Decomposable resin composition and method for producing the same

Abstract
The invention provides a decomposable resin composition which is stable at the using time and quickly decomposed when being discarded. According to the present invention, there is provided a resin composition comprising an agent generating an acid or a base by light or heat together with a hydrolyzable and biodegradable resin. The decomposable resin composition can promote decomposition of the polymer by generating an acid or a base in the resin by carrying out light irradiation and/or heat treatment at a desired time and can control the decomposition speed of the polymer by controlling the generation amount of an acid or a base.
Description


BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention


[0002] The present invention relates to a hydrolyzable and biodegradable resin composition in consideration of the global environments and more particularly relates to a decomposable resin composition of low environmental burden and a method of treating the resin composition for lowering environmental burden.


[0003] 2. Related Background Art


[0004] In the past, human being has successively produced materials useful in living and industries by employing coal chemical technologies and then petrochemical technologies. In particular, polymer materials may be symbolic examples and there have been produced useful resins including plastic materials such as polyethylene, polypropylene and polyvinyl chloride and rubbers such as polyisoprene and polybutadiene. Further, recently, resin materials having extremely excellent characteristics have been developed, including polyimide resins excellent in heat resistance and impact resistance and full-aromatic liquid crystal polymers.


[0005] However, these resins remain unchanged in the environments for long after being discarded and impose significant negative burden on the global environments. The wastes from industries and domestic life have been becoming a serious social problem. Today, expectation for materials and products friendly to the global environments has rapidly been elevated and highly required is sustainable development while minimizing the consumption of global resources.


[0006] For such a purpose, development of biodegradable polymers easy to be decomposed in the environments has been made. However, it has been a large object to obtain a resin satisfying contradicting properties such as stable during the use and quick to be decomposed when being discarded. Further, based on the purposes, the decomposition speed itself is required to be controlled.


[0007] Consequently, the purpose of the present invention is to provide a decomposable resin composition which is stable at the using time, quickly decomposed when being discarded and controllable in the decomposition speed.



SUMMARY OF THE INVENTION

[0008] Inventors of the present invention have made extensive investigations in order to solve the problem and found that the purpose can be achieved by mixing a compound capable of generating an acid or a base by light irradiation or heating at a desired time with a decomposable resin and then generating an acid or a base in the decomposable resin by carrying out light irradiation and/or heat treatment at the desired time so as to promote the decomposition of the resin and thus achieved the invention.


[0009] The present invention for achieving the purpose is a resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light.


[0010] Further, the present invention provides a resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by heating and/or an agent generating a base by heating.


[0011] Further, the present invention provides a resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light together with an agent generating an acid by heating and/or an agent generating a base by heating.


[0012] Further, the present invention provides a method of producing a resin composition comprising the steps of: providing a resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light; subjecting the resin composition to light irradiation and/or heat treatment to decompose the resin composition to monomers; polymerizing the monomers to produce a decomposable resin; and mixing compounds generating an acid or a base by light irradiation or heating with the decomposable resin.


[0013] Further, the present invention provides a method of treating a resin composition comprising the steps of: providing the resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light; and subjecting the resin composition to light irradiation.


[0014] Further, the present invention provides a method of treating a resin composition comprising the steps of: providing the resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light; subjecting the resin composition to light irradiation; and thereafter carrying out heat treatment.


[0015] Further, the present invention provides a method of treating a resin composition comprising the steps of: providing the resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by heat and/or an agent generating a base by heat; and subjecting the resin composition to heat treatment.


[0016] Further, the present invention provides a method of treating a resin composition comprising the steps of: providing the resin composition comprising, in a hydrolyzable and biodegradable resin, an agent generating an acid by light and/or an agent generating a base by light together with an agent generating an acid by heat and/or an agent generating a base by heat; and subjecting the resin composition to light irradiation and heat treatment.



DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0017] As the decomposable resin to be employed in the present invention, usable are a wide range of well-known hydrolyzable polyesters having biodegradability and especially preferable to be used are polylactic acid, polylactic acid-aliphatic polyester copolymers and copolymers of saccharides and dicarboxylic acids having a structure defined as the following formula:
1


[0018] (Where (Sacch) denotes the saccharide structure and R denotes an alkylene group or a divalent aromatic ring.).


[0019] Monosaccharides are usable for the saccharide structure portion in the formula including neutral saccharides such as D-glycelaldehyde, D-dihydroxyacetone, D-xylose, D-glucose, D-fructose, D-mannose, D-galactose and L-fucose; acidic saccharides such as D-glucuronic acid and L-iduronic acid; aminosaccharides such as D-glucosamine, D-galactosamine, N-acetylglucosamine, N-acetylgalactosamine and N-acetylmuramic acid; dialuric acid such as N-acetylneuraminic acid; glycitols such as glycerol and inositol; and disaccharides such as saccharose, maltose, lactose, cellobiose and trehalose. Further polysaccharides are usable such as amylose, cellulose, chitin, chitosan, hyaluronic acid, chondoroitin hexasulfuric acid, keratosulfuric acid and heparine.


[0020] On the other hand, R in the formula may preferably be an alkylene of 1 to 12 carbons or a divalent aromatic group, for example, phenylene or naphthylene. Examples of dicarboxylic acid containing such groups are aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid and 1,10-didecanedicarboxylic acid; and aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, orthophthalic acid and naphthalenedicarboxylic acid.


[0021] Among the polymers defined as the formula, especially preferable are polyesters represented by the following formula (II) such as polyesters produced from D-glucose and aliphatic dicarboxylic acids of 5 to 10 carbons and polyesters produced from compounds derived from D-glucose by substituting hydroxyl group with an alkyl, a hydroxyalkyl and the like and aliphatic dicarboxylic acids of 5 to 10 carbons:
2


[0022] (Where R denotes an alkylene; R1, R2 and R3 separately denote hydrogen atom, an alkyl of 1 to 10 carbons, or a hydroxyalkyl.).


[0023] Especially, in the case of using D-glucose in the portion of the saccharide structure, D-glucose can be obtained by decomposition of cellulose and from a viewpoint of recycling of immensely consumed paper, that is remarkably significant. The decomposition of cellulose can be carried out by chemical decomposition such as hydrolysis with an acid or a base or by biodegradation using microorganism such as cellulase.


[0024] By combining a proper acid- or base-generating agent generating an acid or a base by irradiation of electromagnetic wave or charged particles with these decomposable resins, decomposition can be promoted which cannot be achieved by biodegradation reaction at the desired time. Conventionally, as an example of a material containing a polymer having acid-decomposable functional groups and an acid-generating agent, for example, Japanese Patent Application Laid-Open No. 9-179302 discloses a photoresist to be used for electronic device fabrication. Further, Japanese Patent Application Laid-Open No. 10-171120 discloses the usage of a natural material as one component for such a resist material composition. However, the natural materials are not all biodegradable and also the compositions are biodegradable as a whole and do not contain an acid-generating agent or a base-generating agent.


[0025] As the photolytically acid-generating agent (the agent generating an acid by light) to be preferably used in the present invention, available are well-known compounds such as sulfonium salts such as triphenylsulfonium trifluoroemethylsulfonic acid salt represented by the formula (III) and iodonium salts such as diphenyliodonium hexafluoroantimonate represented by the formula (IV). These photolytically acid-generating agents may be used solely or in combination of a plurality of the acid-generating agents. An amount of a photolytically acid-generating agent may preferably be 0.1 to 20% by weight and especially preferably 1 to 5% by weight in a decomposable resin.
3


[0026] As a photolytically base-generating agent (the agent generating a base by light), well-known compounds are usable such as compounds represented by the formula (V) or the formula (VI). These compounds are disclosed in, for example, H. Tachi, M. Tunooka, J. Photopolymer Science and Technology, 12(2), 313(1999); T. Nishikubo, A. Kameyama, Y. Toya, Polymer J. 29(5), 450(1997).
4


[0027] Photolytically base-generating agents to be added may be used solely or in combination of a plurality of base-generating agents. An amount of a photolytically base-generating agent may preferably be 0.1 to 20% by weight and especially preferably 1 to 5% by weight in a decomposable resin.


[0028] In the case where a decomposable resin composition of the present invention is required to be used stably in the use, a photolytically acid-generating agent or a photolytically base-generating agent to be used is required to have no absorption in the visible light region and have absorption of light, electromagnetic wave, or charged particle beam to be irradiated thereto at the time when decomposition treatment or discarding is needed to carry out.


[0029] In the case where a decomposable resin composition containing such a photolytically acid-generating agent or a photolytically base-generating agent is to be subjected to the decomposition treatment or to be discarded, electromagnetic wave or charged particle beam is irradiated to the resin composition. A light source to carry out irradiation or a irradiation source may properly be selected corresponding to the absorption characteristics of the resin composition for the electromagnetic wave or charged particle beam. For example, in the case of a decomposable resin composition with a relatively high light transmissivity, light rays with slightly shorter wavelength than that of visible light rays are suitable and more practically light rays in a range of 200 nm to 380 nm are employed. Further, if a decomposable resin composition, such as a colored one, is extremely inferior in light transmissivity, electromagnetic wave such as X-rays and γ-rays with further shorter wavelength may be employed. Further, electron beam and ion beam with a high accelerating voltage may be used. The irradiation dose of light and electromagnetic wave may preferably be 1 to 10,000 mJ/cm2 or the irradiation dose of charged particle beam may preferably be 1 to 1,000 μC/cm2.


[0030] In the present invention, in the case where a compound generating an acid or a base by heating is combined with a decomposable resin, as a compound generating an acid by heating, for example, hydrochloric acid salts are usable. Also, as a compound generating a base by heating, for example, silazane compounds are usable such as octamethylcyclotetrasilazane and ammonium salts such as carboxymethylcellulose ammonium salt. An amount of such a compound may preferably be 0.1 to 20% by weight and especially preferably 1 to 5% by weight in a decomposable resin. The heating temperature may preferably be 50 to 150° C. and the heating duration may preferably be 30 to 120 minutes.


[0031] In the treatment of a decomposable resin composition of the present invention, the decomposition speed of the resin can be controlled corresponding to the amount of an acid or a base to be generated by light irradiation or heating. The control of the generation amount of an acid or a base can be carried out by controlling an amount of the acid-generating agent or the base-generating agent, the irradiation dose of the electromagnetic wave or the charge particle beam, or the heating conditions. Further, an acid-generating agent and a base-generating agent are made to coexist to control the concentration of the practically effective acid generated to subsequently control the decomposition speed.


[0032] Prior to the discarding of a used decomposable resin composition or an article molded from the composition in the present invention, the light irradiation or heat treatment is carried out to decompose it within a short time in the environments.


[0033] A decomposable resin decomposed into monomers by a method of treating the present invention may be recycled by synthesizing a decomposable resin again by recovering the monomers. That is, using a polymer produced from D-glucose and adipic acid as an example, D-glucose and adipic acid obtained by the decomposition of an acid or a base generated from the acid-generating agent or the base-generating agent are again polymerized to synthesize the decomposable polymer. A decomposable resin composition is obtained by mixing an acid-generating agent and a base-generating agent by light irradiation or heating with such as resin. The obtained resin composition is used again in a general manner and made semi-permanently usable in a recycling system where the decomposition and recovery are carried out.







EXAMPLE 1

[0034] As a decomposable resin, a copolymer of D-glucose and adipic acid was prepared. A decomposable resin composition was produced by adding 5% by weight of triphenylsulfonium trifluoromethylsulfonic acid salt as a photolytically acid-generating agent to the decomposable resin. The decomposable resin composition was injection molded at 120° C. to produce a 200 μm-thick sheet. After the sheet was used, the sheet was irradiated with X-rays of an X-ray tube having a tungsten target (1,000 mJ/cm2) to generate an acid and then heat treatment was carried out at 110° C. for 90 minutes.



EXAMPLE 2

[0035] As a decomposable resin, a polylactic acid was prepared. A decomposable resin composition was produced by adding 7% by weight of N-hydroxynaphthalimide trifluoromethylsulfonic acid salt as a photolytically acid-generating agent to the decomposable resin. The decomposable resin composition was injection molded at 180° C. to produce a sheet similar to that of Example 1. After the sheet was used, the sheet was irradiated with light rays of a high pressure mercury lamp (10 Kw) for 20 minutes to generate an acid and then heat treatment was carried out at 120° C. for 60 minutes.



EXAMPLE 3

[0036] As a decomposable resin, a polylactic acid-aliphatic polyester copolymer was prepared using hydroxybutanoic acid. A decomposable resin composition was produced by adding 10% by weight of the compound represented by the formula (IV) as a photolytically base-generating agent to the decomposable resin. The decomposable resin composition was injection molded at 150° C. to produce a sheet similar to that of Example 1. After the sheet was used, the sheet was irradiated with light rays of a high pressure mercury lamp in the same manner as Example 2 to generate a base and then heat treatment was carried out at 120° C.



EXAMPLE 4

[0037] As a decomposable resin, a polylactic acid-aliphatic polyester copolymer was prepared using hydroxpropionic acid. A decomposable resin composition was produced by adding 3% by weight of octamethylcyclotetrasilazane as a base-generating agent by heating to the decomposable resin. The decomposable resin composition was dissolved in 10% concentration in propylene glycol monomethyl ether acetate and applied to and dried on a glass substrate and then peeled from the substrate to produce a sheet-like film. After the sheet was used, the sheet was heated at 170° C. for 120 minutes to generate ammonia.



EXAMPLE 5

[0038] As a decomposable resin, a copolymer of D-glucose and adipic acid was prepared. A decomposable resin composition was produced by adding 10% by weight of triphenylsulfonium trifluoromethylsulfonic acid salt as a photolytically acid-generating agent to the decomposable resin and further adding 4% by weight of the compound represented by the formula (IV) to the decomposable resin as a base-generating agent. The decomposable resin composition was injection molded at 120° C. to produce a 200 μm-thick sheet. After the sheet was used, the sheet was irradiated with X-rays of an X-ray tube having a tungsten target (2,000 mJ/cm2) to generate an acid and a base and then heat treatment was carried out at 110° C. for 40 minutes.



EXAMPLE 6

[0039] Sheets of 200 μm thickness were produced from the resin composition used in Example 1 were prepared. To the sheet, X-ray irradiation was carried out using an X-ray tube having a tungsten target. The irradiation dose was changed to be 10 mJ/cm2, 100 mJ/cm2, and 1,000 mJ/cm2. After the resulting resin compositions were heated at 110° C. in the same manner as Example 1, they were buried in ground and their changes were observed after 3 months. As a result, the decomposition degrees were increased depending on the irradiation dose of the X-ray.



EXAMPLE 7

[0040] Using the decomposable resin composition used in Example 1, a box of a printer was produced. As same as Example 1, after the use, X-ray irradiation and heat treatment were carried out to decompose the resin by a biodegradation reaction apparatus to recover D-glucose and adipic acid, which are raw materials of the resin. The resin used in Example 1 was again synthesized using these raw materials.



EXAMPLE 8

[0041] Sheets of 200 μm thickness were produced from the decomposable resin composition used in Example 1 were prepared. In the same manner as Example 5, X-ray irradiation was carried out and then heat treatment was carried out at 110° C. and then the resulting sheets were buried together with saplings of trees in dry soil while encapsulating a plant fertilizer, a moisture retaining agent, and water. The sheets produced from the resin composition of the present invention slowly released the fertilizer and water to continuously support the growth of the trees and at the same time they are decomposed in the environments and nothing remained after 6 months.



Comparative Example 1

[0042] A sheet was produced solely from the respective polymers employed in Example 1 to Example 5 without adding an acid-generating agent or a base-generating agent. Also, for comparison, sheets of a polycarbonate and a polyethylene with no biodegradability were prepared. These sheets and the sheets produced in Example 1 to Example 4 were respectively buried in ground and the sheets were recovered after 6 months and evaluated for the decomposition degrees of the sheets. As a result, sheets mixed with an acid-generating agent or a base-generating agent and subjected to electromagnetic wave irradiation before they were buried in ground were found having higher decomposition speeds. The results are shown in Table 1. In Table 1, letter “A” shows an excellent decomposition; “B”, decomposition was observed but insufficient; “C”, not decomposed; and “−”, not performed.
1TABLE 1AdditionAdditionAddition of acid-ofofgenerating agentNoacid-base-andaddition ofgeneratinggeneratingbase-generatinggeneratingagentagentagentagentPolymer of D-AABglucose/adipic acidPolylactic acidAACPolylactic acid-AAABaliphatic polyestercopolymerPolycarbonateBBBCPolyethyleneCCCC


[0043] A decomposable resin composition of the present invention is possible to be decomposed at a sufficiently increased decomposition speed in the environments and the decomposition of a resin can be controlled at an optional speed by controlling the generation amount of an acid or a base generated in the decomposable resin composition.


[0044] Further, the method of treating of the present invention accelerates the decomposition of a decomposable resin composition and makes it possible to decompose a decomposable resin composition after use to monomers. Consequently, recovering the monomers and using them for polymerization raw materials again makes a recycling system possible.


[0045] Further, the discarding method according to the present invention, a used decomposable resin composition can be decomposed within a short time in the environments.


Claims
  • 1. A resin composition comprising an agent generating an acid by light and/or an agent generating a base by light in a hydrolyzable and biodegradable resin.
  • 2. A resin composition comprising an agent generating an acid by heating and/or an agent generating a base by heating in a hydrolyzable and biodegradable resin.
  • 3. A resin composition comprising an agent generating an acid by light and/or an agent generating a base by light together with an agent generating an acid by heating and/or an agent generating a base by heating in a hydrolyzable and biodegradable resin.
  • 4. The resin composition according to claim 1, wherein an amount of the agent generating an acid by light or the agent generating a base by light is 0.1 to 20% by weight based on the hydrolyzable and biodegradable resin.
  • 5. The resin composition according to claim 2, wherein an amount of the agent generating an acid by heating or the agent generating a base by heating is 0.1 to 20% by weight based on the hydrolyzable and biodegradable resin.
  • 6. The resin composition according to claim 1, wherein the hydrolyzable and biodegradable resin has the structure defined as the following formula:
  • 7. The resin composition according to claim 6, wherein the saccharide structure of the hydrolyzable and biodegradable resin is D-glucose.
  • 8. The resin composition according to claim 7, wherein the D-glucose is obtained by decomposition of cellulose.
  • 9. The resin composition according to claim 7, wherein the D-glucose is obtained by decomposition of used paper.
  • 10. A method of producing a resin composition comprising the steps of: providing a resin composition comprising an agent generating an acid by light and/or an agent generating a base by light in a hydrolyzable and biodegradable resin; subjecting the resin composition to light irradiation and/or heat treatment to decompose the resin composition to monomers; polymerizing the monomers to produce a decomposable resin; and mixing compounds generating an acid or a base by light irradiation or heating with the decomposable resin.
  • 11. A method of treating a resin composition comprising the steps of: providing the resin composition comprising an agent generating an acid by light and/or an agent generating a base by light in a hydrolyzable and biodegradable resin; and subjecting the resin composition to light irradiation.
  • 12. A method of treating a resin composition comprising the steps of: providing the resin composition comprising an agent generating an acid by light and/or an agent generating a base by light in a hydrolyzable and biodegradable resin; subjecting the resin composition to light irradiation; and thereafter carrying out heat treatment.
  • 13. A method of treating a resin composition comprising the steps of: providing the resin composition comprising an agent generating an acid by heat and/or an agent generating a base by heat in a hydrolyzable and biodegradable resin; and subjecting the resin composition to heat treatment.
  • 14. A method of treating a resin composition comprising the steps of: providing the resin composition comprising an agent generating an acid by light and/or an agent generating a base by light together with an agent generating an acid by heat and/or an agent generating a base by heat in a hydrolyzable and biodegradable resin; and subjecting the resin composition to light irradiation and heat treatment.
Priority Claims (1)
Number Date Country Kind
353417/2000(PAT.) Nov 2000 JP