A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates to the field of individual decontamination and more particularly relates to a process by which individuals who have been in a hazardous material zone are efficiently decontaminated with less time, effort and material waste.
Hazardous materials are a serious threat to populations and the environment. Generally, hazardous materials are categorized into three types: chemical, biological, and radiological. However, the processes utilized for the decontamination of each category are generally similar, with only slight variation. As a result, a basic decontamination process has been developed and is currently the industry standard. This industry standard uses large amounts of water to essentially wash any contaminants from an individual into a holding area. The motivation is generally fear—fear of whatever is contaminating the individual and, because of a lack of understanding of the material and its behavior, taking drastic action to remove it. The process would be akin to amputating an arm for a minor skin infection on the hand. As a result, there is tremendous waste of water in the current decontamination process, often measuring hundreds or thousands of gallons to decontaminate a few individuals in personal, laminate protective gear. This is not necessarily the wisest action in naturally arid regions or those suffering from intense drought. What is needed is a more targeted approach that involves less waste.
A process that is based on targeted application of the knowledge of how different contaminants may be contained can result in not only less water usage, on the order of 10 or fewer gallons for a number of individuals, but a higher level of competence-based reactions. The present invention represents a departure from the prior art in that the process of the present invention allows for the targeted removal and containment of various contaminants without the need for massive rinsing of water. By following the procedures outlined, all known contaminant types may be addressed competently and effectively.
In view of the foregoing disadvantages inherent in the current standard of decontamination, an improved process may provide a methodology that uses less water and provides complete protection of the individuals working an incident and the environment around them. As such, a new and improved process may comprise a targeted initial removal of contaminants followed by targeted application of decontamination fluids and a second wipe step in order to accomplish these objectives. It should be noted that by “targeted” application of decontamination fluids, what is meant is a low pressure spray application from hand held sprayers, typically under 30 psi, whereby the individuals outer protective layers are gently covered with the fluids with special attention given to obvious contaminated regions and breaks in the layers sky found at breathing apparatuses, gloves, boots, etc.
The more important features of the invention have thus been outlined in order that the more detailed description that follows may be better understood and in order that the present contribution to the art may better be appreciated. Additional features of the invention will be described hereinafter and will form the subject matter of the claims that follow.
Many objects of this invention will appear from the following description and appended claims, reference being made to the accompanying drawings forming a part of this specification wherein like reference characters designate corresponding parts in the several views.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods, and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
With reference now to the drawings, a preferred embodiment of the decontamination method is herein described. It should be noted that the articles “a”, “an”, and “the”, as used in this specification, include plural referents unless the content clearly dictates otherwise.
The methodology of the invention is best described by the phrase “Wipe, Spray, Wipe.” Prior art systems generally used a broad scale rinsing of a contaminated individual or object to effect decontamination. This broad scale rinsing is the primary cause of the wasted water and other resources. The improved methodology utilizes targeted application of ameliorative action to eliminate contaminants from protective gear worn on an individual in an efficient manner. For most contaminants, the actions are summarized in an initial wiping of the contaminated surface; targeted application of counteracting solutions (“spray”), followed by a re-wipe of the surface, after which the personal protective equipment (“PPE”) may be taken off (“doffed”) and handled according to customary manners. It is to be emphasized that the methodology described herein is for the decontamination and eventual removal of an individual's PPE and is not meant to address the overall situation that requires decontamination efforts.
With reference to
The team-based process 200 begins when the individual enters the CRZ and the general steps are: 1. an initial wipe down of the individual 210; 2. targeted application of hazard specific decontamination solution 220; and 3. final wipe down of the individual 230. After this process, the decontamination team assists in the doffing of the individual's PPE 240 and the individual's eventual exit from the CRZ 250.
Different wiping tools may be selected based on the contaminant 300. First, the hazard is identified 310. A selection guide for wipers is shown in
What should be noted is that the selection of the appropriate tool is made before the decontamination strategy is determined 400 (
Industrial waste and chemicals (TIC/TIM) are dealt with based on their physical state: solid, liquid or gas/vapor (
Chemical warfare agents 600 are classified based on their persistence, or how long they tend to remain in a critical mass that could contaminate the environment. As shown in
For biological agents 700, the first step is determined by the level of gross contaminant on the individual. Biological agents may be accompanied by heavy soiling or “carbon overburden” 710. For biological contaminants, a high-level disinfectant is the preferred decontamination solution. These are usually bleach, or hypochlorite, based 730, 740, though other EPA registered disinfectants may be utilized. Higher amounts of soils (mud or dirt) or other organic matter (such as blood or vomit) will deactivate such solutions quickly, simply because their presence will use up the bleach before it can fully decontaminate the individual's PPE. As such, if there is an elevated level of soiling, an initial wipe must be performed 720 with a wash mitt or similar wiper structure. If there is not, the initial wipe step may be skipped; but, the application of the solution 740 and the final wipe down must be followed 750. In this case, if the soiling is relatively inert, the initial wipe may be a wet process, such as a fine misting from a garden hose or pump sprayer.
For radiological contaminants 800 (
The decontamination solution is of paramount importance to three of the four decontamination situations described. The solutions may be detergent or bleach-based, or both. Solutions may be made in varying concentrations, with preference given to concentrations of 1-2% detergent to water (assuming a regular, off-the-shelf dish detergent is used) and, where necessary, an 0.8% hypochlorite (NaClO) solution (which is equivalent to a 10% concentration of household bleach to water). In all cases, water is first added to a chosen delivery apparatus, such as a pump or other sprayer. Then any bleach is added, followed by detergent. The solution is then mixed and used according to the method. The mixing proportions for using standard household cleaners may be found on the table below:
It is to be readily understood that different concentrations of detergents may be used, depending upon the effectiveness of the detergent. Also, bleaches of different concentrations may be used so long as the requisite 0.8% NaClO concentration, or an equivalent, is reached. It should also be readily understood that different decontaminants may be utilized as they are discovered and/or invented and that these ratios, concentrations, and ingredients may change, and that such changes should be considered read into this invention. For instance, appropriate use of calcium hypochlorite or sodium dichloroisocynurate may allow a reduction of the hypochlorite to a 0.5% concentration. Solutions should be changed every 2 hours for maximum efficacy, and more often in higher temperatures. Minimum contact or dwell time for these solutions should be 2 minutes, with dwell times of 5 minutes or longer possible for heavily contaminated surfaces or more stubborn, viscous, contaminates. Spray delivery is to be targeted with low pressure (under 30 psi) on the individual's PPE. This is a significant difference from the prior art which utilizes hoses, showers and other delivery devices to apply large amounts of water to an individual. A simple spray bottle or hand-pressurized sprayer are more than sufficient to accomplish the necessary fluid application.
Individual CRZ setups (
The initial decontamination process will vary slightly for a chemical hazard as opposed to a biological one. In
For a biological hazard, as shown in
In
Although the present invention has been described with reference to preferred embodiments, numerous modifications and variations can be made and still the result will come within the scope of the invention. No limitation with respect to the specific embodiments disclosed herein is intended or should be inferred.
This Application claims priority, under the provisions of 35 U.S.C § 119(e)(3), as a non-provisional perfection of prior filed U.S. application No. 62/508,739, filed May 19, 2017, and incorporates the same by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4890343 | Schlags | Jan 1990 | A |
4934396 | Vitta | Jun 1990 | A |
5205306 | Peterson | Apr 1993 | A |
5375275 | Sanders | Dec 1994 | A |
5426795 | Harty | Jun 1995 | A |
5469587 | Demeny | Nov 1995 | A |
20110056519 | Card et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2055622 | May 1993 | CA |
2265112 | Jun 2003 | CN |
2415906 | Oct 1975 | DE |
Number | Date | Country | |
---|---|---|---|
20180333009 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62508739 | May 2017 | US |