1. Field of the Invention
The present invention relates to vehicle trunks and the decklids pivotally mounted to a motor vehicle body for closing the trunk's access opening by a mechanism, in which a linkage supports the decklid with respect to the vehicle body. Additional support in the form of extendable struts that linearly expand to assist decklid displacement and a motorized lever engaged with the strut that permits the combination of the linkage and the strut to induce opening or closing displacement of the decklid as desired.
2. Background Art
For an automobile with a rear compartment or trunk, a system that automates opening and closing the trunk cover, known as a decklid, is not readily available in the domestic market for coupe/sedan automobiles. Current standard trunk hinges and power sources do not easily allow a robust and affordable design of an automatic opening-closing device for decklids, since the energy required in conventional constructions is not compatible with the conventional power systems.
Similar devices used for minivan or sport utility vehicle liftgates, such as a 2005 Chrysler Pacifica liftgate, uses a linear actuator mounted inside the liftgate water seal. Another liftgate opening mechanism is shown in U.S. Pat. No. 6,719,356. This invention uses gas struts maneuvered at their body attachment joints to increase and decrease their lifting capacity by strut alignment, thus achieving an automatic opening and closing of the liftgate. However, the differences between liftgate and rear trunk weighting, and the different displacement paths, introduce new design constraints, different motions, different loadings and different mounting configurations of the hinges and actuators that are not readily adapted to decklid opening and closing.
Other attempts to motorize by simply installing an electric motor mounted to direct-drive, shelf-attached hinges have not succeeded because a motor in this arrangement would need to be large to achieve the proper speed/torque to open a typical trunk lid within a reasonable time and with reasonable force to overcome wind or snow loads, and available space for such apparatus at the opening is severely restricted.
The present invention overcomes the above mentioned disadvantages by a method and apparatus for displacing the trunk lid pivotally supported by a linkage mechanism, extending an expandable strut and motorizing a crank engageable to combine the force of the strut and the leverage of the linkage to control the opening and closing of the decklid.
Preferably, an embodiment of the design uses a four bar gutter-mounted hinge set, and an expandable strut, preferably powered by a nitrogen-charged gas chamber, and a motorized crank. Preferably, the hinge assembly comprises a pair of such hinge sets and a pair of struts. In addition, a crank coupled to the strut is moved by a motor so that the combination of leverage from the linkage, and the energy from the strut are combined to move the trunk lid to open and closed positions. The motor as referred to this description refers to any driver that positions the crank, for example, an electric motor combined with a transmission controlling the torque applied to the crank, so that the strut biasing and linkage configuration create a free-rise and free-fall condition for opening and closing, respectively. Moreover, although a single motor may be provided for each crank in the interest of distributed packaging to avoid obstruction of the opening, the number of motors need not correspond to the number of struts to be operated.
In the preferred embodiment, the initial position of the actuator lever or crank prevents initial free-rise of the decklid. In this configuration, the gas strut will not lift the trunk lid when the rear latch is released, for example, at the first press of the OPEN button. This feature is to prevent accidental opening due to wind, or to prevent rain from entering the trunk. When the OPEN button is pressed a second time, the motor rotates until the crank reaches a position at which the force of the strut is aligned in a direction such that the compression of the gas strut, preferably maximized at that position, and the leverage of the linkage urges the decklid open. As the crank arm is rotating, for example, from the position shown in
Preferably, the trunk lid at full open position, maintains a hold-open force at the trunk's rear handle of approximately 5 to 10 lbs. This configuration prevents a wind gust from closing the trunk because the resistance of the lift assist increases as the trunk closes, generally as shown on the graph of
To close the trunk lid, the user may displace the decklid or, preferably, pushes a CLOSE button, preferably on a portable, remote console, and the motors move cranks back toward their original position and beyond. As the motor shaft rotates the crank, the force on the fully extended gas struts, and leveraged displacement of the four bar linkage, moves the decklid toward the closed position. As the trunk closes, the decklid reaches a position at which the gas strut resistance and the linkage leverage no longer support the trunk lid's weight, and the trunk begins to fall shut. When the motorized crank arms have rotated to the closed position, the decklid falls shut and a striker on the lid engages the latch.
A switch may be provided on the body-mounted latch to send a signal to the controller that actuates the motors to rotate back to the final, closed position. Then displacement to the initial opening position, loads the gas struts to a position that creates a condition for applying compression for application to the ends of the strut. Nevertheless, while the trunk lid may be disengaged from the trunk latch, preferably when the user first presses the OPEN button, no free-rise is immediately achieved by the linkage and geometry of the strut and crank. The gas struts may not be fully compressed, but become fully compressed when the OPEN button is pressed a second time, to rotate the crank coupled to the strut, so that this compression aids the linkage and the geometry in causing the decklid to free-rise.
The present invention will be better understood by reference to the following detailed description of a preferred embodiment, when read in conjunction with the accompanying drawing, in which like reference characters refer to like parts throughout the views and in which
Referring first to
In the preferred embodiment, the mount 24 comprises a pair of brackets 26 secured on left and right sides of the vehicle body. Preferably, the bracket 26 is part of a four bar linkage 28 (
In the preferred embodiment, both linkages 28 are carried in a channel 50 (
The other end of the strut 52, an end of the extendable piston 60, is pivotally secured to a crank 64. The end 62 of the piston 60 is pivotally secured to an end 66 of the crank 64. The other end 68 is fixed for rotation with an output shaft 70 (
The housing 72 preferably houses an electric motor 73, including input controls and output controls for the motor. For example, the motor's output control, such as a transmission 75 for applying necessary torque to the crank 64 and displacing crank 64 through a range of movements as described in greater detail below. For example, an embodiment tested to operationally control the displacement mechanism on a decklid throughout the entire opening and closing path in temperatures down to approximately −30° C. is reflected in the graphs of
The initial closed position of the decklid with the hinge mechanism embodiment of the present invention is shown in
In addition, a second actuator, for example, a second actuation of the button 82, actuates the motor 73 to rotate the drive shaft 70 to displace the crank 64 to the position shown in solid line in
Subsequent movement of the crank 64 to the position shown in phantom line in
From the fully open position shown in
Having thus described a preferred embodiment of the present invention, many modifications will become apparent to those skilled in the art to which pertains without departing from the scope and spirit of the present invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3713472 | Dozois | Jan 1973 | A |
4452015 | Jacques et al. | Jun 1984 | A |
6520557 | Benthaus et al. | Feb 2003 | B2 |
6719356 | Cleland et al. | Apr 2004 | B2 |
6736440 | Hashim et al. | May 2004 | B1 |
6789357 | McCullough | Sep 2004 | B1 |
6789834 | Schlegel | Sep 2004 | B2 |
6883275 | Hellinga et al. | Apr 2005 | B2 |
7083217 | Fukumoto et al. | Aug 2006 | B2 |
20010038219 | Clare et al. | Nov 2001 | A1 |
20020008400 | Hess et al. | Jan 2002 | A1 |
20020084668 | Yamagishi et al. | Jul 2002 | A1 |
20040178654 | Hahn | Sep 2004 | A1 |
20060066125 | Kuan et al. | Mar 2006 | A1 |
20060071503 | Miyake et al. | Apr 2006 | A1 |
20060232090 | Duffy | Oct 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070228763 A1 | Oct 2007 | US |