Decontamination apparatus

Information

  • Patent Grant
  • 6238523
  • Patent Number
    6,238,523
  • Date Filed
    Friday, May 8, 1998
    26 years ago
  • Date Issued
    Tuesday, May 29, 2001
    23 years ago
Abstract
The present invention provides an apparatus for decontaminating aqueous paper pulp, the apparatus comprising a decontaminating cell (12). The decontaminating cell (12) has an upper light contaminate collection hood (30) and/or a lower heavy contaminate collection trough (40). Paper pulp is provided to the cell (12) under a pulp head sufficient to purge the contaminates therefrom.
Description




FIELD OF THE INVENTION




This invention relates in general to the manufacture of paper products from aqueous paper pulp.




BACKGROUND OF THE INVENTION




In the art of paper manufacturing, decontamination of the paper pulp is of primary importance to achieve a consistent paper product. In particular, recycling waste paper requires extensive cleansing of the aqueous paper pulp to remove extraneous contaminates. Waste paper materials present a challenge to provide an economically feasible means of recycling which yields an acceptable paper product.




Contaminates may be grouped into one of three classes. First, elongated flexible materials, such as pieces cord, fabrics and wire can be removed from the pulp relatively efficiently by a ragger, well-known in the art. A ragger is generally a rope trailing in the pulper vat upon which elongated material becomes entwined. Second, heavy materials, such as rocks and metal pieces, are typically removed with increased effort by screen filters or traps. Finally, light weight contaminates, such as plastics, styrofoam, wood, adhesives and entrained air, can be the most difficult to remove. Various approaches to the removal of light weight contaminates have been proposed, including screens and skimmer devices.




Pulp fiber screening technology has practical limits defined by screen pore size and hydraulic pressure. As finer screens have been developed to filter unwanted contaminates, increased hydraulic horsepower has been required to drive the pulp therethrough. However, the high degree of screening currently required to produce acceptable quality paper results in energy inefficiencies. The removal of light weight contaminates, such as foldable bits of plastic sheeting, are especially problematic to remove by conventional screening techniques.




Prior art collection traps for light weight contaminates are also unsatisfactory. Most such traps provide an open collection area for buoyant light weight contaminates, which are then skimmed off the top. This skimming action agitates the rising light weight contaminates, and recirculates them into the pulp batch. Furthermore, this system requires an undesirable number of moving parts, which increases the likelihood of machine failure.




Traps for heavy contaminates in the prior art are also inadequate. Some models include a lower heavy contaminate collection pocket, which is periodically cleared by a grapple lowered from the top. Again, this requires unnecessary machinery and produces circulatory agitation, which prevents both light and heavy contaminates from efficiently separating.




Furthermore, such prior art devices do not permit a continuously adjustable range of decontamination depending upon the quality of the paper product desired. Prior art pulp decontaminators are also incapable of processing sufficiently large amounts of pulp to create an economy of scale.




Therefore, there exists in the art a long felt need for an improved pulp decontamination apparatus. Despite the apparent need for such pulp processing alternatives, there have been none which satisfactorily provide these desirable qualities. Accordingly, there is a need in the art for an improved apparatus and method for decontaminating pulp.




OBJECTS OF THE INVENTION




Thus, it is an object of the present invention to provide an improved apparatus for decontaminating aqueous paper pulp.




It is an object of the invention to provide a pulp decontaminating apparatus that has an improved configuration for removing light contaminates.




It is also an object of the invention to provide a pulp decontaminating apparatus that has an improved configuration for removing heavy contaminates.




It is also an object of the invention to provide an apparatus that can be selectively adjusted for removing pulp decontaminates to a desired degree.




It is also an object of the invention to provide a plurality of such individual pulp decontaminating devices to create an efficient economy of scale.




Other objects, features, and advantages of the present invention will become apparent upon review of the following description of preferred embodiments and the appended drawings and claims.




SUMMARY OF THE INVENTION




The present invention provides an apparatus for decontaminating aqueous paper pulp comprising a


25


decontaminating cell. The decontaminating cell has an upper light contaminate collection hood and/or a lower heavy contaminate collection trough. Paper pulp is provided to the cell under a pressure head sufficient to purge the contaminates therefrom. A method of decontaminating aqueous paper pulp is provided, as well as products made from the method.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a cell according to the present invention for decontaminating aqueous paper pulp.





FIG. 2

is a perspective view of a cell according to the present invention for decontaminating aqueous paper pulp having a means for adjusting the decline of the longitudinal axis.





FIG. 3

is a front end view of the cell of FIG.


1


.





FIG. 4

is a schematic front view of a pulp server tray according to the present invention for providing paper pulp to a plurality of decontaminating cells.





FIG. 5

is a cross-section view of a head box and server tray according to the present invention, detailing several pulp agitating members therein.











DETAILED DESCRIPTION




The invention contemplates that the apparatus can be used for decontaminating aqueous paper pulp from a variety of different sources. Aqueous paper pulp is preferably provided in a slurry form comprising wastepaper, such as recycled newsprint, mixed with a selected amount of water in a large, open-topped pulper tub. The wastepaper is pulped to paper fiber by impact with a rotary blade and vigorous agitation. The pulp may be mixed with more or less water, whitewater or other aqueous carrier, to provide an intended viscosity. The exact composition of the aqueous paper pulp will vary somewhat, however, preferably, the aqueous paper pulp is about 0.1% to 10% paper fiber, and more preferably about 2% paper fiber.




By “light contaminate” is meant any undesirable materials in the paper pulp which tend to rise upwards through the aqueous paper fiber solution due to a buoyancy effect caused by a difference in specific gravity. Light contaminates can include for example plastics, wood, styrofoam, chemicals, adhesives and air bubbles. By “heavy contaminate” is meant any undesirable materials in the paper pulp which tend to sink downwards through the aqueous paper fiber solution due to gravity. Heavy contaminates can include for example rocks and metal materials. By “decontaminating aqueous paper pulp” is meant that at least a portion of the light and/or heavy contaminates contained in an aqueous paper pulp are separated from the paper fiber. The invention contemplates that the apparatus may be used to separate other aqueous mixtures, in addition to paper pulp.




Referring now to the drawings, like numerals refer to like parts throughout the several views. As seen in

FIGS. 1 and 2

, the apparatus


10


for decontaminating aqueous paper pulp has an elongated cell


12


with a longitudinal axis taken along line a—a. The cell


12


has an exterior surface


14


and an interior surface


16


defining a pulp decontaminating chamber


20


. The pulp decontaminating chamber


20


has an upstream pulp receiving end


22


and a downstream pulp discharging end


24


. The cell


12


can be preferably oriented such that the pulp receiving end


22


is higher than the pulp discharging end


24


, permitting gravity to assist in moving the pulp therethrough.




The pulp decontaminating cell


12


can be constructed of a variety of materials, such as metal or hard plastic. Preferably, at least a portion of the cell


12


is transparent and/or may be opened for ready inspection and maintenance. The pulp decontaminating chamber


20


is preferably cylindrical as shown, however, a variety of shapes will also perform satisfactorily. The chamber has a first cross section area taken along line b—b, through which a laminar flow of aqueous paper pulp travels. Preferably, the ratio of the length of the cell


12


to the area of the cross section b—b of the chamber is about 4:1. In one preferred embodiment, the dimensions of the cell


12


are about 16 inches in length, and the cross section diameter at b—b of the pulp chamber is about 4 inches.




The invention also provides an enclosed light contaminate collection hood


30


formed within an upper portion of the decontaminating chamber


20


. The light contaminate collection hood


30


can also extend from an upper exterior surface


14


of the decontaminating cell


12


, in fluid communication with the pulp chamber


20


. The hood


30


has an upper port


32


for purging light contaminates


26


therethrough. The upper port


32


can permit intermittent or continuous outflow or “purging” of light contaminates


26


. For example, a valve


34


may be provided to control purging through the upper port


32


. In addition, a vacuum means (not shown) can be provided on the upper port


32


for improving the efficiency of purging light contaminates


26


, especially entrained air bubbles. In preferred embodiments, the port


32


is about ½ to ¾ inch in diameter and remains open to permit the continuous removal of light contaminates


26


.




In the alternative, or in addition to the light contaminate collection hood


30


, the cell


12


can have a heavy contaminate collection trough


40


on a lower exterior surface


14


. The collection trough


40


is in fluid communication with the pulp chamber


20


, and has a lower port


42


and means for selectively purging heavy contaminates


28


therethrough. The lower port


42


can permit intermittent or continuous purging of heavy contaminates


28


. For example, a valve


44


may be provided to control purging through the lower port


42


. In preferred embodiments, the lower port


42


is about ¾ to 1 inch in diameter and is intermittently open to permit the removal of heavy contaminates


28


.




The invention provides a means for creating a pulp head for purging contaminates from the cell


12


. By “pulp head” is meant the hydraulic energy of the aqueous paper pulp within the apparatus


10


, in the form of static pressure head or velocity head. The pulp head means can be gravity or a pump, such that the pulp is provided under head to the cell


12


.




The aqueous paper pulp is preferably provided under head to the receiving end


22


of the decontaminating chamber


20


in a turbulent flow (illustrated by swirling dashed lines). The turbulent flow of pulp is believed to inhibit flocking, or clumping, of the pulp fibers and contaminates. Flocking is caused by attraction of oppositely charged materials, which undesirably inhibits the removal of contaminates. The turbulent flow of pulp at the receiving end


22


is in contrast to a laminar flow (illustrated by straight dashed lines) of pulp towards the discharging end


24


of the chamber


20


. As pulp moves through the chamber


20


it becomes less turbulent and more laminar throughout a transitional flow region. The transitional flow region occurs between the pulp receiving end


22


and the pulp discharging end


24


of the chamber


20


and is therefore at least partially adjacent to a portion of the light contaminate collection hood


30


and/or the heavy contaminate collection trough


40


. While not wishing to be bound by theory, it is believed that the contaminates rise and fall based on specific gravity most readily in the transitional flow region. Light contaminates


26


for example, may rise directly into the collection hood


30


, or may rise to the upper interior surface


16


of the chamber


20


and move therealong and then into the collection hood


30


.




The cell


12


can be preferably provided with an inlet


20


tube


50


in fluid communication with the pulp decontaminating chamber


20


at the receiving end


22


of the cell


12


. The inlet tube


50


has a cross section area taken along line c—c, which is less than the cross section area at b—b of the chamber


20


to assist in creating turbulent flow in the decontaminating chamber


20


adjacent the collection hood


30


and/or collection trough


40


. The turbulent flows circulate the contaminates upon entering the chamber, inhibiting flocking of the pulp. Thereafter, in the transitional flow region, light contaminates


26


can more efficiently rise to the upper collection hood


30


and/or heavy contaminates


28


can settle in the lower collection trough. Preferably, the ratio of the cross section area at b—b of the decontaminating chamber


20


to the cross section area at c—c of the inlet tube


50


is about 4:1. In one preferred embodiment, the cross section diameter at b—b of the decontaminating chamber


20


is about 4 inches and the cross section diameter at c—c of the inlet tube


50


is about 1 inch.




The cell


12


can be preferably provided with an outlet tube


54


in fluid communication with the pulp decontaminating chamber


20


at the discharging end


24


of the cell


12


. The outlet tube


54


can have a cross section area taken along line d—d, which is less than the cross section area at b—b of the chamber


20


. This is believed to assist in creating a laminar flow in the discharging end


24


of the decontaminating chamber


20


. Preferably, the outlet tube


54


has a cross section area taken along line d—d, which is less than the cross section area at c—c of the inlet tube


50


.




Preferably, the discharging end


24


of the chamber


20


provides a planar rather than tapered conical transition to the outlet tube


54


to avoid vortexing of the pulp. Preferably, the ratio of the cross section area at b—b of the decontaminating chamber


20


to the cross section at d—d of the outlet tube


54


is about 5:1, such that the cross section diameter at b—b of the decontaminating chamber


20


can be about 4 inches and the cross section diameter at d—d of the outlet tube


54


can be about ½ to ¾ inches. As shown in

FIG. 2

, the outlet tube


54


can also extend upwards for a predetermined length in order to reduce the velocity of the decontaminated pulp and to reintroduce turbulent flows in the decontaminated pulp.




The contaminate rise and/or fall rate can vary, usually between about 3 to 6 mm/sec, depending upon the particular composition of the pulp. Therefore, in preferred embodiments, the rate of pulp flow through the chamber can be adjusted to lengthen or shorten the duration of the decontamination procedure. In preferred embodiments, the apparatus


10


may be provided with a means for raising or lowering the discharging end


24


of the cell


12


relative to the receiving end


22


for adjusting the decline of the cell.




As shown in

FIG. 2

, the means for raising or lowering the discharging end


24


of the cell


12


relative to the receiving end


22


may be an arm


60


pivotally attached to the exterior surface


14


of the cell


12


. The lowering/raising means permits the selective adjustment of the static head, and thus the pulp flow rate, by controlling the decline angle of the chamber


20


. Therefore, a lesser decline angle results in a longer pulp retention time in the chamber


20


and increased pulp decontamination, whereas a steeper decline passes pulp therethrough more quickly and removes fewer contaminates. In preferred embodiments, the decline angle is between about 10 to 80 degrees with respect to the horizon. In another preferred embodiment, particularly when air is a primary contaminate, the decline angle is between about 40 to 80 degrees with respect to the horizon.




In a preferred embodiment of the invention, the light contaminate collection hood


30


is flexibly expandable, such as provided by a bellows


66


, seen in

FIGS. 2 and 3

. Thus, the upper port


32


of the collection hood


30


can be maintained at approximately a constant level relative to the receiving end


22


of the cell


12


throughout a range of adjustments. This configuration is believed to assist in ensuring that adequate pulp pressure head is maintained at the upper port


32


to permit the light contaminates


26


to be self-purged through the upper port


32


throughout a range of adjustments. Purged light contaminates


26


and/or heavy contaminates


28


can be collected by waste hoses (not shown) in fluid communication with the ports


32


,


42


and routed for disposal.




It should be understood that the apparatus


10


can be composed of a plurality of pulp decontaminating cells


12


. A pulp server tray


70


can be provided in fluid communication with the pulp receiving end


22


of each cell


12


decontaminating chamber


20


. The server tray


70


provides pulp under head to each cell


12


, either by gravity or a pump. In one embodiment, the tray


70


has a top end


72


and a converging narrower bottom end


74


for maintaining head as pulp is siphoned off to upper cells


12


.




The apparatus


10


can be further equipped with a plurality of pulp agitating members


76


, or dams, on the server tray


70


for inhibiting flocking and maintaining pulp consistency prior to decontamination. The pulp agitating members


76


rise from the inside surface


75


of the tray


70


to a height less than the side walls


77


,


78


of the tray


70


. Thus, as pulp flows across the tray


70


, pulp spills over each succeeding agitating member


76


, rather than over the side walls


77


,


78


of the tray


70


.




As shown in

FIG. 1

, the pulp agitating members


76


can also extend to a predetermined height above the upper port


32


to ensure that a constant pulp head is maintained for purging light contaminates


26


. When the light contaminate collection hood


30


is provided with a bellows


66


, and a means for adjusting the decline of the cell


12


, the agitating member


76


preferably remains at a higher relative level than the upper port


32


to maintain a purging head throughout a range of adjustments.




As seen in

FIG. 4

, a single tray


70


can preferably serve about fifty cells


12


to achieve an increased economy of scale. The longitudinal axis along of each cell


12


extends approximately perpendicularly from the plane of the tray


70


. The cells


12


can be spaced in a staggered fashion in order to maximize their number. In still more preferred embodiments, multiple levels of trays


70


may be provided in a stacked configuration. For example, in one embodiment of the invention, 6 stacked trays


70


can be provided, utilizing a total of 300 such cells


12


.




As seen in

FIG. 5

, the server tray


70


itself can be supplied by a pulp line


84


and head box


80


. The head box


80


has a pulp supply end


82


adjacent the pulp line


84


, and a pulp flow end


86


, connected by opposed sidewalls


87


,


88


. When the pulp head is created by means of gravity, the head box


80


should be located above the server tray


70


and cells


12


, as shown. The head box


80


can also be equipped with upper and lower agitating members


92


,


94


therein to maintain an even pulp consistency prior to decontamination. In preferred embodiments, the head box


80


is about 5 feet wide, and has side walls


92


,


94


extending about 2 to 3 feet in length and about 8 inches tall. The pulp supply line


82


can have a diameter of about 4 inches and the pulp flow end


86


adjacent the top end


72


of the server tray


70


can have a slotted opening about 5 feet wide and 2½ inches high.




The invention also provides a method of decontaminating aqueous paper pulp, utilizing the above. described apparatus


10


, comprising the step of first providing a turbulent flow of aqueous paper pulp to an elongated cell


12


having an exterior surface


14


, an interior surface


16


defining a pulp decontaminating chamber


20


having a given diameter, a pulp receiving end


22


, and a pulp discharging end


24


Then, purging light contaminates


26


from an enclosed light contaminate collection hood


30


within an upper portion of the pulp chamber


20


, through an upper port


32


by a means for selectively purging the light contaminates


26


therethrough. The means for selectively purging the light contaminates


26


can be gravity or a pump. The upper port


32


is disposed such that light contaminates


26


are purged therethrough by a pulp head. Finally, the method comprises collecting decontaminated pulp from the discharging end


24


of the chamber


20


for paper production.




In preferred methods, the light contaminates


26


are purged continuously through the upper port


32


, but can alternatively be purged at selected intervals through the upper port


32


. In preferred embodiments, the method further comprises creating a pulp flow gradient in the decontaminating chamber


20


between turbulent flows adjacent the receiving end


22


and laminar flows adjacent the discharging end


24


, such that a transitional decontaminating flow region is created adjacent the collection hood


30


and/or the collection trough


40


. The invention also provides a decontaminated pulp product made by the above process.




The invention also provides carrier particles that can be combined with the pulp slurry to facilitate the removal of contaminates within a decontamination chamber. Carrier particles are provided with a preselected size and specific gravity, and optionally an electrical charge. Additional features may be preselected for the carrier particles, such as by construction techniques and fabrication processes that provide further advantages in contaminate removal.




Carrier particles having a specific gravity of less than the paper pulp slurry, e.g. about 0.5, can facilitate removal of light pulp contaminants by physically uplifting a light contaminate through a paper slurry fiber mat, or by providing holes through the fiber mat for contaminates to more readily pass through. The light contaminates and light carrier particles can then be continuously or intermittently removed from the light collection hood, as described above.




Carrier particles having a specific gravity of greater than the paper pulp slurry, e.g. about 1.5, can facilitate removal of heavy pulp contaminants by physically carrying a heavy contaminate through a paper slurry fiber mat, or by providing holes through the fiber mat for contaminates to more readily pass through. The heavy contaminates and heavy carrier particles can then be intermittently removed from the heavy contaminate collection trough, as described above.




The physical nature of the carrier is preferably a particle of between approximately 1 to 50 millimeters in diameter. This carrier particle preferably has a surface area that allows many microscopic and sub-microscopic contaminant particles to become attached thereto. Preparation of the carrier determines the preselected specific gravity. Many materials can be selected to be used in the carrier's construction, such as paper fiber, cotton, sand, kaolin clay, iron oxides, aluminum oxides, silicone and silicon oxides, wood, glass, acrylics, hydrous resins, resins, polystyrene, PVC, synthetic fibers, or combinations of any of these materials.




A particular advantage of adding carrier particles having a specific gravity less than the pulp slurry is the ability to remove light contaminates such as plastic. This continuous uplift of carrier particles entering the decontamination chamber physically catches large pieces of plastic contaminants and lifts them up through the fiber mass. Otherwise, the particles are trapped in the fiber mass and do not as efficiently separate by specific gravity, because of the retardation effect from the fiber mass.




Adding a combination of both light and heavy specific gravity carrier particles to the same process stream of paper pulp will provide holes for contaminates trapped in the fiber mat to travel simultaneously down and up in the same decontamination device. The effect is to break the fiber mat into holes going upward and downward.




Another feature of the invention is to provide a surface charge on the carrier particles to attract oppositely charged contaminate particles. In this embodiment, the carrier particles can selectively locate and isolate known pulp contaminants by attachment to the carrier particle using charge attraction. Carrier particle surface charge is controlled through a preparation process before being introduced into the process stream. The charge can, therefore, be positive or negative, dependent on the carrier preparation. Surface charge on the particles can be achieved through a variety of means, including exposure of the particles to an electronic current, or attachment of previously charged molecules thereto. For example, polar fatty acid moieties may be attached to the surface of the carrier particles. In particular, negatively charged carrier particles can be used to facilitate the removal of ink particles, which are generally positively charged, from paper pulp.




An additional feature of the invention is to provide an adhesive surface treatment on the carrier particles to bind to contaminate particles. In this embodiment, the carrier particles can isolate known pulp contaminants by attachment to the carrier particle using the adhesive property of the coating. Carrier particle surface treatment can be controlled through a preparation process before being introduced into the process stream. For example, various synthetic or natural resins having water-resistant properties can be used to adhere to and remove contaminates. The invention contemplates that carrier particles may be reused as desired and provided with alternative coatings to facilitate the removal of different contaminates.




Therefore, the invention provides a method for decontaminating paper pulp by inserting into a contaminated pulp stream a carrier particle having the ability to facilitate removal of contaminants from the pulp stream. An advantage of this system is to provide a method for separating small contaminates that may not be removed as efficiently from the pulp stream using traditional cleaning methods or the decontamination chamber described herein.




EXAMPLE 1




An apparatus for decontaminating aqueous paper pulp is constructed as an elongated, cylindrical cell about 16 inches in length. The cell has an exterior surface and an interior surface defining a pulp decontaminating chamber about 4 inches in diameter. The apparatus also provides an enclosed light contaminate collection hood on the upper exterior surface of the decontaminating cell, which is in fluid communication with the pulp chamber. The hood has an upper port about ½ inch in diameter for continuously purging light contaminates therethrough.




The cell also has a heavy contaminate collection trough on the lower exterior surface. The collection trough is in fluid communication with the pulp chamber, and has a lower port and a valve for selectively purging heavy contaminates therethrough about 1 inch in diameter.




Pulp is provided to the decontaminating chamber under head from an inlet tube at the upstream pulp receiving end and permitted to flow downstream through the chamber under gravity to the opposite pulp discharging end. The turbulent flow of pulp enters the cell and becomes increasingly laminar as it travels towards the discharging end.




The inlet tube has a cross section area of about 1 inch, which is less than the cross section area of the chamber to further create turbulent in the decontaminating chamber. The turbulent flow provides mixing, deflocking agitation to the pulp, which initially circulates the contaminates upon entering the chamber. As the pulp travels through the chamber, the flow becomes less turbulent and increasingly laminar, permitting light contaminates to rise to the upper collection hood, where they are continuously purged out an upper port. Heavy contaminates settle in the lower collection trough, where they are periodically purged by opening the lower valve about every 15 minutes.




To increase the amount of contaminates removed from the pulp, the apparatus is provided with a pivitally mounted arm for raising or lowering the discharging end of the cell relative to the receiving end. The arm is raised to decrease the decline, thus, converting lowering the velocity and causing increased separation of contaminates from paper fiber. The light contaminate collection hood has a flexibly expandable bellows, so that the upper port of the collection hood is maintained at approximately a constant level relative to the receiving end of the cell throughout a range of adjustments.



Claims
  • 1. An apparatus for removing light contaminates from a liquid suspension, said light contaminates having a specific gravity less than said liquid suspension, said apparatus having an elongated cell comprising:a. a longitudinal axis and an interior surface defining a liquid suspension decontaminating chamber having a first cross section area; b. a liquid suspension receiving end; c. an opposed liquid suspension discharging end; and, d. an enclosed light contaminate collection hood within an upper portion of the decontaminating chamber in fluid communication with the chamber and having an upper port for purging light contaminates therethrough, wherein said upper port is disposed such that light contaminants are purged therethrough.
  • 2. The apparatus of claim 1, wherein said upper port permits continuous purging of light contaminates.
  • 3. The apparatus of claim 1, wherein said upper port permits intermittent purging of light contaminates.
  • 4. The apparatus of claim 1, further comprising an inlet tube in fluid communication with said liquid suspension decontaminating chamber at said receiving end of said cell, said inlet tube having a second cross section area less than said cross section area of said chamber.
  • 5. The apparatus of claim 4, wherein the ratio of said first cross section area to said second cross section area is about 4:1.
  • 6. The apparatus of claim 4, wherein the ratio of said length of said cell to said cross section area of said chamber is about 4:3.
  • 7. The apparatus of claim 1, wherein said apparatus further comprises a pump in fluid communication with said liquid suspension receiving end.
  • 8. The apparatus of claim 1, further comprising a means for raising or lowering said discharging end of said cell relative to said receiving end for adjusting liquid suspension velocity.
  • 9. The apparatus of claim 8, wherein said light contaminate collection hood is flexibly expandable such that said upper port is maintained at approximately a constant level relative to said receiving end of said cell throughout adjustments.
  • 10. The apparatus of claim 1, further comprising a means for creating a vacuum for assisting the purging of light contaminates through the upper port.
  • 11. The apparatus of claim 1, further comprising a plurality of cells and a liquid suspension server tray in fluid communication said liquid suspension receiving end of each cell decontaminating chamber.
  • 12. The apparatus of claim 11, further comprising a plurality of liquid suspension agitating members projecting from said server tray for maintaining liquid suspension consistency.
  • 13. The apparatus of claim 11, wherein said server tray comprises a top end and a narrowing bottom end for maintaining liquid suspension head.
  • 14. The apparatus of claim 1, further comprising an enclosed heavy contaminate collection trough within a lower portion of said decontaminating chamber in fluid communication with said chamber, said heavy contaminate collection trough having a lower port for purging heavy contaminates having a specific gravity greater than said liquid suspension.
  • 15. An apparatus for removing heavy contaminates from a liquid suspension, said heavy contaminates having a specific gravity greater than said liquid suspension, said apparatus having an elongated cell comprising:a. a longitudinal axis and an interior surface defining a liquid suspension decontaminating chamber having a first cross section area; b. a liquid suspension receiving end; c. an opposed liquid suspension discharging end; and, d. an enclosed heavy contaminate collection Tough within a lower portion of the decontaminating chamber in fluid communication with the chamber and having a lower port for purging heavy contaminates therethrough; wherein said lower port is disposed such that heavy contaminants are purged therethrough.
  • 16. The apparatus of claim 15, wherein said lower port permits continuous purging of heavy contaminates.
  • 17. The apparatus of claim 15, wherein said lower port permits intermittent purging of heavy contaminates.
  • 18. The apparatus of claim 15, further comprising an inlet tube in fluid communication with said liquid suspension decontaminating chamber at said receiving end of said cell, said inlet tube having a second cross section area less than said cross section area of said chamber.
  • 19. The apparatus of claim 18, wherein the ratio of the area of said first cross section to said area of said second cross section is about 4:1.
  • 20. The apparatus of claim 15, wherein the ratio of the length of said cell to said cross section area of said chamber is about 4:3.
  • 21. The apparatus of claim 15, wherein said apparatus further comprises a pump in fluid communication with said liquid suspension receiving end.
  • 22. The apparatus of claim 15, further comprising a means for raising or lowering said discharging end of said cell relative to said receiving end for adjusting liquid suspension velocity.
  • 23. The apparatus of claim 15, further comprising a plurality of cells and a liquid suspension server tray in fluid communication said liquid suspension receiving end of each cell decontaminating chamber.
  • 24. The apparatus of claim 23, further comprising a plurality of liquid suspension agitating members projecting from said server tray for maintaining liquid suspension consistency.
  • 25. The apparatus of claim 23, wherein said server tray narrows from top.
  • 26. The apparatus of claim 15, further comprising an enclosed light contaminate collection hood within an upper portion of said decontaminating chamber in fluid communication with said chamber, and having an upper port for purging said light contaminates therethrough, and wherein said means for purging heavy contaminates also provides a means for purging light contaminates having a specific gravity less than said liquid suspension.
  • 27. The apparatus of claim 26, wherein said light contaminate collection hood is flexibly expandable such that said upper port is maintained at approximately a constant level relative to said receiving end of said cell throughout adjustments.
  • 28. The apparatus of claim 26, further comprising a means for creating a vacuum for assisting the purging of light contaminates through the upper port.
  • 29. An apparatus for removing light contaminates from a liquid suspension, said light contaminates having a specific gravity less than said liquid suspension, said apparatus having an elongated cell comprising:a. a longitudinal axis, an exterior surface, and an interior surface defining a liquid suspension decontaminating chamber having a first cross section area; b. a liquid suspension receiving end; c. an opposed liquid suspension discharging end; d. an enclosed light contaminate collection hood within an upper portion of the decontaminating chamber in fluid communication with the chamber and having an upper port for purging light contaminates therethrough wherein said upper port is disposed such that light contaminants are purged therethrough; and, b. a means for raising or lowering said discharge end of said cell relative to said receiving end for adjusting liquid suspension flow.
  • 30. An apparatus for removing light contaminates from a liquid suspension, said light contaminates having a specific gravity less than said liquid suspension, said apparatus having an elongated cell comprising:a. a longitudinal axis and an interior surface defining a liquid suspension decontaminating chamber having a first cross section area; b. a liquid suspension receiving end; c. an opposed liquid suspension discharging end; and, d. an enclosed light contaminate collection hood within an upper portion of the decontaminating chamber in fluid communication with the chamber and having an upper port for purging light contaminates therethrough wherein said light contaminate collection hood is flexibly expandable such that said upper port is maintained at approximately a constant level relative to said receiving end of said cell throughout adjustments, and wherein said upper port is disposed such that light contaminants are purged therethrough.
  • 31. The apparatus of claim 30, wherein said apparatus further comprises a pump in fluid communication with said liquid suspension receiving end.
Parent Case Info

This Application is a 371 of PCT US 97/10413 field on Jun. 18, 1997 which is a continuation of U.S. Ser. No. 08/668,964 filed on Jun. 18, 1996, Now U.S. Pat. No. 5,733,413.

PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/US97/10413 WO 00 5/8/1998 5/8/1998
Publishing Document Publishing Date Country Kind
WO97/48493 12/24/1997 WO A
US Referenced Citations (15)
Number Name Date Kind
4199110 Erikson Apr 1980
4271010 Guarascio Jun 1981
4332638 Mauer et al. Jun 1982
4617114 Skardal Oct 1986
4818375 Dorph Apr 1989
4848674 Hunter Jul 1989
4994176 Yakunin et al. Feb 1991
5061370 Ferland et al. Oct 1991
5240115 Crossley et al. Aug 1993
5397469 Young Mar 1995
5407538 Lamort Apr 1995
5478441 Hamilton Dec 1995
5492224 Singleton, Jr. Feb 1996
5580446 Markham Dec 1996
5601690 Gauld et al. Feb 1997
Foreign Referenced Citations (5)
Number Date Country
057 0757 A1 Nov 1993 EP
1475422 Jun 1977 GB
2003756 Mar 1979 GB
2164589 Mar 1986 GB
9117304 Nov 1991 WO
Non-Patent Literature Citations (2)
Entry
Marson, M., New Lightweight Cleaner Units Solve Mill's Plastic Problems Pulp & Paper, Jun. 1990, vol. 64 No. 6, pp. 93-96.
Ferguson, L.D., “Through-Flow Cleaners”, Paper presented at 1993 Deinking Short Course at Indianapolis, pp. 1-9, (Atlanta, Georgia, USA: TAPPI Press, 1992).
Continuations (1)
Number Date Country
Parent 08/668964 Jun 1996 US
Child 09/068245 US