The invention generally relates to a hinge assembly for rotatably supporting a decklid of a vehicle, and more specifically to a counterbalanced hinge assembly having a twisted torque rod extending between a pair of hinge boxes for applying an opening force to the decklid.
Counterbalanced decklid hinge assemblies typically include at least one torque rod that extends between a pair of hinge boxes. A support member is rotatably attached to and supported by each of the hinge boxes. One end of the torque rod is bent in a manner to engage one of the hinge boxes, and the other end of the torque rod is bent in a manner to engage one of the support members. The torque rod is twisted during assembly to pre-load the torque rod. The pre-loaded torque rod acts as a spring to untwist, thereby applying a torque to the support member to assist in opening the decklid.
The amount of torque that the torque rod is capable of storing is dependent upon the length of the torque rod, with the bent ends of the torque rod reducing the overall effective length of the torque rod. Furthermore, the bent ends of the torque rod induce bending stresses into the torque rod, which decreases the durability of the torque rod.
A decklid hinge assembly for a vehicle is provided. The decklid hinge assembly includes a first hinge box and a second hinge box. The second hinge box is spaced from the first hinge box. Each of the first hinge box and the second hinge box are configured for attachment to the vehicle. A first support member is rotatably attached to the first hinge box. A second support member is rotatably attached to the second hinge box. The first support member and the second support member are configured for simultaneous rotation about a rotation axis between a closed position and an open position. The decklid hinge assembly further includes a torque mechanism. The torque mechanism includes a first torque rod that extends between and is rotatably supported by the first hinge box and the second hinge box. The first torque rod includes a first axial end and a second axial end. The second axial end is pre-loaded with a twisting moment relative to the first axial end to generate a twisting torque. A first lever is attached to and rotatable with one of the first axial end and the second axial end of the first torque rod, and is secured in a position relative to one of the first hinge box and the second hinge box. A first linkage system interconnects another of the first axial end and the second axial end of the first torque rod, and one of the first support member and the second support member. The first linkage system is configured for transferring the torque from the first torque rod to the one of the first support member and the second support member to assist the simultaneous movement of the first support member and the second support member from the closed position into the open position.
A vehicle is also provided. The vehicle includes a body that extends along a longitudinal axis. The body defines an opening. A decklid is coupled to the body and is configured for sealing the opening. A decklid hinge assembly rotatably attaches the decklid to the body for rotation about a rotation axis between a closed position and an open position. The decklid hinge assembly includes a first hinge box and a second hinge box. The second hinge box is laterally spaced from the first hinge box across the longitudinal axis of the body. Each of the first hinge box and the second hinge box are attached to the body. A first support member is rotatably attached to the first hinge box. A second support member is rotatably attached to the second hinge box. The first support member and the second support member are configured for simultaneous rotation about the rotation axis between the closed position and the open position. The decklid hinge assembly includes a torque mechanism that is configured for applying a torque to the first support member and the second support member. The torque assists the simultaneous movement of the first support member and the second support member from the closed position into the open position. The torque mechanism includes a first torque rod and a second torque rod. The first torque rod extends between and is rotatably supported by the first hinge box and the second hinge box. The first torque rod includes a first axial end that is disposed adjacent the first hinge box, and a second axial end that is disposed adjacent the second hinge box. The first axial end and the second axial end of the first torque rod are pre-loaded with a twisting moment relative to each other to generate a twisting torque. A first lever is attached to and is rotatable with the first axial end of the first torque rod, and is secured in a position relative to the first hinge box. A first linkage system interconnects the second axial end of the first torque rod and the second support member. The first linkage system is configured for transferring the torque from the first torque rod to the second support member. The second torque rod extends between and is rotatably supported by the first hinge box and the second hinge box. The second torque rod includes a first axial end disposed adjacent the second hinge box, and a second axial end disposed adjacent the first hinge box. The first axial end and the second axial end of the second torque rod are pre-loaded with a twisting moment relative to each other to generate a twisting torque. A second lever is attached to and is rotatable with the first axial end of the second torque rod, and is secured in a position relative to the second hinge box. A second linkage system interconnects the second axial end of the second torque rod and the first support member. The second linkage system is configured for transferring the torque from the second torque rod to the first support member.
Accordingly, no bends in the torque rods are required to connect the torque rods to either the hinge boxes or the support members. More specifically, the levers connect one axial end of each torque rods to one of the hinge boxes, and the linkage systems connect the other axial end of each of the torque rods to one of the support members. The lever and the linkage systems are attached to the torque rods in a manner that eliminates any bends in the torque rod, thereby reducing and/or eliminating any bending stresses in the torque rods. Additionally, because no bends are required to secure the axial ends of the torque rods to the hinge boxes and/or the support members, the overall length of the torque rods may be maximized to fit within the cross vehicle packaging restraints of the vehicle.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” “top,” “bottom,” etc., are used descriptively for the figures, and do not represent limitations on the scope of the invention, as defined by the appended claims.
Referring to the Figures, wherein like numerals indicate like parts throughout the several views, a decklid hinge assembly, hereinafter referred to as the hinge assembly, is generally shown at 20. Referring to
The body 26 extends along a longitudinal axis 30 between a forward end of the body 26 and a rearward end of the body 26. The hinge assembly 20 rotatably attaches the decklid 24 to the body 26 for rotation about a rotation axis 32. As shown, the rotation axis 32 is perpendicular relative to the longitudinal axis 30 of the vehicle 22. However, the relative positions between the rotation axis 32 and the longitudinal axis 30 of the vehicle 22 may differ from that shown and described herein. The decklid 24 is rotatable between a closed position for sealing the opening 28, and an open position for allowing access to the opening 28.
Referring to
A first support member 38 is rotatably attached to the first hinge box 34. A second support member 40 is rotatably attached to the second hinge box 36. The first support member 38 and the second support member 40 are attached to and support the decklid 24 relative to the body 26. The first support member 38 and the second support member 40 are configured for simultaneous rotation about the rotation axis 32 between the closed position and the open position to rotate the decklid 24 between the closed position and the open position. The first support member 38 and the second support member 40 may be shaped in any suitable manner, such as but not limited to the gooseneck configuration shown in the Figures.
A torque mechanism 42 interconnects the first hinge box 34 and the second hinge box 36 with the first support member 38 and the second support member 40. The torque mechanism 42 is pre-loaded to assist in opening 28 the decklid 24. The torque mechanism 42 is configured for applying a torque to at least one of the first support member 38 and the second support member 40 to assist the simultaneous movement of the first support member 38 and the second support member 40 from the closed position into the open position.
The torque mechanism 42 includes a first torque rod 44 and a second torque rod 46. The first torque rod 44 extends between and is rotatably supported by the first hinge box 34 and the second hinge box 36. The first torque rod 44 includes a first axial end 48 that is disposed adjacent the first hinge box 34, and a second axial end 50 that is disposed adjacent the second hinge box 36. The first torque rod 44 extends along a first rod axis 52. The first rod axis 52 is disposed along the longitudinal center of the first torque rod 44. The first axial end 48 and the second axial end 50 of the first torque rod 44 are linearly disposed and extend along the first rod axis 52, with each of the first axial end 48 and the second axial end 50 of the first torque rod 44 extending linearly outboard away from the longitudinal axis 30 beyond a respective one of the first hinge box 34 and the second hinge box 36. As used herein, the term outboard is defined as disposed farther from. Accordingly, the first axial end 48 and the second axial end 50 are disposed farther from the longitudinal axis 30 than the first hinge box 34 and/or the second hinge box 36. As shown and described herein, the first axial end 48 of the first torque rod 44 is disposed adjacent and outboard of the first hinge box 34 and the second axial end 50 of the first torque rod 44 is disposed adjacent and outboard of the second hinge box 36.
A first lever 54 is attached to and rotatable with one of the first axial end 48 and the second axial end 50 of the first torque rod 44. The first lever 54 is secured in a position relative to one of the first hinge box 34 and the second hinge box 36. As shown, the first lever 54 is attached to and rotatable with the first axial end 48 of the first torque rod 44, and secured in a position relative to the first hinge box 34. The first lever 54 is rotationally fixed relative to the first axial end 48 of the first torque rod 44 such that rotation of the first lever 54 rotates the first torque rod 44.
A first linkage system 56 interconnects another of the first axial end 48 and the second axial end 50 of the first torque rod 44, and one of the first support member 38 and the second support member 40. As shown, the first linkage system 56 interconnects the second axial end 50 of the first torque rod 44 with the second support member 40. The first linkage system 56 transfers a torque from the first torque rod 44 to the one of the first support member 38 and the second support member 40. The torque applied to the first support member 38 and/or the second support member 40 assists the simultaneous movement of the first support member 38 and/or the second support member 40 from the closed position into the open position. As shown, the first linkage system 56 transfers the torque from the first torque rod 44 to the second support member 40.
The first axial end 48 and the second axial end 50 of the first torque rod 44 are pre-loaded with a twisting moment relative to each other to generate the twisting torque that is stored within the first torque rod 44. During assembly, the first lever 54 is rotated into position and secured in that position relative to the first hinge box 34. This rotation, about the first rod axis 52, twists the first torque rod 44 between the first axial end 48, secured to the first lever 54, and the second axial end 50, secured to the first linkage system 56, thereby generating the torque used to assist in opening 28 the decklid 24. The first hinge box 34 includes a retention feature 58 that is configured for securing the first lever 54 in position relative to the first hinge box 34. The retention feature 58 prevents the rotation of the first lever 54 in a direction that would allow the first torque rod 44 to untwist, and also resists lateral movement away from the longitudinal axis 30 to prevent unintentional disengagement of the first lever 54 from the retention feature 58.
The second torque rod 46 extends between and is rotatably supported by the first hinge box 34 and the second hinge box 36. The second torque rod 46 includes a first axial end 60 that is disposed adjacent the second hinge box 36, and a second axial end 62 that is disposed adjacent the first hinge box 34. As such, the relative positions of the first axial end 60 and the second axial end 62 of the second torque rod 46 are reversed from those of the first torque rod 44. The second torque rod 46 extends along a second rod axis 64. The second rod axis 64 is disposed along the longitudinal center of the second torque rod 46. The first axial end 60 and the second axial end 62 of the second torque rod 46 are linearly disposed and extend along the second rod axis 64, with each of the first axial end 60 and the second axial end 62 of the second torque rod 46 extending linearly outboard away from the longitudinal axis 30 beyond a respective one of the first hinge box 34 and the second hinge box 36. Accordingly, the first axial end 60 and the second axial end 62 of the second torque rod 46 are disposed farther from the longitudinal axis 30 than the first hinge box 34 and/or the second hinge box 36. As shown and described herein, the first axial end 60 of the second torque rod 46 is disposed adjacent and outboard of the second hinge box 36 and the second axial end 62 of the second torque rod 46 is disposed adjacent and outboard of the first hinge box 34.
A second lever 66 is attached to and rotatable with one of the first axial end 60 and the second axial end 62 of the second torque rod 46. The second lever 66 is secured in a position relative to one of the first hinge box 34 and the second hinge box 36. As shown, the second lever 66 is attached to and rotatable with the first axial end 60 of the second torque rod 46, and secured in a position relative to the second hinge box 36. The second lever 66 is rotationally fixed relative to the first axial end 60 of the second torque rod 46 such that rotation of the second lever 66 rotates the second torque rod 46.
A second linkage system 68 interconnects another of the first axial end 60 and the second axial end 62 of the second torque rod 46, and one of the first support member 38 and the second support member 40. As shown, the second linkage system 68 interconnects the second axial end 62 of the second torque rod 46 with the first support member 38. The second linkage system 68 transfers a torque from the second torque rod 46 to the one of the first support member 38 and the second support member 40. The torque applied to the first support member 38 and/or the second support member 40 assists the simultaneous movement of the first support member 38 and/or the second support member 40 from the closed position into the open position. As shown, the second linkage system 68 transfers the torque from the second torque rod 46 to the first support member 38.
The first axial end 60 and the second axial end 62 of the second torque rod 46 are pre-loaded with a twisting moment relative to each other to generate the twisting torque that is stored within the second torque rod 46. During assembly, the second lever 66 is rotated into position and secured in that position relative to the second hinge box 36. This rotation, about the second rod axis 64, twists the second torque rod 46 between the first axial end 60, secured to the second lever 66, and the second axial end 62, secured to the second linkage system 68, thereby generating the torque used to assist in opening 28 the decklid 24. The second hinge box 36 includes a retention feature 58 that is configured for securing the second lever 66 in position relative to the second hinge box 36. The retention feature 58 prevents the rotation of the second lever 66 in a direction that would allow the second torque rod 46 to untwist, and also resists lateral movement away from the longitudinal axis 30 to prevent unintentional disengagement of the second lever 66 from the retention feature 58.
The first lever 54 and the second lever 66 each include a rotational locking mechanism 70 rotationally securing the first lever 54 to the first torque rod 44 and the second lever 66 to the second torque rod 46. The rotational locking mechanism 70 may include any mechanism capable of rotationally securing the first lever 54 and the second lever 66 to the first torque rod 44 and the second torque rod 46 respectively, while maintaining the straight axial orientation of the first torque rod 44 and the second torque rod 46 respectively. In other words, the rotational locking mechanism 70 rotationally secures the first lever 54 and the second lever 66 to the first torque rod 44 and the second torque rod 46 respectively without bending the respective axial ends of the first torque rod 44 and/or the second torque rod 46. For example, referring to
Referring to
The torque link 78 of each of the first linkage system 56 and the second linkage system 68 includes a rotational locking mechanism 84 rotationally securing the torque link 78 to the first torque rod 44 and the second torque rod 46 respectively. The rotational locking mechanism 84 may include any mechanism capable of rotationally securing the torque link 78 of the first linkage system 56 and the second linkage system 68 to the first torque rod 44 and the second torque rod 46 respectively, while maintaining the straight axial orientation of the first torque rod 44 and the second torque rod 46. In other words, the rotational locking mechanism 84 rotationally secures the torque link 78 of the first linkage system 56 and the second linkage system 68 to the first torque rod 44 and the second torque rod 46 respectively without bending the respective axial ends of the first torque rod 44 and/or the second torque rod 46. For example, referring to
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.