of the ith line: Q; Llinei denotes the line inductance of the ith line: H; ilineDi denotes the D-axis component of the current of the ith line in the common reference coordinate DQ, and ilineQi denotes the Q-axis component of the current of the it line in the common reference coordinate DQ: A; VbusDi denotes the D-axis component of the bus i in the common reference coordinate DQ, VbusDj denotes the D-axis component of the bus j in the common reference coordinate DQ, and ilineQi denotes the change rate of the Q-axis component of the current of the it line in the common reference coordinate DQ: A/S; VbusQi denotes the Q-axis component of the bus i in the common reference coordinate DQ: V; VbusQj denotes the Q-axis component of the bus j in the common reference coordinate DQ: V;
a current dynamic equation of the jth load connected to the bus j is as shown in formula (7):
in the formula, iloadDj denotes the change rate of the D-axis component of the current of the jth load in the common reference coordinate DQ: A/S; Rloadj denotes the load resistance of the jth load: S; Lloadj denotes the load inductance of the jth load: H; iloadDj denotes the D-axis component of the current of the jth load in the common reference coordinate DQ, and iloadQj denotes the Q-axis component of the current of the jth load in the common reference coordinate DQ: A; and iloadQj denotes the change rate of the Q-axis component of the current of the jth load in the common reference coordinate DQ: A/S;
according to formulas (5)-(7), the large-signal model of microgrid including n distributed generations, s buses and p loads is as shown in formula (8):
wherein, x=[xinv1, . . . , xinvn, ilineDQ1, . . . , ilineDQs, iloadDQ1, . . . , iloadDQ p]T, xinv1 denotes the state variable of the 1st distributed generation, xinvn denotes the state variable of the nth distributed generation, ilineDQ1=[ilineD1, ilineQ1]T, ilineD1 denotes the D-axis component of the current of the 1st line in the common reference coordinate DQ, ilineQ1 denotes the Q-axis component of the current of the 1st line in the common reference coordinate DQ, ilineDQs=[ilineDs, ilineQs]T, ilineDs denotes the D-axis component of the current of the sth line in the common reference coordinate DQ, ilineQs denotes the Q-axis component of the current of the sth line in the common reference coordinate DQ, iloadDQ1=[iloadD1, iloadQ1]T, iloadD1 denotes the D-axis component of the current of the 1st load in the common reference coordinate DQ, iloadQ1 denotes the Q-axis component of the current of the 1st load in the common reference coordinate DQ, iloadDQp=[iloadDp, iloadQp]T, iloadDp denotes the D-axis component of the current of the pth load in the common reference coordinate DQ, and iloadQp denotes the Q-axis component of the current of the pth load in the common reference coordinate DQ; u=[u1 . . . un]T, u1 denotes the secondary control quantity of the 1st distributed generation, and un denotes the secondary control quantity of the nth distributed generation; f(x) denotes a state function of the microgrid; g denotes an input matrix, and yi denotes an output value of the ith distributed generation; and hi(x) denotes an output function of the ith distributed generation;
step 20), establish a Luenberger-like nonlinear state observer for each distributed generation in the DSP (Digital Signal Processor):
according to the microgrid large-signal model established in step 10), establish a local Luenberger nonlinear state observer for each distributed generation, as shown in formula (9):
{dot over ({circumflex over (x)})}=f({circumflex over (x)})+g u+L(hi({circumflex over (x)})−yi) formula (9)
in the formula, {circumflex over (x)} denotes the estimated state values of the microgrid in formula (8), {dot over ({circumflex over (x)})} denotes the change rate of the estimated state values in the microgrid; f ({circumflex over (x)}) denotes a connection matrix of the microgrid under the action of the estimated value; L denotes a Luenberger state observer matrix; hi({circumflex over (x)}) denotes an output function of the ith distributed generation corresponding to the estimated state value {circumflex over (x)};
step 30), The data acquisition module of each distributed generation collects the output voltage Vodi and output current iodi and ioqi from the local sensor, which are to be sent to the nonlinear state observer of respective DSP in step 20). Estimate the dynamic characteristics of output voltage and output power of other distributed generations in real time according to the local measured values of each distributed generation;
step 40), The microgrid voltage reference instruction is entered through a human-machine interface and sent out to each distributed generation via the 485 communication mode. Based on the local measured value of each distributed generation and the estimated measurement of other distributed generations, the decentralized secondary voltage control is implemented to satisfy the requirements of accurate reactive power sharing and voltage restoration. The resultant secondary voltage compensation term is transmitted to the PWM (Pulse Width Modulation) module of the local controller; the generated PWM pulse signal is sent to the drive and power amplifier unit to trigger the power electronic switching transistor:
the reactive power sharing indicates that the output reactive power of each distributed generation is allocated according to the power capacity, and the implementation process is as shown in formula (10):
in the formula, δQi denotes a reactive power control signal for each calculation cycle; kPQ denotes a proportional coefficient in the reactive power proportional integral controller; Q*i denotes the reactive power reference of the ith distributed generation; kiQ denotes an integral coefficient in the reactive power proportional integral controller; nQj denotes a voltage droop coefficient of the jth distributed generation; {circumflex over (Q)}j denotes a reactive power estimation value of the jth distributed generation;
the voltage restoration indicates that the average value of the output voltages of the distributed generations through the microgrid is restored to the rated value, and the implementation process is as shown in formula (11):
in the formula, δVi denotes an average voltage restoration control signal for each calculation cycle; kPE denotes a proportional coefficient in the average voltage controller; V* denotes a voltage rated value; {right arrow over (V)}i denotes an average value of output voltages of all the distributed generations as estimated from the ith distributed generation; kiE denotes an integral coefficient in the average voltage controller; V denotes an estimated value of the d-axis component of the output current of the jth distributed generation in the dq reference coordinate of the jth distributed generation;
by combining formulas (10) and (11), the secondary voltage control input for the ith distributed generation is as shown in formula (12):
ui=δQi+δVi formula (12).
As a preferred embodiment, the common reference coordinate DQ refers to the dq reference coordinate of the 1st distributed generation, and the state variables of the remaining distributed generations, buses and loads are converted to the common reference coordinate DQ through coordinate transformation.
As a preferred embodiment, in step 10), the loads are impedance-type loads.
As a preferred embodiment, in step 10), the frequency droop coefficient mPi is determined according to the active power capacity of each distributed generation; and the voltage droop coefficient nQi is determined according to the reactive power capacity of each distributed generation.
As a preferred embodiment, in step 40), the decentralized voltage control of reactive power sharing and average voltage restoration is implemented based on the estimated value of each distributed generation on real-time states of other distributed generations, which does not rely on communication.
Beneficial effects: Compared with the prior literature, the present invention has the following beneficial effects: the control method according to the embodiments of the present invention is a decentralized voltage control method, which does not rely on remote measurements or communication lines, and the real-time states are estimated by a state observer to achieve reactive power sharing and average voltage restoration of each distributed generation, so that the system dynamics are improved. According to the decentralized voltage control method of a microgrid in the embodiments of the present invention, a Luenberger-like state observer is designed for each distributed generation according to the established microgrid large system model, and the output voltage and reactive power of other distributed generations are estimated by acquiring local output voltage and current data, so that the dependence of the conventional control method on a remote measurement and a communication technology is avoided. In addition, since the state observer is acquired based on the microgrid large-signal model rather than the small-signal linearization at some operation points, the microgrid voltage control according to the embodiments of the present invention adapts to a wide-range operation process, and steady-state operation points do not need to be known in advance, so the method is easy to implement. Compared with the existing methods, the method according to the embodiments of the present invention is not affected by communication latency or data drop-out, improves the stability and performance of the microgrid, and is beneficial for the accurate reactive power sharing and voltage restoration.
For the purpose of making the objects, the technical schemes and the advantages of the present invention clearer, the following contents describe the present invention in details in combination with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used for interpreting the present invention, rather than limiting the present invention.
The control method of the present invention can be applied to a parallel inverter microgrid. As shown in
Step 10), Suppose that there are N distributed generations in a microgrid. After scanning the connection/disconnection statuses of all DG units and loads, and querying the corresponding parameters, establish, a large-signal model of microgrid, with distributed generations, a connection network and impedance-type loads. Step 10) specifically includes:
each distributed generation employs the droop control to generate the output voltage and frequency reference for individual inverters, as shown in formula (1):
In formula (1), ωi denotes the local angular frequency of the ith distributed generation; ωn denotes the local angular frequency reference value of the distributed generation: rad/s; mPi denotes the frequency droop characteristic coefficient of the ith distributed generation: rad/s; Pi denotes the actual output active power of the ith distributed generation: W; kVi denotes the droop control gain of the ith distributed generation; {dot over (V)}o,magi denotes the change rate of the output voltage of the ith distributed generation: V/S; Vn denotes the output voltage reference value of the distributed generation: V; Vo,magi denotes the output voltage of the ith distributed generation: V; nQi denotes the voltage droop characteristic coefficient of the ith distributed generation: V/Var; and Qi denotes the actual output reactive power of the it distributed generation: Var.
The actual output active power Pi and reactive power Qi of the ith distributed generation are obtained through a low-pass filter, as shown in formula (2):
In formula (2), {dot over (P)}i denotes the change rate of active power of the ith distributed generation: W/S; ωci denotes the low-pass filter cutoff frequency of the ith distributed generation: rad/s; Vodi denotes the d-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V; Voqi denotes the q-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V; iodi denotes the d-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A; ioqi denotes the q-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A; and {dot over (Q)}i denotes the change rate of the reactive power of the ith distributed generation: Var/S.
As the primary voltage control for each distributed generation enables the voltage magnitude on the q axis as zero, the secondary voltage control can be further obtained as formula (3):
In formula (3), {dot over (V)}odi denotes the change rate of the d-axis component of the output voltage of the ith distributed generation in the dq reference coordinate of the ith distributed generation: V/S; Vni denotes the output voltage reference value of the ith distributed generation, and ui denotes the secondary voltage control input: V.
The dynamic equation of the output current of the distributed generation is as shown in formula (4):
In formula (4), iodi denotes the change rate of the d-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A/S; Rci denotes the connection resistance from the ith distributed generation to the bus i: Ω; Lci denotes the connection inductance from the ith distributed generation to the bus i: H; Vbusdi denotes the d-axis component of the voltage of the bus i in the dq reference coordinate of the ith distributed generation; {dot over (i)}oqi denotes the change rate of the q-axis component of the output current of the ith distributed generation in the dq reference coordinate of the ith distributed generation: A/S; and Vbusqi denotes the q-axis component of the voltage of the bus i in the dq reference coordinate of the ith distributed generation: V.
According to formulas (1) to (4), a dynamic equation of the it distributed generation is obtained, as shown in formula (5):
In the formula, {dot over (x)}invi denotes the change rate of the state variable of the ith distributed generation, {dot over (x)}invi=[{dot over (δ)}i, {dot over (P)}i, {dot over (Q)}i, {dot over (V)}odi, {dot over (i)}odi, {dot over (i)}oqi]T; {dot over (δ)}i denotes the change rate of δi; xinvi denotes the state variable of the ith distributed generation, xinvi=[δi, Pi, Qi, Vodi, iodi, ioqi]T; wherein δi denotes the phase angle difference between the dq axis of the dq reference coordinate of the ith distributed generation and the DQ axis in the common reference coordinate DQ of the microgrid: rad; finvi(xinvi) denotes a state function of the ith distributed generation, and kinvi(xinvi) denotes a voltage disturbance function of the bus i; VbusDQi=[VbusDi, VbusQi]T, and VbusDi denotes the D-axis component of the bus i in the common reference coordinate DQ: V; VbusQi denotes the Q-axis component of the bus i in the common reference coordinate DQ: V; ωcom denotes the angular frequency of the common reference coordinate: rad/s; hinvi denotes a connection matrix of the angular frequency of the common reference coordinate; ginvi denotes an input matrix of the it distributed generation; ioDQi=[ioDi, ioQi]T, ioDi denotes the D-axis component of the output current of the ith distributed generation in the common reference coordinate DQ, and ioQi denotes the Q-axis component of the output current of the ith distributed generation in the common reference coordinate DQ: A; and Cinvi denotes an output matrix of the ith distributed generation.
A current dynamic equation of the ith line between the bus i and the bus j is as shown in formula (6):
In the formula, ilineDi denotes the change rate of the D-axis component of the current of the it line in the common reference coordinate DQ: A/S; rlinei denotes the line resistance of the it line: Ω; Llinei denotes the line inductance of the it line: H; ilineDi denotes the D-axis component of the current of the ith line in the common reference coordinate DQ, and ilineQi denotes the Q-axis component of the current of the ith line in the common reference coordinate DQ: A; VbusDi denotes the D-axis component of the bus i in the common reference coordinate DQ, VbusDj denotes the D-axis component of the bus j in the common reference coordinate DQ, and {dot over (i)}lineQi denotes the change rate of the Q-axis component of the current of the it line in the common reference coordinate DQ: A/S; VbusQi denotes the Q-axis component of the bus i in the common reference coordinate DQ: V; and VbusQj denotes the Q-axis component of the bus j in the common reference coordinate DQ: V.
A current dynamic equation of the jth load connected to the bus j is as shown in formula (7):
In the formula, {dot over (i)}loadDj denotes the change rate of the D-axis component of the current of the jth load in the common reference coordinate DQ: A/S; Rloadj denotes the load resistance of the jth load: Ω; Lloadj denotes the load inductance of the jth load: H; iloadDj denotes the D-axis component of the current of the jth load in the common reference coordinate DQ, and iloadQj denotes the Q-axis component of the current of the jth load in the common reference coordinate DQ: A; and iloadQj denotes the change rate of the Q-axis component of the current of the jth load in the common reference coordinate DQ: A/S.
According to formulas (5)-(7), the large-signal model of microgrid including n distributed generations, s buses and p loads is as shown in formula (8):
Wherein, x=[xinv1 . . . xinvn, ilineDQ1 . . . ilineDQs, iloadDQ1 . . . iloadDQ p]T, xinv1 denotes the state variable of the 1st distributed generation, xinvn denotes the state variable of the nth distributed generation, ilineDQ1=[ilineD1, ilineQ1]T, ilineD1 denotes the D-axis component of the current of the 1st line in the common reference coordinate DQ, ilineQ1 denotes the Q-axis component of the current of the 1st line in the common reference coordinate DQ, ilineDQs=[ilineDs, ilineQs]T, ilineDs denotes the D-axis component of the current of the st line in the common reference coordinate DQ, ilineQs denotes the Q-axis component of the current of the sth line in the common reference coordinate DQ, iloadDQ1=[iloadD1, iloadQ1]T, iloadD1 denotes the D-axis component of the current of the 1st load in the common reference coordinate DQ, iloadQ1 denotes the Q-axis component of the current of the 1st load in the common reference coordinate DQ, iloadDQp=[iloadDp, iloadQp]T, iloadDp denotes the D-axis component of the current of the pt load in the common reference coordinate DQ, and iloadQp denotes the Q-axis component of the current of the pth load in the common reference coordinate DQ; u=[u1 . . . un]T, u1 denotes the secondary control quantity of the 1st distributed generation, and un denotes the secondary control quantity of the nth distributed generation; f(x) denotes a state function of the microgrid; g denotes an input matrix, and yi denotes an output value of the ith distributed generation; and hi(x) denotes an output function of the ith distributed generation.
Step 20), establish a Luenberger-like nonlinear state observer for each distributed generation. Step 20) specifically includes:
according to the microgrid large-signal model established in step 10), establish a local Luenberger nonlinear state observer for each distributed generation in the DSP, as shown in formula (9):
{dot over ({circumflex over (x)})}=f({circumflex over (x)})+g u+L(hi({circumflex over (x)})−yi) formula (9)
In the formula, {circumflex over (x)} denotes the estimated state values of the microgrid in formula (8), {dot over ({circumflex over (x)})} denotes the change rate of the estimated state values in the microgrid; f({circumflex over (x)}) denotes a connection matrix of the microgrid under the action of the estimated value; L denotes a Luenberger state observer matrix; and hi({circumflex over (x)}) denotes an output function of the ith distributed generation corresponding to the estimated state value {circumflex over (x)}.
Step 30), The data acquisition module of each distributed generation collects the output voltage Vodi and output current iodi and ioqi from the local sensor, which are to be sent to the nonlinear state observer of respective DSP in step 20). Estimate the output voltages and output powers other distributed generations in real time according to a local measured value of each distributed generation
Step 40), The microgrid voltage reference instruction is entered through a human-machine interface and sent out to each distributed generation via the 485 communication mode. Based on the local measured value of each distributed generation and the estimated measurement of other distributed generations, the decentralized secondary voltage control is implemented to satisfy the requirements of accurate reactive power sharing and voltage restoration. The resultant secondary voltage compensation term is transmitted to the PWM module of the local controller; the generated PWM pulse signal is sent to the drive and power amplifier unit to trigger the power electronic switching transistor. Step 40) specifically includes:
the reactive power sharing indicates that the output reactive power of each distributed generation is allocated according to the power capacity, and the implementation process is as shown in formula (10):
In the formula, δQi denotes a reactive power control signal for each calculation cycle; kPQ denotes a proportional coefficient in the reactive power proportional integral controller; Q*i denotes the reactive power reference of the ith distributed generation; kiQ denotes an integral coefficient in the reactive power proportional integral controller; nQj denotes a voltage droop coefficient of the jth distributed generation; and {circumflex over (Q)}j denotes a reactive power estimation value of the jth distributed generation.
The voltage restoration indicates that the average value of the output voltages of the distributed generations through the microgrid is restored to the rated value, and the implementation process is as shown in formula (11):
In the formula, δVi denotes an average voltage restoration control signal for each calculation cycle; kPE denotes a proportional coefficient in the average voltage controller; V* denotes a voltage rated value;
By combining formulas (10) and (11), the secondary voltage control input for the ith distributed generation is as shown in formula (12):
ui=δQi+δVi formula (12).
In the above embodiment, the common reference coordinate DQ refers to the dq reference coordinate of the 1st distributed generation, and the state variables of the remaining distributed generations, buses and loads are converted to the common reference coordinate DQ through coordinate transformation. In step 10), the frequency droop coefficient mPi is determined according to the active power capacity of each distributed generation; and the voltage droop characteristic coefficient nQi is determined according to the reactive power capacity of each distributed generation. In step 40), the decentralized voltage control of reactive power sharing and average voltage restoration is implemented based on the estimated value of each distributed generation on real-time states of other distributed generations, which does not rely on communication.
In the present embodiment, the state of each distributed generation in the microgrid is estimated in real time through a nonlinear state observer based on a microgrid large-signal model, thereby realizing the decentralized secondary control in the microgrid. Compared with the conventional centralized or distributed secondary control method, the control method provided in the present embodiment avoids the problems of communication latency and information drop-out due to the communication independence. According to the microgrid voltage control method based on the nonlinear state observer in the present embodiment, the output voltage and output reactive power of other distributed generations are estimated in real time through operation data of local output voltage, output current and the like, so that the reactive power sharing and average voltage restoration in microgrid independent from a communication technology are realized, the power quality is effectively improved and the system stability and the dynamic performance are improved.
The block diagram of distributed generation control in the embodiment of the present invention is as shown in
The structure block diagram of the decentralized voltage control in the embodiment of the present invention is as shown in
An embodiment is given below.
A simulation system is as shown in
In order to show the advantages of the decentralized control method according to the embodiment of the present invention regarding the communication-free characteristics,
The control method according to the embodiment of the present invention is a decentralized voltage control method based on nonlinear state observers in a microgrid. The state observer of the local distributed generation estimates the output voltage and reactive power of other distributed generations in real time for secondary voltage control to achieve reactive power sharing and average voltage restoration. The method of the present embodiment is a decentralized control method, which does not rely on remote measurement and communication network, thereby avoiding the problems of communication latency and data drop-out in the conventional voltage control and improving the accurate reactive power sharing and voltage dynamics of the microgrid.
The basic principles, main features and advantages of the present invention are shown and described above. It should be understood by the technical personnel in the field that the present invention is not limited by the specific embodiments described above, and the descriptions in the foregoing specific embodiments and specification are only for further illustrating the principle of the present invention.
Various changes and modifications may be made to the present invention without departing from the spirit and scope of the present invention, with all these changes and modifications falling within the scope of the present invention. The protection scope of the present invention is defined by the claims and the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 1269647 | Dec 2016 | CN | national |
This application is the continuation-in-part of of International Application No. PCT/CN2017/119850 filed on 29 Dec. 2017 Filed on which designated the U.S. and claims priority to Chinese Application No. CN201611269647.X filed 30 Dec. 2016, the entire contents of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
8965588 | Milosevic | Feb 2015 | B2 |
20100185336 | Rovnyak | Jul 2010 | A1 |
20160094149 | Pahlevaninezhad | Mar 2016 | A1 |
Entry |
---|
Dehkordi, Nima Mandian, et al. “Fully Distributed Cooperative Secondary Frequency and Voltage Control of Islanded Microgrids.” IEEE Transactions on Energy Conversion , vol. 32, No. 2, Dec. 13, 2016, pp. 675-685 (Year: 2016). |
Wang, Chengshan, et al. “A Nonlinear-Disturbance-Observer-Based DC-Bus Voltage Control for a Hybrid AC/DC Microgrid.” IEEE Transactions on Power Electronics, vol. 29, No. 11, Jun. 11, 2014, pp. 6162-6177 (Year: 2014). |
Kabalan, Mahmoud, et al.“Large Signal Lyapunov-Based Stability Studies in Microgrids: A Review.” IEEE Transactions on Smart Grid, vol. 8, No. 5, Feb. 11, 2016, p. 2287-2295 (Year: 2016). |
Lu, Xiaonan, et al. “DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques.” IEEE Transactions on Power Electronics, vol. 31 , No. 7, Sep. 15, 2015, p. 4876-91 (Year: 2015). |
Benigni. A. et al. “A Decentralized Observer for Electrical Power Systems: Implementation and Experimental Validation.” 2008 IEEE Instrumentation and Measurement Technology Conference, May 12-15, 2008 (Year: 2008). |
Number | Date | Country | |
---|---|---|---|
20180358840 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2017/119850 | Dec 2017 | US |
Child | 16107932 | US |