1. Field of the Invention
The present invention relates to the field of skateboards, particularly to skateboards that have increased functionality to perform maneuvers and tricks.
2. Background Art
Skateboards have existed for many years. Traditional skateboard designs have a flat, elongated deck made of wood capable of supporting a rider, attached to two axle assemblies, or truck assemblies, one at each end of the deck. Some truck assemblies incorporate an elastomeric member which allows the rider to tilt the board relative to the axles, which provides for a basic directional control and turning of the skateboard. Traditional skateboards have four skate wheels made with an elastomeric tire portion, usually made of polyurethane materials, molded around a plastic hub. After considerable use, the skate wheels wear down and need to be replaced. Since the skate wheel's elastomeric tire is molded around the plastic hub, the entire skate wheel is discarded and replaced with a new wheel.
Skateboards serve not only as a means of transportation, but also as recreational equipment. Skateboarding is a popular hobby performed on sidewalks, in the streets, and in dedicated skate parks. Skateboard riders often perform tricks involving jumps, spins, kickflips, and grinds, which require a great deal of balance, skill, and strength.
Thus far, skateboard riders have been limited in their ability to jump. Jumping while on a flat surface requires strong legs to lift the rider as well as the skateboard into the air. Dropping-off from a higher surface to a lower surface requires the rider's legs to absorb the shock from the impact. The deck wheeled device described herein allows the rider to jump higher into the air and to drop-off from greater heights with greater control.
A deck wheeled device is provided comprising a deck, a subframe connected to at least one point of the deck, at least one truck assembly connected to the subframe, at least one wheel connected to each truck assembly, and at least one spring connecting each truck assembly to the deck.
The subframe comprises a spine connected to a saddle member, which creates a stable subframe. The subframe is typically rigid, which gives the rider greater control while riding, as compared to a more flexible subframe. With the saddle and spine assembly being rigid, any angular tilt of the deck relative to the ground will produce a certain turning radius independent of the flexing of the deck or compression of the spring members.
The energy for jumping is provided by the rider and stored in both the deck and the spring members. The deck is preferably designed to flex about the middle of the saddle. The rider uses his weight to push down on the front and back of the deck to flex the deck. The stored energy in the deck and spring member then causes the deck to recoil to propel the rider and the board into the air. The rider is able to jump higher and for greater distances than with a conventional skateboard, without the need for a ramp.
Turns on the device are accomplished similarly to a traditional skateboard. The rider shifts his weight in the direction he wants to turn. The deck of the device can flex when the rider leans toward either side, further facilitating the turning of the board. Additionally, the rider can turn the device by shifting his weight to the back of the deck to lift the front wheels off the ground, and then shifting his weight in the direction of the turn.
A wheel is provided comprising a tire, two substantially symmetrical hub halves, and at least one bolt that connect the two hub halves together. Each side of the tire has an indentation into which fits one hub half. Each hub half has a protruding center such that the centers of each hub half are in contact with each other through the hole in the center of the tire. The tire is held in place between the hub halves by the compressive force of the bolt that connects the two hub halves together and the bolt itself, which can be run through the tire. The wheel design allows a user to quickly change parts that break and change the tires with other tires of various tread designs that a user will choose depending on the surface they are traversing.
Detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms, the figures are not necessarily to scale, and some features may be exaggerated to show details of particular components or steps.
A lighter weight rider may use the same deck design as a heavier rider, but the rider's weight alone may be insufficient to flatten the upwards contour when in a neutral riding position. In this situation, the bottoms of the lighter weight rider's feet would be slightly canted inwards in the normal riding position. If the lighter weight rider jumps from a higher elevation to a lower elevation, the upwards contour of the deck flattens under the rider's weight, and the rider's feet are in a better position to avoid slipping off the board under the shock of the landing.
The stiffness of the deck 11 may be varied depending on the riding terrain, the rider's weight, the rider's ability, and the rider's desired ride comfort. The stiffness of the deck may be measured in terms of its flexural modulus. A higher flexural modulus deck will be stiffer and will resist flexing better than a low flexural modulus deck. The device 10 is designed to allow for interchangeability and replacement of the individual members, so for example, the rider may select the proper deck 11 for his current ability and may replace the deck when his skills improve or if the deck is damaged. Additionally, the spring members 15 may be selected to alter the performance of the device 10. A spring member 15 can be a gas-filled spring, a conventional coil spring, or a combination of both. For a gas-filled spring, altering the gas pressure will change the performance of the spring member 15 and change the overall handling characteristics of the device 10. For a conventional coil spring, altering the spring rate can similarly affect the handling characteristics of the device 10.
The deck 11 can be constructed of wood, plastic, carbon fiber, metal, fiberglass, combinations thereof, or other suitable materials. Wooden decks can be made of solid wood, although plywood laminates are particularly suited for this application due to their low cost and good physical properties, e.g. flexibility. Plywood laminates typically are more resistant to cracking, warping, and shrinking than is solid wood. Plywood laminates can be stiffer and stronger than solid wood, and each layer of the plywood can be oriented at different angles to yield a high strength deck 11 that can withstand the impact of repeated use. Rock Maple and Sugar Maple are two hardwoods that are particularly suitable for this application. Carbon fiber offers a high specific strength or strength to weight ratio and excellent stiffness. The deck 11 can also be made of fiberglass which offers excellent stiffness and low manufacturing and materials costs.
The deck 11 can have a uniform or variable thickness across its side profile. A uniform thickness deck may be cheaper to construct, while a variable thickness deck may offer improved flexing characteristics and rider feedback. The geometry of the deck 11 also can be tailored to achieve the desired flex characteristics. Ridges and rolled edges can be often added to the deck 11 to improve stiffness.
The device 10 may include footwear 26 attached to the deck 11 for securing the rider's feet atop the deck 11. Footwear 26 may be comprised of custom fitted shoes which fit the particular rider's feet, and which are specially adapted to securely fasten to the device 10. The footwear 26 may also be comprised of bindings, which allows the rider to wear his own shoes. The footwear 26 allows the rider to perform maneuvers with the device 10 without fear of becoming separated from the device 10. The rider's feet will not slip off the deck 11 when jumping or when the rider and device are temporarily inverted. A breakaway fastening system (not shown) may be incorporated into the device 10 to allow the footwear 26 to separate from the deck 11 in the event of an accident, while during normal operation, the footwear 26 remains securely attached. Examples of breakaway fastening systems are commonly found in snow skis and bicycle clipless pedals. Additionally, the footwear 26 allows the rider to selectively actuate a brake 17 as shown in
The saddle 12 is a member of the subframe assembly. The saddle 12 can be securely attached at its midpoint to a single point or at multiple points between the two ends of the deck 11 and provides a pivot point about which to flex the deck. The end deflection of the deck 11 about the saddle 12 can measure up to approximately one inch to more than two inches.
To provide the saddle 12 with additional rigidity, the sides of the saddle can be curved to prevent its deformation under the forces exerted by the rider. Additionally, stiffening of the saddle 12 can be accomplished by the use of stiffening ribs which can be stamped into the saddle during manufacture, or by securely attached support members.
The saddle 12 can be constructed out of a variety of materials including metals, plastics, carbon fiber, or fiberglass. The saddle's material of construction should be chosen such that it can be easily formed into a rigid shape, and securely attached to the other members of the device.
The saddle 12 is also securely attached at each of its two endpoints to the spine 13. Depending on the material of construction of the deck 11, saddle 12, and spine 13, the method of joining the members will vary. Metal members can be welded together or connected with fasteners, and many materials can be glued or adhesively bonded to form a secure connection.
The spine 13 is a member of the subframe assembly. The spine 13 provides the attachment points for truck assemblies 14. The spine 13 can be a tubular member, a solid monolithic structure, or of any other suitable form. The spine 13 should be selected to provide rigidity and durability of the device. The spine 13 can be formed with a slight upward bend to counteract any deflection from the rider's weight or forces exerted by the rider, and to allow for suitable connections to the truck assemblies 14 at an angle appropriate for turning.
Each truck assembly 14 is securely attached to one end of the spine 13. The truck assembly 14 typically will have two skate wheels 18 attached at its ends. The truck assembly 14 can be made from cast, milled, or molded metals, as well as other materials. The truck assembly 14 also serves as an attachment point for a spring member 15, which is also connected to deck 11. Spring members 15 can connect to any point on the deck 11 or truck assemblies 14, but typically a spring member 15 will be connected at each end of the deck 11 connecting the proximate end of the deck 11 with the respective truck assembly 14. The device 10 can be manufactured such that the spring member 15 can be attached to different points on the deck 11 and truck assembly 14 to alter the flexibility characteristics and modify the jumping and ride quality of the device 10.
A variety of fastening means can be used to connect each end of spring member 15 to the deck 11 and the truck assembly 14, including ball socket joints, stud mounts, rod and brackets, bar pins, eye mounts, and clevis rod ends.
The deck 11 can be attached to the saddle 12 with fasteners 16 as shown in more detail in
Referring to
In place of heel plate 30, a pivot guide (not shown) can be incorporated into the deck 11 which would provide a track or channel for the heel portion of footwear 26 to move in an arc while remaining securely fastened to deck 11. A pivot guide would limit the length of travel for the heel portion of footwear 26. A pivot guide pin (not shown) can be used in conjunction with the pivot guide and would help retain the footwear 26 to the deck 11. A pivot guide pin could be T-shaped or have a flanged head and would be affixed to the underside of footwear 26 and travels in the pivot guide.
Unlike most skate wheels which are free spinning rollers and are incapable of transmitting torque, skate wheels 18 are capable of transmitting a torque. When the brake 17 is applied, the skate wheel 18 transmits the torque braking force from the brake 17 through the tire 25 and then to the ground. The skate wheel 18 can also function as a drive wheel by attaching a sprocket in place of the brake cup 21 and connecting the sprocket to a motor. When used as a drive wheel, the skate wheel 18 transmits the torque applied to the sprocket through the tire 25 and then to the ground.
As described above, brake cup 21 is connected to the skate wheel 18 with fasteners 23. During braking operation, the brake cup 21 can generate significant heat, so a thermally insulating washer 24 can be inserted between the brake cup and the hub half 22 to prevent heat transfer, which may otherwise affect the performance of the tire 25. Additionally, cooling fins or ribs may be incorporated into the design of brake cup 21 to further dissipate heat. The washer 24 can be made of ceramic, plastic, wood, composite material, or other suitable insulating material.
Two symmetrical hub halves 22 are fitted together on each side of tire 25. Fasteners 23 extend through the outer face 39 of a first hub half 22, then though the tire 25, and into the inner face 40 of a second hub half 22. Fasteners 23 can be bolts, screws, rivets, or any other suitable fasteners. A hub half 22 can have any number of holes through which any number of fasteners are inserted and secure to the other hub half 22. In the preferred embodiment, each hub half 22 has six holes with alternate holes being threaded to accept a fastener 23. Only three fasteners 23 on the facing side of skate wheel 18 are shown. This embodiment will also have three additional fasteners on the far side of the skate wheel 18 that are not shown.
A spacer 31 can be used to properly position bearings 32 about the truck assembly axle (not shown). The spacer 31 can be appropriately sized to fit a variety of axle sizes without the need to change bearings 32 or any other component of the skate wheel 18. The spacer 31 has precision ground outer-diameter face for bearings 32 to rotate about leading to improved skate wheel 18 performance and reduced bearing 32 failures.
Bearings 32 can be plain, needle, ball, or any other suitable type of bearing and can be made of plastic, steel, aluminum, bronze, or any other suitable material. Depending on the type of bearing selected, lubrication may be necessary. Flanged, plain bearings are particularly suited for application with the skate wheel 18 since the flange face provides for an additional bearing area between hub half 22 and corresponding washer 24. Washers 24 can be used to appropriately space the skate wheel 18 on the truck assembly axle (not shown) and can provide increased-surface-load area when the truck assembly axle nut (not shown) is tightened. Washers 24 can be made of plastic, steel, aluminum, bronze or any other suitable material.
It will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiments, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 13/221,199, filed Aug. 30, 2011, which claims the benefit of U.S. Provisional Application No. 61/380,945, filed Sep. 8, 2010, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61380945 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13221199 | Aug 2011 | US |
Child | 14322178 | US |