Not Applicable
This invention relates to the field of deep-draft semi-submersible offshore platforms for the drilling of oil wells and natural gas wells and the production of oil and or gas from such wells. Specifically, the present invention relates to a type of deep-draft semi-submersible platform known as an extendable draft platform, or “EDP.” More particularly, the present invention relates to mechanisms and arrangements for the connection of a plurality of buoyancy columns to a floating deck of the platform.
The development of deep water offshore oil and gas fields, such as are found in the Gulf of Mexico and the North Sea, present substantial challenges to the industry. Early production schedule requirements favor inshore integration and commissioning and a year-round deployment capability. Moreover, the ability to use so-called “dry trees” and steel catenary risers (“SCRs”) requires that the motion of the deployed structures be relatively small, even in rough seas.
In response to these challenges, a number of different types of tethered, floating platforms have been proposed for use in offshore oil and gas exploration and production, such as are described in the following patent publications: U.S. Pat. No. 6,024,040; U.S. Pat. No. 6,196,767; and U.S. Pat. No. 6,524,032. The teachings of these publications are incorporated herein by reference.
One type of offshore platform that has met with commercial success in deep water applications is the semi-submersible platform. Conventional semi-submersible platforms, however, are subject to motions that make it difficult, or even impossible, to support the various types of risers that are employed in such platforms. Deep draft semi-submersible platforms have been proposed that would exhibit superior motion characteristics. One type of deep draft semi-submersible platform is known as the extendable draft platform, or “EDP.” The typical EDP comprises a buoyant equipment deck having a plurality of openings (“leg wells”) through the deck. The deck may conveniently be rectangular or triangular, with a leg well at each corner or apex, although other configurations may be used. Installed in each of the leg wells is a buoyancy column that can be ballasted (e.g., with seawater). The columns are initially installed in a raised position, and then lowered to a submerged position when the EDP has been moved to a deep water site. Each column is divided by transverse internal bulkheads and horizontal flats (decks) into a plurality of compartments, the compartments including means for introducing water into them for ballasting purposes when the columns are lowered to their submerged positions. Attached to the bottom of the columns is a heave plate pontoon assembly that helps to stabilize the EDP against the heave action of waves and swells. Examples of prior art EDPs are disclosed in U.S. Pat. No. 6,718,901—Abbott et al. and U.S. Pat. No. 6,024,040—Thomas, the disclosures of which are incorporated herein by reference.
Once the columns are lowered to their submerged position, the tops of the columns must be securely fixed to the deck. It is important that the attachment or connection of the columns to the deck be secure enough to withstand the strong forces that current and waves often apply to the EDP. The attachment or connection mechanism must also allow the downward movement of the column relative to the deck as the column is moved to its submerged position prior to the attachment or connection of the column to the deck. In other words, the attachment or connection mechanism must not interfere with the column lowering process. While prior art approaches (such as rack-and-pinion lowering systems which can be locked in various ways) have provided satisfactory results, further improvements in the connection/attachment mechanisms have been sought, so as better to achieve the intended results, particularly when a rack-and-pinion lowering system is not employed.
The present invention is an arrangement for securing the deck of an EDP to a buoyancy column that is installed in a leg well in the deck for vertical movement within the leg well from a raised position to a submerged position. Broadly, the arrangement comprises a plurality of first guide elements near the top of each column; a plurality of complementary second guide elements secured to the deck around the leg well, each of which is configured to engage an associated one of the first guide elements when the column is lowered to its submerged position; and a locking mechanism that is operable on the upper portion of the column to restrict the motion of the column relative to the deck when the first guide elements are engaged with the second guide elements.
In a first exemplary embodiment, the arrangement comprises a first plurality of radial bulkheads extending vertically from the top of the column, each of which includes a radially-extending first guide element; a plurality of complementary second guide elements on the deck around the periphery of the leg well and positioned to engage the first guide elements when the column is lowered to its submerged position; a second plurality of radial bulkheads extending vertically from the top of the column, each of which carries a radially-extending locking pin that is radially movable between a withdrawn position and an extended position; and a plurality of pin receptacles on the deck around the periphery of the leg well, located so as to receive the pins when the first guide elements are engaged by the second guide elements and the locking pins are moved to their extended position. In this embodiment, the locking mechanism comprises the locking pins and the mating pin receptacle. In this embodiment, the columns are advantageously over-ballasted so that the first guide elements firmly press down on the second guide elements, whereby the columns and the deck will move as one body in response to environmental forces (e.g., waves, currents, and wind).
In a second exemplary embodiment, the arrangement comprises a first plurality of radial bulkheads extending vertically from the top of the column, each of which includes a radially-extending first guide element; a plurality of complementary second guide elements on the deck around the periphery of the leg well and positioned to receive the first guide elements when the column is lowered to its submerged position; a second plurality of radial bulkheads extending vertically from the top of the column, each of which carries a radial extension member; a plurality of U-shaped receptacles or brackets on the deck around the periphery of the leg well, located so as to receive the extension members when the column is lowered to its submerged position; and a locking pin operatively associated with each of the brackets and movable between an unlocked position and a locked position in which the extension member is locked into the bracket in which it is received. In this embodiment, the locking mechanism comprises the extension members, the brackets, and the locking pins. This embodiment also advantageously includes the over-ballasting of the columns mentioned above.
In a third exemplary embodiment, the arrangement comprises a plurality of radial beams fixed to the top of each column, each of the beams having first guide element in the form of a sloped or angled shoulder on its underside at its end remote from the center; a plurality of stop elements fixed to the peripheral wall of the leg well, each having a sloped or angled upper surface forming a second guide element, and a sloped or angled lower surface. The stops are located so that the upper surfaces thereof are engageable with the shoulders of the beams when the column is lowered to its submerged position. A plurality of radially-extending shear keys is disposed on the top of the column. Each of the shear keys extends radially underneath one of the radial beams, and is movable between a radially withdrawn position and a radially extended position. The shear keys are actuated by conventional means, such a pneumatic cylinder, a hydraulic cylinder, or a jack screw, and they are held in their withdrawn position as the column is lowered so that they can clear the stop elements. Once the column has reached its submerged position, the shear keys are moved to their extended position in which they engage the lower surfaces of the stops. In this embodiment, the locking mechanism comprises the beam shoulders, the stops, and the shear keys. The over-ballasting of the columns is also advantageously used in this embodiment.
In a fourth exemplary embodiment, the arrangement comprises a plurality of radial bulkheads extending vertically from the top of the column; a plurality of brackets arranged around the opening of the leg well on the deck surface and located so as to correspond with the circumferential positions of the bulkhead ends; a cap beam dimensioned to bridge the leg well opening, the cap beam defining a plurality of radial arms circumferentially located so as to correspond with the radial bulkheads, each of the arms having an end that is received in one of the brackets; and at least one locking pin operatively associated with each of the brackets and movable between an unlocked position and a locked position in which each cap beam arm end is locked into the receptacle in which it is received. Each of the bulkheads has a sloped or chambered shoulder at each end that forms a first guide element, and each cap beam arm has a complementary angled brace on its underside near its end that forms a second guide element. The column is deballasted to lift it into a position in which the sloped shoulders of the bulkheads engage against the angled braces on undersides of the cap beam arms, in which position the deck is slightly up-lifted. The column bulkheads are optionally welded to the deck wall surrounding the leg well. In this embodiment, the locking mechanism comprises the cap beam, the brackets, and the locking pins, (and, optionally, the bulkhead-to-deck wall weld), but in this case, the locking mechanism limits only the upward movement and rotation of the column relative to the deck.
Referring first to
In several of the exemplary embodiments discussed below, an arrangement of radial bulkheads 20 is fixed to the top surface of each column 16. The bulkheads 20 extend vertically, and form part of the deck-to-column connection assembly, as described below.
Mounted on the deck 12 around the periphery of the leg well 14 is a plurality of second guide elements 44, each of which is located circumferentially so as to be engageable with an associated one of the first guide elements 40 described above. Preferably, each of the second guide elements 44 has a rounded, concave configuration in which its associated first guide element 40 seats or nests concentrically, as shown in
When the column 16 is lowered to its submerged position, as mentioned above, the first guide elements 40 are seated in the complementary second guide elements 44, and the extension elements 42 are received in the receptacles or brackets 46, thereby assuring the proper centering of the column in the leg well. Preferably, as with above-described first embodiment, the column 16 is over-ballasted to apply a compressive or stressed engagement between the first and second guide elements 40, 44, and between the extension elements 42 and the brackets 46. The upraised legs of the brackets 46 are provided with holes through which is journaled at least one locking pin 48, and preferably two locking pins 48, as shown. The locking pins 48 are shown in a locking position in which they extend through their respective brackets 46 across the top of the extension element 42 received in each bracket 46, so as to lock each of the extension elements 42 into its associated bracket 46. The locking pins 48 may advantageously be driven by conventional hydraulic or pneumatic mechanisms (not shown). As in the first embodiment, once the column 16 and the deck 12 are thus locked together, the deck 12 is lifted above the surface of the water. Again, the outer edges of the bulkheads 20′ may advantageously be welded to the surrounding leg well wall 38.
A plurality of shear keys 60 is disposed on the top of the column 16, one of the shear keys 60 being located underneath each end of each of the beams 50. The shear keys 60 are movable between a radially withdrawn position and a radially extended position by actuation means 62, which may be pneumatic or hydraulic cylinders or jack screws. The shear keys 60 are held in their withdrawn position as the column 16 is lowered so that they can clear the stops or second guide elements 54. Once the column 16 has reached its submerged position, the shear keys 60 are moved to their extended position in which they engage the lower surfaces 58 of the stops or second guide elements 54, thereby locking the column 16 in place in its submerged position relative to the deck 12.
As shown in the drawings, each of the shear keys 60 has an angled, wedge-shaped bearing surface that is complementary to the angled lower surface 58 of the second guide elements 54, but the angle illustrated in the drawings is exaggerated for clarity, and is actually much shallower than depicted. Also, as shown in the drawings, a plurality of rollers 64 may advantageously be provided around the lower periphery of the leg well 14 to facilitate the vertical movement of the column 16 therein. Such rollers 64 (or equivalent devices) may be employed in any of the embodiments of the invention.
A fourth exemplary embodiment is shown in
In a preferred configuration, there are four bulkheads 70, defining a pair of orthogonal diameters. A cap beam 76, dimensioned to bridge the leg well opening, is installed over the leg well 14. The cap beam 76 includes radial arms 77 that are positioned circumferentially in the same positions as are the radially bulkheads 70. In the preferred configuration, the radial arms 17 of the cap beam 76 define two orthogonal diameters corresponding to the diameters defined by the bulkheads 70. A pair of downwardly-extending flanges 78 is provided at the end of each of the beam arms 77. An angled brace or second guide element 80, configured with an angle that is complementary to the chambered shoulder 72 of the corresponding bulkhead 70, is provided on the underside of each beam arm 77 near its end. As shown in
The upright legs of each bracket 74 are apertured to receive at least one locking pin 82, and preferably two locking pins 82, as shown. The locking pins 82 are movable between an unlocked position and a locked position in which each end of each cap beam arm 77 is locked into the bracket 74 in which it is received. The locking pins 82 may advantageously be moved between their unlocked position and their locked position by a conventional hydraulic or pneumatic mechanism (not shown).
As shown in
From the foregoing, it will be appreciated that the present invention, in its several embodiments, offers an improved EDP with greatly enhanced security in the attachment of the extensible columns to the deck. The enhanced structural security is achieved without detriment to the normal movement of the columns relative to the deck during the column lowering process. Moreover, within the scope of the invention are several embodiments that make the invention widely adaptable to differing conditions, design considerations, and manufacturing methods.
While several embodiments of the invention have been disclosed and described herein, it will be appreciated by those skilled in the pertinent arts that a number of variations and modifications, some of which have been mentioned above, may suggest themselves to those skilled in the pertinent arts. For example, the description herein of specific mechanisms for locking the tops of the columns to the deck surrounding the leg wells should be considered exemplary only, and should not be construed as exclusive of equivalent mechanisms. Other elements of the invention as described herein should also be understood as having functionally and/or structurally equivalent elements that may suggest themselves to those skilled in the pertinent arts. Such variations, modifications, and equivalents should be considered within the spirit and scope of the invention, as defined in the claims that follow.
This application claims the benefit, under 35 U.S.C. §119(e), of the filing date of co-pending provisional application No. 60/511,380; filed Oct. 15, 2003, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3118283 | True et al. | Jan 1964 | A |
3605669 | Yu | Sep 1971 | A |
4735526 | Kawagoe et al. | Apr 1988 | A |
6024040 | Thomas | Feb 2000 | A |
6718901 | Abbott et al. | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050084336 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60511380 | Oct 2003 | US |