Numerous embodiments of decoders for use with a vector-by-matrix multiplication (VMM) array in an artificial neural network are disclosed.
Artificial neural networks mimic biological neural networks (the central nervous systems of animals, in particular the brain) which are used to estimate or approximate functions that can depend on a large number of inputs and are generally unknown. Artificial neural networks generally include layers of interconnected “neurons” which exchange messages between each other.
One of the major challenges in the development of artificial neural networks for high-performance information processing is a lack of adequate hardware technology. Indeed, practical neural networks rely on a very large number of synapses, enabling high connectivity between neurons, i.e. a very high computational parallelism. In principle, such complexity can be achieved with digital supercomputers or specialized graphics processing unit clusters. However, in addition to high cost, these approaches also suffer from mediocre energy efficiency as compared to biological networks, which consume much less energy primarily because they perform low-precision analog computation. CMOS analog circuits have been used for artificial neural networks, but most CMOS-implemented synapses have been too bulky given the high number of neurons and synapses.
Applicant previously disclosed an artificial (analog) neural network that utilizes one or more non-volatile memory arrays as the synapses in U.S. patent application Ser. No. 15/594,439, which is incorporated by reference. The non-volatile memory arrays operate as analog neuromorphic memory. The neural network device includes a first plurality of synapses configured to receive a first plurality of inputs and to generate therefrom a first plurality of outputs, and a first plurality of neurons configured to receive the first plurality of outputs. The first plurality of synapses includes a plurality of memory cells, wherein each of the memory cells includes spaced apart source and drain regions formed in a semiconductor substrate with a channel region extending there between, a floating gate disposed over and insulated from a first portion of the channel region and a non-floating gate disposed over and insulated from a second portion of the channel region. Each of the plurality of memory cells is configured to store a weight value corresponding to a number of electrons on the floating gate. The plurality of memory cells is configured to multiply the first plurality of inputs by the stored weight values to generate the first plurality of outputs.
Each non-volatile memory cells used in the analog neuromorphic memory system must be erased and programmed to hold a very specific and precise amount of charge in the floating gate. For example, each floating gate must hold one of N different values, where N is the number of different weights that can be indicated by each cell. Examples of N include 16, 32, and 64.
Prior art decoding circuits (such as bit line decoders, word line decoders, control gate decoders, source line decoders, and erase gate decoders) used in conventional flash memory arrays are not suitable for use with a VMM in an analog neuromorphic memory system. One reason for this is that in a VMM system, the verify portion (which is a read operation) of a program and verify operation operates on a single selected memory cell, whereas a read operation operates on all memory cells in the array.
What is needed are improved decoding circuits suitable for use with a VMM in an analog neuromorphic memory system.
Numerous embodiments of decoders for use with a vector-by-matrix multiplication (VMM) array in an artificial neural network are disclosed.
The artificial neural networks of the present invention utilize a combination of CMOS technology and non-volatile memory arrays.
Non-Volatile Memory Cells
Digital non-volatile memories are well known. For example, U.S. Pat. No. 5,029,130 (“the '130 patent”) discloses an array of split gate non-volatile memory cells, and is incorporated herein by reference for all purposes. Such a memory cell is shown in
Memory cell 210 is erased (where electrons are removed from the floating gate) by placing a high positive voltage on the word line terminal 22, which causes electrons on the floating gate 20 to tunnel through the intermediate insulation from the floating gate 20 to the word line terminal 22 via Fowler-Nordheim tunneling.
Memory cell 210 is programmed (where electrons are placed on the floating gate) by placing a positive voltage on the word line terminal 22, and a positive voltage on the source 16. Electron current will flow from the source 16 towards the drain 14. The electrons will accelerate and become heated when they reach the gap between the word line terminal 22 and the floating gate 20. Some of the heated electrons will be injected through the gate oxide 26 onto the floating gate 20 due to the attractive electrostatic force from the floating gate 20.
Memory cell 210 is read by placing positive read voltages on the drain 14 and word line terminal 22 (which turns on the channel region under the word line terminal). If the floating gate 20 is positively charged (i.e. erased of electrons and positively coupled to the drain 16), then the portion of the channel region under the floating gate 20 is turned on as well, and current will flow across the channel region 18, which is sensed as the erased or “1” state. If the floating gate 20 is negatively charged (i.e. programmed with electrons), then the portion of the channel region under the floating gate 20 is mostly or entirely turned off, and current will not flow (or there will be little flow) across the channel region 18, which is sensed as the programmed or “0” state.
Table No. 1 depicts typical voltage ranges that can be applied to the terminals of memory cell 210 for performing read, erase, and program operations:
Other split gate memory cell configurations are known. For example,
Table No. 2 depicts typical voltage ranges that can be applied to the terminals of memory cell 310 for performing read, erase, and program operations:
Table No. 3 depicts typical voltage ranges that can be applied to the terminals of memory cell 410 for performing read, erase, and program operations:
Table No. 4 depicts typical voltage ranges that can be applied to the terminals of memory cell 510 for performing read, erase, and program operations:
In order to utilize the memory arrays comprising one of the types of non-volatile memory cells described above in an artificial neural network, two modifications are made. First, the lines are configured so that each memory cell can be individually programmed, erased, and read without adversely affecting the memory state of other memory cells in the array, as further explained below. Second, continuous (analog) programming of the memory cells is provided.
Specifically, the memory state (i.e. charge on the floating gate) of each memory cells in the array can be continuously changed from a fully erased state to a fully programmed state, independently and with minimal disturbance of other memory cells. In another embodiment, the memory state (i.e., charge on the floating gate) of each memory cell in the array can be continuously changed from a fully programmed state to a fully erased state, and vice-versa, independently and with minimal disturbance of other memory cells. This means the cell storage is analog or at the very least can store one of many discrete values (such as 16 or 64 different values), which allows for very precise and individual tuning of all the cells in the memory array, and which makes the memory array ideal for storing and making fine tuning adjustments to the synapsis weights of the neural network.
Neural Networks Employing Non-Volatile Memory Cell Arrays
S0 is the input, which for this example is a 32×32 pixel RGB image with 5 bit precision (i.e. three 32×32 pixel arrays, one for each color R, G and B, each pixel being 5 bit precision). The synapses CB1 going from S0 to C1 have both different sets of weights and shared weights, and scan the input image with 3×3 pixel overlapping filters (kernel), shifting the filter by 1 pixel (or more than 1 pixel as dictated by the model). Specifically, values for 9 pixels in a 3×3 portion of the image (i.e., referred to as a filter or kernel) are provided to the synapses CB1, whereby these 9 input values are multiplied by the appropriate weights and, after summing the outputs of that multiplication, a single output value is determined and provided by a first neuron of CB1 for generating a pixel of one of the layers of feature map C1. The 3×3 filter is then shifted one pixel to the right (i.e., adding the column of three pixels on the right, and dropping the column of three pixels on the left), whereby the 9 pixel values in this newly positioned filter are provided to the synapses CB1, whereby they are multiplied by the same weights and a second single output value is determined by the associated neuron. This process is continued until the 3×3 filter scans across the entire 32×32 pixel image, for all three colors and for all bits (precision values). The process is then repeated using different sets of weights to generate a different feature map of C1, until all the features maps of layer C1 have been calculated.
At C1, in the present example, there are 16 feature maps, with 30×30 pixels each. Each pixel is a new feature pixel extracted from multiplying the inputs and kernel, and therefore each feature map is a two dimensional array, and thus in this example the synapses CB1 constitutes 16 layers of two dimensional arrays (keeping in mind that the neuron layers and arrays referenced herein are logical relationships, not necessarily physical relationships—i.e., the arrays are not necessarily oriented in physical two dimensional arrays). Each of the 16 feature maps is generated by one of sixteen different sets of synapse weights applied to the filter scans. The C1 feature maps could all be directed to different aspects of the same image feature, such as boundary identification. For example, the first map (generated using a first weight set, shared for all scans used to generate this first map) could identify circular edges, the second map (generated using a second weight set different from the first weight set) could identify rectangular edges, or the aspect ratio of certain features, and so on.
An activation function P1 (pooling) is applied before going from C1 to S1, which pools values from consecutive, non-overlapping 2×2 regions in each feature map. The purpose of the pooling stage is to average out the nearby location (or a max function can also be used), to reduce the dependence of the edge location for example and to reduce the data size before going to the next stage. At S1, there are 16 15×15 feature maps (i.e., sixteen different arrays of 15×15 pixels each). The synapses and associated neurons in CB2 going from S1 to C2 scan maps in S1 with 4×4 filters, with a filter shift of 1 pixel. At C2, there are 22 12×12 feature maps. An activation function P2 (pooling) is applied before going from C2 to S2, which pools values from consecutive non-overlapping 2×2 regions in each feature map. At S2, there are 22 6×6 feature maps. An activation function is applied at the synapses CB3 going from S2 to C3, where every neuron in C3 connects to every map in S2. At C3, there are 64 neurons. The synapses CB4 going from C3 to the output S3 fully connects S3 to C3. The output at S3 includes 10 neurons, where the highest output neuron determines the class. This output could, for example, be indicative of an identification or classification of the contents of the original image.
Each level of synapses is implemented using an array, or a portion of an array, of non-volatile memory cells.
The output of the memory array is supplied to a differential summer (such as summing op-amp) 38, which sums up the outputs of the memory cell array to create a single value for that convolution. The differential summer is such as to realize summation of positive weight and negative weight with positive input. The summed up output values are then supplied to the activation function circuit 39, which rectifies the output. The activation function may include sigmoid, tanh, or ReLU functions. The rectified output values become an element of a feature map as the next layer (C1 in the description above for example), and are then applied to the next synapse to produce next feature map layer or final layer. Therefore, in this example, the memory array constitutes a plurality of synapses (which receive their inputs from the prior layer of neurons or from an input layer such as an image database), and summing op-amp 38 and activation function circuit 39 constitute a plurality of neurons.
Vector-by-Matrix Multiplication (VMM) Arrays
Memory array 903 serves two purposes. First, it stores the weights that will be used by the VMM 900. Second, memory array 903 effectively multiplies the inputs (current inputs provided in terminals BLR0-3; reference arrays 901 and 902 convert these current inputs into the input voltages to supply to wordlines WL0-3) by the weights stored in the memory array to produce the output, which will be the input to the next layer or input to the final layer. By performing the multiplication function, the memory array negates the need for separate multiplication logic circuits and is also power efficient. Here, the voltage inputs are provided on the word lines, and the output emerges on the bit line during a read (inference) operation. The current placed on the bit line performs a summing function of all the currents from the memory cells connected to the bitline.
As described herein for neural networks, the flash cells are preferably configured to operate in sub-threshold region.
The memory cells described herein are biased in weak inversion:
Ids=Io*e(Vg−Vth)/kVt=w*Io*e(Vg)/kVt
w=e(−Vth)/kVt
For an I-to-V log converter using a memory cell to convert input current into an input voltage:
Vg=k*Vt*log [Ids/wp*Io]
For a memory array used as a vector matrix multiplier VMM, the output current is:
Iout=wa*Io*e(Vg)/kVt, namely
Iout=(wa/wp)*Iin=W*Iin
W=e(Vthp−Vtha)/kVt
A wordline or control gate can be used as the input for the memory cell for the input voltage.
Alternatively, the flash memory cells can be configured to operate in the linear region:
Ids=beta*(Vgs−Vth)*Vds; beta=u*Cox*W/L
Wα(Vgs−Vth)
For an I-to-V linear converter, a memory cell operating in the linear region can be used to convert linearly an input/output current into an input/output voltage.
Other embodiments for the ESF vector matrix multiplier are as described in U.S. patent application Ser. No. 15/826,345, which is incorporated by reference herein. A sourceline or a bitline can be used as the neuron output (current summation output).
One challenge with analog neuromorphic systems is that the system must be able to program and verify (which involves a read operation) individual selected cells, and it also must be able to perform an ANN read where all of the cells in the array are selected and read. In other words, a bit line decoder must sometimes select only one bit line and in other instances must select all bit lines.
Bit line decoder circuit 1400 accomplishes this purpose. Column decoder 1402 is a conventional column decoder (program and erase, or PE, decoding path) and can be used to select an individual bit line such as for program and program verify (a sensing operation). Outputs of the column decoder 1402 are coupled to program/erase (PE) column driver circuit for controlling program, PE verify, and erase (not shown in
Select transistors 1502 and 1503 are controlled by a pair of complementary control signals (V0 and VB_0) and are coupled to a bit line (BL0). Select transistors 1504 and 1505 are controlled by another pair of complementary control signals (V1 and VB_1) and are coupled to another bit line (BL1). Select transistors 1502 and 1504 are coupled to the same output such as for enabling programming and select transistors 1503 and 1505 are coupled to the same output such as for inhibit programming. The output lines of the transistors 1502/1503/1504/1505 (program and erase PE decoding path) are such as coupled to a PE column driver circuit for controlling program, PE verify, and erase (not shown).
Select transistor 1506 is coupled to a bit line (BL0) and to output and activation function circuit 1507 (e.g., current summer and activation function such as tanh, sigmoid, ReLU). Select transistor 1506 is controlled by control line 1508.
When only BL0 is to be activated, control line 1508 is de-asserted and signal V0 is asserted, thus reading BL0 only. During an ANN read operation, control line 1508 is asserted, select transistor 1506 and similar transistors are turned on, and all bit lines are read such as for all neuron processing.
Select transistor 1601 is coupled to a bit line (BL0) and to output and activation function circuit 1603. Select transistor 1602 is coupled to a bit line (BL0) and to a common output (PE decoding path).
When only BL0 is to be activated, select transistor 1602 is activated, and BL0 is attached to the common output. During an ANN read operation, select transistor 1601 and similar transistors are turned on, and all bit lines are read.
For the decoding in the
As shown, the reference cell low voltage column decoder 1704 is for the reference array 1720 in the column direction, meaning providing input to output conversion in the row direction. If the reference array is in the row direction, the reference decoder needs to be done on top and/or bottom of the array, to providing input to output conversion in the column direction.
Low voltage row decoder 1702 provides a bias voltage for read and program operations and provides a decoding signal for high voltage row decoder 1703. High voltage row decoder 1703 provides a high voltage bias signal for program and erase operations. Reference cell low voltage column decoder 1704 provides a decoding function for the reference cells. Bit line PE driver 1712 provides controlling function for bit line in program, verify, and erase. Bias circuit 1705 is a shared bias block that provides the multiple voltages needed for the various program, erase, program verify, and read operations.
Reference array low voltage row decoder 1902 provides a bias voltage for read and programming operations involving reference array 1901 and also provides a decoding signal for reference array high voltage row decoder 1903. Reference array high voltage row decoder 1903 provides a high voltage bias for program and operations involving reference array 1901. Reference array low voltage column decoder 1904 provides a decoding function for reference array 1901. Reference array 1901 is such as to provide reference target for program verify or cell margining (searching for marginal cells).
Word line decoder circuit 2801 comprises PMOS select transistor 2802 (controlled by signal HVO_B) and NMOS de-select transistor 2803 (controlled by signal HVO_B) configured as shown.
Source line decoder circuit 2804 comprises NMOS monitor transistors 2805 (controlled by signal HVO), driving transistor 2806 (controlled by signal HVO), and de-select transistor 2807 (controlled by signal HVO_B), configured as shown.
High voltage level shifter 2808 received enable signal EN and outputs high voltage signal HV and its complement HVO_B.
Erase gate decoder circuit 2901 and control gate decoder circuit 2904 use the same design as word line decoder circuit 2801 in
Source line decoder circuit 2907 uses the same design as source line decoder circuit 2804 in
High voltage level shifter 2911 uses the same design as high voltage level shifter 2808 in
It should be noted that, as used herein, the terms “over” and “on” both inclusively include “directly on” (no intermediate materials, elements or space disposed therebetween) and “indirectly on” (intermediate materials, elements or space disposed therebetween). Likewise, the term “adjacent” includes “directly adjacent” (no intermediate materials, elements or space disposed therebetween) and “indirectly adjacent” (intermediate materials, elements or space disposed there between), “mounted to” includes “directly mounted to” (no intermediate materials, elements or space disposed there between) and “indirectly mounted to” (intermediate materials, elements or spaced disposed there between), and “electrically coupled” includes “directly electrically coupled to” (no intermediate materials or elements there between that electrically connect the elements together) and “indirectly electrically coupled to” (intermediate materials or elements there between that electrically connect the elements together). For example, forming an element “over a substrate” can include forming the element directly on the substrate with no intermediate materials/elements therebetween, as well as forming the element indirectly on the substrate with one or more intermediate materials/elements there between.
This application claims priority to U.S. Provisional Patent Application No. 62/642,884, filed on Mar. 14, 2018, and titled, “Decoders for Analog Neuromorphic Memory in Artificial Neural Network,” which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4810910 | Schoellikopf et al. | Mar 1989 | A |
4961002 | Tam et al. | Oct 1990 | A |
5029130 | Yeh | Jul 1991 | A |
5097441 | Soo-In et al. | Mar 1992 | A |
5138576 | Madurawe | Aug 1992 | A |
5146602 | Holler | Sep 1992 | A |
5256911 | Holler | Oct 1993 | A |
5264734 | Holler | Nov 1993 | A |
5336936 | Allen et al. | Aug 1994 | A |
5386132 | Wong | Jan 1995 | A |
5469397 | Hoshino | Nov 1995 | A |
5554874 | Doluca | Sep 1996 | A |
5621336 | Shibata et al. | Apr 1997 | A |
5643814 | Chung | Jul 1997 | A |
5721702 | Briner | Feb 1998 | A |
5914894 | Diorio | Jun 1999 | A |
6222777 | Khieu | Apr 2001 | B1 |
6683645 | Collins et al. | Jan 2004 | B1 |
6747310 | Fan et al. | Jun 2004 | B2 |
6829598 | Milev | Dec 2004 | B2 |
7315056 | Klinger et al. | Jan 2008 | B2 |
7868375 | Liu et al. | Jan 2011 | B2 |
20020089014 | Chern | Jul 2002 | A1 |
20030034510 | Liu | Feb 2003 | A1 |
20030183871 | Dugger | Oct 2003 | A1 |
20040095809 | Sakamoto | May 2004 | A1 |
20040125655 | Tsai | Jul 2004 | A1 |
20040156241 | Mokhlesi | Aug 2004 | A1 |
20050087892 | Hsu | Apr 2005 | A1 |
20060104120 | Hemink | May 2006 | A1 |
20060170038 | Wong | Aug 2006 | A1 |
20070171756 | Lambrache | Jul 2007 | A1 |
20090103361 | Wang | Apr 2009 | A1 |
20090109760 | Nazarian | Apr 2009 | A1 |
20100046299 | Roohparvar | Feb 2010 | A1 |
20100287440 | Alrod | Nov 2010 | A1 |
20100290292 | Tanizaki et al. | Nov 2010 | A1 |
20120087188 | Hsieh et al. | Apr 2012 | A1 |
20130044544 | Shiino | Feb 2013 | A1 |
20130100756 | Liao et al. | Apr 2013 | A1 |
20140054667 | Tkachev | Feb 2014 | A1 |
20140269062 | Do | Sep 2014 | A1 |
20140310220 | Chang | Oct 2014 | A1 |
20150106315 | Birdwell | Apr 2015 | A1 |
20150213898 | Do | Jul 2015 | A1 |
20150262055 | Akopyan | Sep 2015 | A1 |
20160042790 | Tran | Feb 2016 | A1 |
20160093382 | Sakamoto | Mar 2016 | A1 |
20160133639 | Tran | May 2016 | A1 |
20160180945 | Ng | Jun 2016 | A1 |
20160254269 | Kim et al. | Sep 2016 | A1 |
20170117291 | Or-Bach | Apr 2017 | A1 |
20170337466 | Bayat et al. | Nov 2017 | A1 |
20170337971 | Tran et al. | Nov 2017 | A1 |
20170337980 | Guo et al. | Nov 2017 | A1 |
20180004708 | Muralimanohar | Jan 2018 | A1 |
20180268912 | Guo et al. | Sep 2018 | A1 |
20180293487 | Copel et al. | Oct 2018 | A1 |
20190088325 | Tiwari et al. | Mar 2019 | A1 |
20190237136 | Tran et al. | Aug 2019 | A1 |
20190237142 | Tran et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
0566739 | Oct 1993 | EP |
0562737 | Jun 1998 | EP |
H03-018985 | Jan 1991 | JP |
Entry |
---|
U.S. Appl. No. 16/503,355, filed Jul. 3, 2019, Tran et al. |
Jenn-Chyou Bor, et al., “Realization of the CMOS Pulsewidth-Modulation (PWM) Neural Network with On-Chip Learning,” IEEE Transactions on Circuits and Systems, Jan. 1998. |
Alister Hamilton, et al., “Integrated Pulse Stream Neural Networks: Results, Issues, and Pointers,” IEEE Transactions on Neural Networks, May 1992. |
Shafiee et al,“Isaac: A Convolutional Neural Network Accelerator With In-Situ Analog Arithmetic in Crossbars;” 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture, Seoul, Oct. 2016. [URL:https://www.cs.utah.edu/-rajeev/pubs/isca16.pdf; pp. 1-4.]. |
U.S. Appl. No. 16/382,045 entitled “Neural Network Classifier Using Array Of Three-Gate Non-volatile Memory Cells,” Tran, et al, filed Apr. 11, 2019. |
U.S. Appl. No. 16/382,051 entitled “Neural Network Classifier Using Array Of Stacked Gate Non-volatile Memory Cells,” Tran, et al, filed Apr. 11, 2019. |
U.S. Appl. No. 16/382,060 entitled “Memory Device And Method For Varying Program State Separation Based Upon Frequency Of Use,” Tran, et al, filed Apr. 11, 2019. |
U.S. Appl. No. 16/354,04, filed Mar. 14, 2019, Tran et al. |
U.S. Appl. No. 15/826,345 entitled “High Precision And Highly Efficient Tuning Mechanisms . . . Network,” Tran, et al., filed Nov. 29, 2017. |
U.S. Appl. No. 16/271,673 entitled “Flash Memory Army With Individual Memory Cell Read, Program And Erase,” Guo et al., filed Feb. 8, 2019. |
U.S. Appl. No. 16/353,830 entitled “System For Converting Neuron Current Into Neuron Current-Based Time Pulses . . . Network,” Tran et al., filed Mar. 14, 2019. |
U.S. Appl. No. 16/353,409, titled “Apparatus and Method for Combining Analog Neural Net With FPGA Routing in a Monolithic Integrated Circuit,” filed Mar. 14, 2019. |
U.S. Appl. No. 62/797,158, titled “Apparatus and Method for Combining Analog Neural Net With FPGA Routing in a Monolithic Integrated Circuit,” filed Jan. 25, 2019. |
U.S. Appl. No. 16/746,852, filed Jan. 18, 2020, Bayat et al. |
Number | Date | Country | |
---|---|---|---|
20190286976 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62642884 | Mar 2018 | US |