The present disclosure relates to a decorative body formed on a tire side portion.
Japanese Patent Application Laid-Open (JP-A) Nos. 2013-71572, 2008-273505, 2008-189165, 2012-101754, and Japanese National-Phase Publication No. 2002-52294 disclose tires in which a tire side portion is contoured in order to improve the visual impact of the tire.
In the tire disclosed in JP-A No. 2013-71572, plural pattern elements having the same outline shape and having directionality so as to cause light reflection characteristics to change continuously or in stages along one direction are disposed continuously to each other in a tire circumferential direction and a tire radial direction. The placement direction is changed periodically around the tire circumferential direction, and pattern elements adjacent to each other in the tire radial direction have different placement directions to each other. This placement of pattern elements causes the location where the pattern elements are disposed to appear to have solid contours to a person observing. However, although any unevenness present at an outer surface of a sidewall portion is rendered less obvious, the intention is not to improve the visual impact of the tire itself.
In the tire disclosed in JP-A No. 2008-273505, an outer surface of a sidewall portion is formed with concave and convex portions. Reflective faces are provided to the surfaces of at least some of the concave portions, and roughened faces are provided around the reflective faces so as to achieve changing light reflecting properties. Although the external appearance of the tire is improved, the intention is not to improve the visual impact of the tire itself. Moreover, if dirt enters the concave portions of the roughened faces, such dirt is difficult to remove.
In the tire disclosed in JP-A No. 2008-189165, a ring shaped decorative body configured by a collection of numerous polygonal pyramids is provided to a sidewall portion. Although this makes unevenness caused by a spliced edge or a folded-back edge of a carcass layer that appears at the surface of the sidewall portion less obvious, the intention is not to improve the visual impact of the tire itself.
In the tire disclosed in Japanese National-Phase Publication No. 2002-522294, light reflection is varied between a text portion and a background portion. Although this creates contrast between the text portion and the background portion, enabling the text to be distinguished clearly, the intention is not to improve the visual impact of the tire itself.
The tire disclosed in JP-A No. 2012-101754 generates a visual effect in which a second decorative body provided within a first decorative body appears to be emphasized, thereby enabling unevenness arising in an outer surface of a sidewall to be less obvious and enabling decorative qualities to be improved. However, the intention is not to improve the visual impact of the tire itself.
The decoration and the like applied to these tire side portions stands out when the tire is observed closely, and the respective technologies described above are employed to make unevenness of the tire side portion appear less obvious, to improve the visual impact of text or the like, and so on. The intention is not to improve the visual impact of the tire.
In consideration of the above circumstances, an object of the present disclosure is to provide a decorative body capable of improving the visual impact of a tire.
A decorative body according to a first aspect includes plural solid shapes including a bottom face configured at a surface of a tire side portion and plural inclined faces each inclined in a direction that is not a direction of the bottom face or a direction of a plane perpendicular to the bottom face. At least three types of the solid shapes have different vector orientations from each other when the tire side portion is viewed in plan view and when a vector is defined as an inclined face vector running in a direction from a highest location side toward a lowest location side of a inclined face having a smallest incline angle with respect to the tire side portion for a corresponding solid shape, with the highest location side of the vector defined as a start point of the vector and the lowest location side of the vector defined as an end point of the vector. A region is included in which the solid shapes having different vector orientations from each other are disposed adjacently to each other when the tire side portion is viewed in plan view, from 3 to 200 of the solid shapes are provided per 1 cm2, and a surface area taken up by the inclined faces having the smallest incline angle occupies a range of from 70% to 100% per unit surface area in plan view.
In a decorative body that satisfies all these conditions, for example, light shone onto a tire can be reflected in the direction of an observer to the side of the tire using a number of discrete inclined faces from out of the plural inclined faces. Thus, when at least one out of the tire or the observer moves such that the tire and the observer move relative to each other, the inclined faces reflecting the light toward the observer change in a random fashion. Thus, the light appears to twinkle at plural different positions of the decorative body. In other words, the decorative body has an external appearance that appears to sparkle.
“Sparkling” is defined as follows.
A twinkling effect in which highlight points (points that appear brightest when viewed from a given range) on a target appear to change accompanying a change in viewpoint. Also, a twinkling effect in which highlight points change accompanying a change in an illuminating light source when viewed in a static state.
In the decorative body, when the number of solid shapes per unit surface area is small, the number of locations that appear to light up is too small, making a sparkling impression difficult to achieve. When the number of solid shapes per unit surface area is too large, the surface area of locations that appear to light up is too small, making it difficult to make the locations that appear to light up appear bright, and difficult to achieve a sparkling impression. Thus, from 3 to 200 of the solid shapes are disposed per 1 cm2 in order that the decorative body achieves an external appearance that appears to sparkle.
Moreover, setting the surface area taken up by the inclined faces having the smallest incline angle to a range of from 70% to 100% per unit surface area of the decorative body when the decorative body is viewed in plan view enables the surface area of locations that reflect light toward an observer positioned directly in front of the tire to be secured, such that the locations that reflect light so as to appear to light up appear bright to the observer.
A second aspect is the decorative body according to the first aspect, wherein in cases in which the bottom face is a polygonal shape with four or more sides, a number of faces perpendicular to the bottom face is smaller than the number of sides of the bottom face for some of the plural solid shapes.
In this decorative body, in solid shapes in which the bottom face is a polygonal shape with four or more sides, when the number of faces perpendicular to the bottom face is smaller than the number of sides of the bottom face, at least one inclined face inclined with respect to the bottom face is formed.
When light such as sunlight is shone obliquely downward from above toward a face perpendicular to the bottom face of the solid shape (so as to run parallel to a tire side portion perpendicular to a road surface in a state in which a tire is fitted to a vehicle), and toward a face that is inclined with respect to the bottom face, the face that is inclined with respect to the bottom face is better able to reflect light toward an observer at the side of the tire (directly in front or at an oblique front side of the tire side portion) than the face that is perpendicular to the bottom face. Thus, the decorative body of the eighth aspect, in which the number of inclined faces that can be formed inclined with respect to the bottom face is at least one, enables the sparkling external appearance to be emphasized.
A third aspect is the decorative body according to the first aspect or the second aspect, wherein the bottom face of each of the solid shapes has a surface area of from 0.5 mm2 to 50 mm2.
When the number of solid shapes are too small, the locations that appear to light up are too small, making it difficult to make the locations that appear to light up appear bright, and making it difficult to achieve a sparkling impression. When the solid shapes are too large, the surface area of locations that appear to light up is too large, such that the sparking locations are perceived as faces. In other words, it is perceivable that the faces are sparkling, and it becomes difficult to achieve a sparkling impression. Thus, in order to emphasize the sparkling external appearance of the decorative body, the bottom face of each of the solid shapes is preferably formed with a surface area of from 0.5 mm2 to 50 mm2.
A fourth aspect is the decorative body according to anyone of the first aspect to the third aspect, wherein the decorative body has a surface area of at least 100 mm2.
When the surface area of the decorative body is too small, the locations that appear to light up are too few, making it difficult to achieve a sparkling impression when the decorative body is viewed. Thus, the decorative body preferably has a surface area of at least 100 mm2 in order to emphasize the sparkling impression when the decorative body is viewed.
A fifth aspect is the decorative body according to any one of the first aspect to the fourth aspect, wherein at least some of the plural solid shapes are solid shapes having different heights to each other.
In this decorative body, at least some of the plural solid shapes are solid shapes having different heights to each other, thereby enabling variation in the gradients of the inclined faces to be achieved. In other words, plural solid shapes with inclined faces with different gradients are included in the plural solid shapes, thereby enabling the sparkling external appearance to be emphasized compared to cases in which the inclined faces of the plural solid shapes all have the same gradient.
The decorative body of the present disclosure enables the decorative body to be configured with an external appearance that appears to sparkle, and is thus capable of improving the visual impact of the tire.
Explanation follows regarding a tire 10 according to an exemplary embodiment in the present invention, with reference to
As illustrated in
As illustrated in
As illustrated in
The decorative body 14 of the present exemplary embodiment is configured by tessellating the reflective cells 20 configured as described above as illustrated in
As illustrated in
Reflective Piece 16A
As illustrated in plan view in
The first side 16Aa of the reflective piece 16A has a length L1 of 2.1 mm, and a dimension h in a direction orthogonal to the first side 16Aa is 2.325 mm.
As an example, a connection portion 16As1 between the first side 16Aa and the second side 16Ab is formed in a circular are shape with a radius of curvature R of 2.1 mm. Moreover, a connection portion 16As2 between the first side 16Aa and the third side 16Ac, and a connection portion 16As3 between the second side 16Aa and the third side 16Ac, are, for example, formed with circular arc shapes with a radius of curvature R of 0.1 mm in plan view.
As illustrated in
In the reflective piece 16A, the third side 16Ac has the greatest height, this being a uniform height of 0.4 mm across the entire third side 16Ac. The height of an apex face of the reflective piece 16A (also referred to hereafter as an inclined face 16At) gradually decreases at a uniform incline angle on progression from the third side 16Ac toward the connection portion 16As1 between the first side 16Aa and the second side 6Ab. Namely, the height of the inclined face 16At is lowest (for example a height of 0 mm) at the connection portion 16As1. Note that the inclined face 16At is a planar face.
In
Reflective Piece 16B
As illustrated in
As an example, a connection portion 16Bs1 between the first side 16Ba and the second side 16Bb is formed in a circular arc shape with a radius of curvature R of 2.1 mm in plan view. Moreover, a connection portion 16Bs2 between the first side 16Ba and the third side 16Bc, and a connection portion 16Ba3 between the second side 16Bb and the third side 16Bc, are, for example, formed with circular arc shapes with a radius of curvature R of 0.1 mm in plan view. In this manner, the plan view profile of the reflective piece 16B has point symmetry to the reflective piece 16A, with the symmetry centered on a center point of the first set 18A that has a substantially rhombus shape in plan view.
As illustrated in
In
Reflective Piece 16C As illustrated in
Considered overall, the reflective piece 16C has a triangular column shape that projects out by a short height from the base portion of the tire side portion 12. In the reflective piece 16C, a first side 16Ca has the greatest height (for example a height of 0.4 mm), and the reflective piece 16C is inclined downward on progression from the first side 16Ca toward a connection portion 16Cs3 between a second side 16Cb and a third side 16Cc. The connection portion 16Cs3 has the lowest height of the reflective piece 16C (for example a height of 0 mm). Namely, an inclined face 16Ct of the reflective piece 16C is inclined downward on progression from the first side 16Ca toward the connection portion 16Cs3 between the second side 16Cb and the third side 16Cc, and has its lowest height at the connection portion 16Cs3 (for example, a height of 0 mm). Note that the inclined face 16Ct is a planar face.
In
Reflective Piece 16D
As illustrated in
Considered overall, the reflective piece 16D has a triangular column shape that projects out by a short, uniform height (for example 0.2 mm) from the base portion of the tire side portion 12. Note that an apex face 16Dt of the reflective piece 16D is a planar face running parallel to a bottom face 16b.
Reflective Piece 16E
As illustrated in
Considered overall, the reflective piece 16E has a triangular column shape that projects out by a short height from the base portion of the tire side portion 12. In the reflective piece 16E, a connection portion 16Es1 between a first side 16Ea and a second side 16Eb has the greatest height (for example a height of 0.4 mm), and the reflective piece 16E is inclined downward on progression toward a third side 16Ec. The third side 16Ec has the lowest height of the reflective piece 16E (for example a uniform height of 0 mm). Namely, an inclined face 16Et of the reflective piece 16E is inclined downward on progression from the connection portion 16Es1 between the first side 16Ea and the second side 16Eb toward the third side 16Ec, and has its lowest height at the third side 16Ec. Note that the inclined face Et is a planar face.
In
Reflective Piece 16F
As illustrated in
As illustrated in
In
Reflective Piece 160
As illustrated in
Considered overall, the reflective piece 16G has a triangular column shape that projects out by a short, uniform height (for example 0.2 mm) from the base portion of the tire side portion 12. An apex face 16Gt of the reflective piece 16G is a planar face running parallel to a bottom face 16b.
Reflective Piece 16H
As illustrated in
As illustrated in
In the reflective piece 16H, a connection portion 16Hs3 between a second side 16Hb and a third side 16Hc has the greatest height (for example a height of 0.4 mm), and the reflective piece 16H is inclined downward on progression toward a first side 16Ha, such that the first side 16Ha has the lowest height of the reflective piece 16B (for example a uniform height of 0 mm). Namely, an inclined face 16Ht of the reflective piece 16H is inclined downward on progression from the connection portion 16Hs3 between the second side 16Hb and the 16Hc toward the first side 16Ha, and has its lowest height at the first side 16Ha. Note that the inclined face 16Ht is a planar face.
In
As illustrated in
Moreover, a gap S2 of uniform width (for example 0.1 mm) is provided between one reflective cell 20 and another reflective cell 20 arranged in the short direction of the reflective cells 20. Such gaps S2 also correspond to the base portion of the tire side portion 12.
As illustrated in
Furthermore, the decorative body 14 requires a region to be provided in which adjacent reflective pieces 16 are disposed so as to have different vector orientations from each other (the reflective piece 16D and the reflective piece 16G are exempt from this requirement as they do not include vectors). In the decorative body 14 of the present exemplary embodiment as illustrated in
Moreover, the decorative body 14 requires from 3 to 20 of the reflective pieces 16 to be provided per 1 cm. From 10 to 100 of the reflective pieces 16 are preferably provided per 1 cm2. In the decorative body 14 of the present exemplary embodiment, approximately 18 of the reflective pieces 16 are provided per 1 cm2.
There is a requirement for the proportion of the surface area taken up by the inclined faces having the smallest incline angle to occupy a range of from 70% to 100% of the decorative body 14 per unit surface area when the decorative body 14 is viewed in plan view.
In the present exemplary embodiment, the proportion of the surface area occupied by the inclined faces having the smallest incline angle (namely the inclined face 16At of the reflective piece 16A, the inclined face 16Bt of the reflective piece 16B, the inclined face 16Ct of the reflective piece 16C, the inclined face 16Et of the reflective piece 16E, and the inclined face 16Ft of the reflective piece 16F) is approximately 75% of the decorative body 14 per unit surface area.
The respective apex faces (inclined faces) of the reflective pieces 16 of the decorative body 14 are preferably smoother than the tire side portion 12 so as to reflect light more regularly, or in other words so as to scatter light less. The surface roughness thereof is preferably from 1 to 15 Rz (Rt) in ten-spot average roughness as defined in JIS B 0601.
The surface area of the decorative body 14 is preferably at least 100 mm2.
The surface area of the bottom face 16b of each of the reflective pieces 16A to 16H is preferably within a range of from 0.5 mm2 to 50 mm2.
The incline angles (with respect to the bottom face 16b) of the inclined face 16At of the reflective piece 16A, the inclined face 16Bt of the reflective piece 16B, the inclined face 16Ct of the reflective piece 16C, the inclined face 16Et of the reflective piece 16E, the inclined face 16Ft of the reflective piece 16F, and the inclined face 6t of the reflective piece 16G are preferably within a range of from 5° to 60° are more preferably within a range of from 5° to 45°, and are even more preferably within a range of from 10° to 45°.
Operation and Advantageous Effects
When light (for example external light such as sunlight) is shone onto the decorative body 14, this light is reflected by the respective apex faces of the respective reflective pieces. The respective apex faces of the respective reflective pieces configuring the decorative body 14 face in various directions (see
In this manner, the decorative body 14 is capable of improving the visual impact of the tire 10 of the present exemplary embodiment, and capable of creating an impression of high quality stemming from a textured effect.
As illustrated in
The decorative body 14 of the present exemplary embodiment includes a region where reflective pieces 16 with different vector orientations from each other when the tire side portion 12 is viewed in plan view are disposed adjacently to each other (for example the region where the reflective piece 16B and the reflective piece 16C are disposed adjacently to each other, and a region where the reflective piece 16A and the reflective piece 16H are disposed adjacently to each other (see
Note that in cases in which plural reflective pieces 16 having the same vector orientation as each other are provided adjacently to each other such that their highest sides link up in a straight line, the reflective pieces create a ridge-like appearance (similarly to the ridge of a mountain range), and light-reflecting locations line up, making a sparkling impression with points that appear to light up more difficult to achieve. Accordingly, adjacent reflective pieces 16 preferably have different vector orientations from each other.
The decorative body 14 of the present exemplary embodiment includes from 3 to 200 of the reflective pieces 16 per 1 cm2. Accordingly, the sparkling impression can be emphasized in comparison to cases in which the number of reflective pieces 16 per 1 cm2 is 2 or fewer, or cases in which the number of reflective pieces 16 per 1 cm2 is greater than 200.
In the present exemplary embodiment, the proportion of the surface area taken up by the inclined faces having the smallest incline angle occupies a range of from 70% to 100% of the decorative body 14 per unit surface area when the decorative body 14 is viewed in plan view. This enables the sparkling impression to be emphasized in comparison to cases in which the proportion is set below 70%.
The decorative body 14 of the present exemplary embodiment is set with a surface area of at least 100 mm2. This enables the sparkling impression to be emphasized in comparison to cases in which the surface area is less than 100 mm2.
In the decorative body 14 of the present exemplary embodiment, the surface area of the bottom face 16b of each of the reflective pieces 16A to 16H is set within a range of from 0.5 mm2 to 50 mm. This enables the sparkling impression to be emphasized in comparison to cases in which the surface area of the bottom face 16b is not within the range of from 0.5 mm2 to 50 mm2
In the decorative body 14 of the present exemplary embodiment, the reflective cells 20 are each configured by the eight types of reflective pieces 16A to 16G The reflective cells 20 are tessellated along both the length direction and the short direction to configure the decorative body 14. This enables mold design and processing to form the tire 10 to be simplified in comparison to cases in which the inclined faces of all the reflective pieces configuring the decorative body 14 have different vectors to each other.
Although explanation has been given regarding the tire 10 according to an exemplary embodiment in the present invention, the present invention is not limited to the above. Obviously, various modifications may be implemented within a range not departing from the spirit in the present invention.
In the exemplary embodiment described above, the greatest height of the reflective pieces 16A, 16B, 16C, 16E, 16F, and 16H is 0.4 mm. However, the greatest height is not limited to 0.4 mm. Moreover, although the heights of the reflective pieces 16D and 16G are 0.2 mm, the heights are not limited to 0.2 mm. Note that the reflective pieces 16A to 16H preferably project out from the base portion of the tire side portion 12 by 0.1 mm to 1.5 mm.
In the exemplary embodiment described above, each of the reflective pieces 16 configuring the decorative body 14 has a triangular column shape. However, the present invention is not limited thereto, and for example, the decorative body 14 may be configured by reflective pieces 22 with square column shapes having a square shape in plan view as illustrated in
Additional explanation follows regarding the decorative body 14.
As an example, a first solid shape pair 30 is defined as a pair of the reflective pieces 22 disposed adjacently to each other with a vector (arrow) start point of one of the reflective pieces 22 and the vector start point of the other of the reflective pieces 22 being adjacent to each other, and the vector of the one reflective piece 22 and the vector of the other reflective piece 22 being oriented in opposite directions to each other as illustrated in
Note that the first solid shape pair 30, the second solid shape pair 32, and the first solid shape group 34 make the sparkling impression more difficult to obtain, and thus do not need to be present in the decorative body 14. In the decorative body 14 in the exemplary embodiment described above, the third solid shape pair 30 corresponds to the first set 18A, the second set 18B, the third set 18C, and the fourth set 18D. In the decorative body 14 in the exemplary embodiment described above, configurations corresponding to the first solid shape pair 30, the second solid shape pair 32, and the solid shape group 34 described above are not provided.
Moreover, in the decorative body 14 it is preferable to eliminate configurations in which, when as illustrated in
Additional explanation follows regarding the light reflecting apex faces of the reflective pieces.
In the present invention, within the reflective pieces serving as examples of solid shapes, the face that reflects light toward an observer in order to obtain a sparkling impression is the inclined face having the smallest incline angle with respect to the bottom face of the reflective piece. As illustrated in
As illustrated in
Additional explanation follows regarding vectors of the light reflecting apex faces of the reflective pieces.
In the reflective pieces serving as examples of solid shapes, the vector of the inclined face is defined as the direction from the highest location side toward the lowest location side of the inclined face having the smallest incline angle with respect to the bottom face of the reflective piece. However, as illustrated in
As illustrated in
As illustrated in
As illustrated in
Regardless of the shape, if the inclined face having the smallest incline angle with respect to the bottom face of the reflective piece is highest at a side with a uniform height, and lowest at a side with a uniform height, the vector start point is at the center point of the highest side, and the vector end point is at the center point of the lowest side. Moreover, in cases in which the inclined face has a circular shape, an elliptical shape, or the like, the highest point of an outer peripheral portion of the inclined face is the vector start point, and the lowest point of the outer peripheral portion of the inclined face is the vector end point.
Note that if a case in which three reflective pieces 22 with inclined faces 22t having the same incline angle as each other are consecutive to each other as illustrated in
The decorative bodies employed in the test are configured by reflective pieces having a triangular shape in plan view.
Sensory Evaluation Test Method
The sensory evaluation results signify the following: A=superb, B=very good, C=good, D=acceptable, E=unacceptable.
It can be seen from the test results in
Namely, it can be seen from the test results that when the decorative body 14 is viewed in plan view along the axial direction of the tire 10, securing a reflective surface area that is somewhat large (70% or greater) for the surface area taken up by the inclined faces of the reflective pieces is preferable.
Moreover, it can be seen from the test results that the density of the reflective pieces disposed in the decorative body 14 is preferably from 3 to 200 per 1 cm2, and is more preferably from 10 to 100 per 1 cm2.
The disclosure of Japanese Patent Application No. 2017-238079, filed on Dec. 12, 2017, is incorporated in its entirety by reference herein.
All cited documents, patent applications, and technical standards mentioned in the present specification are incorporated by reference in the present specification to the same extent as if each individual cited document, patent application, or technical standard was specifically and individually indicated to be incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2017-238079 | Dec 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/044419 | 12/3/2018 | WO | 00 |