1. Technical Field
The present disclosure generally relates to decorative light systems, and mole particularly to decorative light systems used as home furnishings.
2. Description of the Related Art
Various decorative illuminated objects are known in the art, which display one or more lighting effects. For example, U.S. Pat. No. 6,801,003 (“Schanberget”) discloses lighting systems for swimming pools, wall-mounted lighting systems, and window-mounted light-systems that include a processor that is configured to control a color-changing lighting effect generated by the lighting apparatus. Schanberget discloses that the lighting system may also include memory storing one or more lighting programs and/or data. The lighting systems may also include a user interface used to change and/or select the lighting effects generated by the lighting system. Schanberget also discloses that the lighting system may be provided with a plurality of LEDs controlled such that the light outputs from two or mote of the LEDs combine to produce a mixed colored light, and that the lighting system may be used in a variety of larger scale applications such as indoor and outdoor displays, decorative illumination, and special effects illumination.
U S. Pat. No. 6,536,914 (“Hoelen”) discloses an illumination system for illuminating a display device, comprising a light-emitting panel having at least one edge surface for coupling light into the light-emitting panel. The Hoelen illumination system further comprises a light source comprising a plurality of clusters of light-emitting diodes, each cluster includes one blue, one green, and one red LED Hoelen uses a mixing chamber with a dimensional relationship to the arrangement of the LED clusters to achieve a uniform, non-dynamic light distribution.
Other known lighting devices are described in U.S. Pat. No. 6,616,308 which discloses a simulated candle, U.S. Pat. No. 6,361,186 which discloses a simulated neon light using LEDs, while controls for lighting display devices are described in U.S. Pat. Nos. 6,431,719, 4,866,580, and U.S. Patent Publication No. 2004/0036424.
However, there are deficiencies associated with each of the foregoing lighting devices. For example, the known devices have limited applications and are overly difficult and expensive to manufacture. In addition, none of the known devices have communications capabilities to provide a control center remotely from the decorative lighting device. Still further, none of the known systems include multiple lighting devices that are wirelessly synchronized to present a coordinated light show. Accordingly, there remains a need in the art for improved decorative lighting displays.
Decorative light systems are disclosed that include a base and a portable light device capable of communicating with each other to generate a light show.
According to the present disclosure, the system may include a base defining a receptacle and including a microcontroller, a transceiver operably coupled to the microcontroller and adapted to generate a control signal, a first power source operably coupled to the microcontroller, and a user inter face operably coupled to the microcontroller and including at least one switch for activating the microcontroller. The portable light device has a lower end sized for removable insertion into the base receptacle and includes a housing having at least a portion formed of a translucent material, a first receiver disposed within the housing and responsive to the control signal transmitted by the base transceiver, a first light source disposed within the housing, operably coupled to the receivers, and adapted to direct light toward the translucent portion of the housing, and a second power source disposed within the housing and operably coupled to the light source.
The first light source may comprise at least one cluster of red, green, and blue light emitting diodes (LEDs), and the portable light device may be buoyant to provide a floating light device.
A memory may be operably coupled to the microcontroller and adapted to store a plurality of light shows. The light generated by the first light source may be within a selected range of wavelengths, and the decorative light system may further include a visually reactive material responsive to the light in the selected range of wavelengths. The selected range of wavelengths may be within the UV range, and the visually reactive material comprises a UV absorbing material
The system may further include a second portable light device, and a coordinated light show may be generated by the two devices.
According to additional aspects of the disclosure, a decorative light object is provided for use with a visually reactive material responsive to light in a selected range of wavelengths. The decorative light object includes a housing having at least a portion formed of a translucent material, a light source disposed within the housing and directing light toward the housing translucent portion, the light having a wavelength within the selected range of wavelengths, and a power source operably coupled to the light source
A better understanding of these and other features and advantages may be had by reference to the drawings and to the accompanying description, in which preferred embodiments are illustrated and described.
Throughout the figures, like or corresponding reference numerals have been used for like or corresponding parts.
Various decorative light system embodiments are disclosed herein including one or more lighted objects removably engageable with a base. In certain embodiments, the base includes a light that illuminates an object placed adjacent thereto In other embodiments, the lighted object includes an illuminating device that is operated by controls stored in the base. In one embodiment, the lighted objects may include a storage vessel and at least one floating light object. This embodiment is particularly suited for use with a bathtub, where the storage vessel may contain soap, bath oil, or another product associated with the bath and the floating light object may be placed in the bath tub. In other embodiments, the decorative light system includes a base and one or more portable light devices that may or may not be buoyant. The base and portable light devices may include communications components to execute a coordinated light show, as discussed more fully below.
As used herein, elements described as being “translucent” are those materials permitting the passage of light, including but not limited to clear materials, colored transparent materials, materials that both transmit and diffuse light so that objects beyond cannot be seen clearly, and materials having a combination of these characteristics.
As used herein, the term “mean light direction” refers to the approximate average direction of the sum of all light rays traveling through the housing.
As used herein, the term “lambertian” refers to a surface capable of perfect light diffusion, or light diffusion that is equal in all directions in accordance with Lambert's Law. The term “near-lambertian” refers to a surface capable of excellent light diffusion, or light diffusion that is nearly equal in all directions.
Certain disclosed light objects include what will hereinafter be referred to as a “light pipe” which may cover an illuminating device and associated structure or which may be used to direct light generated by the illuminating device. In certain arrangements, the light pipe is shaped to closely match the shape of the housing cavity although it is preferably spaced apart from the interior walls of the housing that define the cavity. In other embodiments, the light pipe is positioned with a first end adjacent the illuminating device and a second end adjacent a location to which light is to be directed. In certain embodiments, the light pipe includes either roughened interior or exterior surfaces to aid in light diffusion. This roughening of the interior or exterior surface enhances light diffusion. A lambertian or near-lambertian surface on the light pipe can be easily achieved by sandblasting or roughening using a conventional scouring pad made from a nylon web and coarse mineral abrasives. Other techniques for roughening the interior or exterior surface of a light pipe or the interior or exterior surface of the light object housing to enhance light diffusion will be apparent to those skilled in the art.
A decorative light system 20 according to one preferred embodiment is shown in
As best shown in
Returning to
A light pipe 44 is provided for diffusing and directing light from the light source 42 toward the receptacle 38. As best shown in
The base 22 includes a user interface in the form of a switch assembly 60 for selectively operating the light system 20. The switch assembly 60 includes a switch board 62, a switch support 64, and a button covet 66, all of which are at least partially disposed within the light pipe central bore 54. In the illustrated embodiment, the switch board 62 includes two switches 68, 70. The support 64 has a frustoconical bottom section engaging the central bore 54 and a planar upper surface engaging a bottom of the board 62. The button cover 66 extends over the board 62 and includes two buttons 72, 74 adapted to actuate a respective switch 68, 70 when depressed. The button cover 66 is preferably made of a resilient material and may include a groove adapted to fit over the retaining tab 58 of the light pipe 44, thereby to secure the switch assembly 60 in position The switches 68, 70 may be backlit to improve visibility and aesthetics.
As an alternative to the mechanical switches 68, 70 illustrated in
The light pipe 44 and switch assembly 60 may be fixed to the base top panel 34 to facilitate assembly of the base 22. As shown in
The structure 24 is positionable on the base 22 and adapted to be illuminated by light from the receptacle 38. Accordingly, the structure 24 is formed of a translucent material and includes a side wall 90 and a bottom wall 92. In the illustrated embodiment, the structure 24 is formed as a holding vessel, such as a vase. A stopper 96 is provided for closing an open top of the structure 24, and may be adapted to form a hermetic seal with the structure 24. As best understood with reference to
The structure 24 is preferably formed as a light pipe to promote retention of a substantial portion of light within the structure walls, thereby to illuminate the structure 24. Once light enters the structure side wall 90, it is transmitted throughout the structure 24. Most of the light intersecting the sides of the structure wall 90 intersects at an angle greater than the critical angle and is, therefore, reflected back into the housing wall, rather than being emitted from the housing. Thus, the wall 90 of the structure 24 essentially functions as an optical wave-guide (similar to a light pipe), transmitting a substantial portion of the light within the wall thickness from the light source 42 across the entire structure 24. Of course, most of the light rays are not actually traveling directly from one end of the housing to the other, but the average direction of light travel through the housing, given as the mean light direction, is from the bottom to the top of the structure 24. Moreover, not all of the light in the wall of the structure 24 stays within the wall. Some of the light is allowed to escape and is emitted through the wall 90 of the structure 24 both internally toward internal spaces within the wall 90 and externally to the surrounding environment.
When provided in the form of a vessel, the structure 24 may be used to hold a variety of items. The structure may hold liquids (such as bath oils, soaps, and potable beverages), solids (such as beads, marbles, rocks, granular materials such as powders, or other materials), or combinations thereof (such as bath beads having a solid exterior enclosing liquid contents, flowers and water, etc.). As noted above, a portion of the light entering the structure 24 may be directed toward the vessel chamber to illuminate the contents of the vessel.
Turning to
The light pipe 104 may include a roughened inner surface or a roughened outer surface to serve two purposes. First, the roughened light pipe can serve as a light diffuser which helps the lighted object to “glow.” Second, the roughened light pipe can effectively hide the electrical components such as the lights 100 and PCB 102. The roughening can be performed by a sandblasting function or a simpler mechanism, such as using conventional sandpaper, scouting pads, steel wool, etc. One preferred methodology involves using a nylon web/abrasive mineral product sold under the SCOTCHPLY™. Various other means for roughening one or more of the surfaces will be apparent to those skilled in the art. The roughened light pipe 104 forms a lambertian or near-lambertian surface that effectively diffuses the light passing through it to produce a desirous glowing effect.
The outer housing sections 106a, 106b are joined with a liquid-tight seal to prevent liquid from entering an interior of the housing 106. Each floating light device 26 is buoyant, and therefore has an overall density that is less than that of the liquid in which it is placed for use. In particular, where the floating light device 26 is used in a bathtub full of water, the device 26 has density less than water. The device 26 is preferably shaped and weighted so that it floats in a horizontal orientation, with the first housing section 106a pointing upward and the second housing section 106a pointing downward into the liquid. The construction of both floating light devices 26 shown in
Electronics are provided in the base 22 and floating light devices 26 for operating the light sources 42, 100. With respect to the base 22 and with reference to
The microcontroller 112 accesses the memory 114 in response to input to the user interface, and implements one or more light shows, based on the data stored in the memory 114. Microcontroller 112 preferably comprises an Atmel Mega8 processor, manufactured by Amtel Corporation, located in San Jose, Calif., and may have onboard program memory of its own and/or external program memory containing the other stored logic with instructions for interpreting the light show data stored in the memory 114. However, other processors could alternatively be used It will be apparent to those of ordinary skill in the art that various other memories and/or controllers can be used depending on various design considerations, such as the amount of memory required, processing speed, size, re-programmability, and the like
The plurality of light shows may include the display of various colors, color changes, different speeds of color change, different combinations of displayed colors, and the like. Examples of light shows that can be stored in the memory 114 and the data corresponding thereto, are described in more detail in the related provisional application entitled “Method and Apparatus for Storing and Defining Light Shows”, Ser. No. 60/641,441, filed on Jan. 6, 2005, the contents of which are incorporated herein by reference.
Returning to the electronics of the base 22, a power source 120 and associated power supply and charge control circuitry 122 are operably coupled to the microcontroller 112. In the illustrated embodiment, the power source 120 comprises a rechargeable battery. The power supply and charge control circuitry 122 monitors and controls operation of the battery. Recharging may be accomplished external to the base 22 or while the batteries are still installed in the base 22 by the use of a conventional, in-unit charging apparatus (not shown). Alternatively, power could instead be supplied from a wall socket with the provision of a power cord and a conventional power converter, transformer, and the like.
The base 22 may also include components for delivering power to external objects, such as the floating light devices 26. As shown in
The base 22 may also include communications components to send controls and receive feedback from other objects, such as the floating light devices 26. In the illustrated embodiment, a transceiver 130 is operably coupled to the microcontroller 112, as best shown in
Each floating device 26 includes electronics for operating the associated light source 100. As best shown in
Each floating light device 26 may also include a power source 146 and associated power supply and charge control circuitry 148 operably coupled to the microcontroller 142. In the illustrated embodiment, the power source 146 comprises a rechargeable battery. The power for charging the battery may be supplied by a pickup coil 150 coupled to the power circuitry 148. The pickup coil 150 may be an inductive coil. The pickup coil 150 receives charge when it is placed sufficiently close to an energized charging coil 126 in the base 22, such as when the floating light device 26 is positioned in the appropriate receptacle 40.
The floating light devices 26 further include components for communicating with the base 22. In the illustrated embodiment, each device 26 includes a transceiver 152 operably coupled to the microcontroller 142. The base and floating light device transceivers 130, 152 communicate on a given protocol, such as a 900 mHz, Bluetooth, or other frequency.
The light system 20 may be operated to selectively illuminate the structure 24 and floating light device 26 as desired. The user interface allows a user to select a desired display setting from among a device OFF setting and at least one light show setting in which the light sources 42, 100 are ON. The user interface includes the control switch 68, by which the user can select between an OFF position, in which none of the light sources is activated, and a light source ON position, in which some or all of the light sources 42, 100 perform one of the plurality of preprogrammed light shows. The user interface also includes the mode switch 70. When the control switch 68 is in the light source ON position, the user can use the mode switch 70 to select a desired light show to display from among the plurality of preprogrammed light shows stored in the memory 114.
A conventional auto-shutoff switch may also be provided to turn the light system 20 off after a predetermined period of time without any user input (e.g., shut off after four hours of no change in setting). Any input to the user interface will turn the light system 20 back on. Alternatively, or additionally, a timer used for the auto-shutoff could also be used to cycle through the various preprogrammed light shows and/or illumination modes at predetermined intervals.
The communications capabilities between the base 22 and floating light devices 26 allow the light system 20 to execute a synchronized light show. Because the base 22 and light devices 26 include communications capabilities, the components may send signals to one another related to a light show. In the currently preferred embodiment, where the base 22 and floating light devices 26 each have a transceiver 130, 152, the components are capable of both sending and receiving signals. As a result, the base microcontroller 112 can both send signals to, and receive feedback from, the floating light devices 26. In this manner, the base microcontroller 112 not only deliver control signals to the floating light devices 26 but may also receive feedback that may indicate a fault in one or mole of the floating light device components. In addition, multiple floating light devices 26 may be synchronized with each other to execute a coordinated light show. Any known synchronizing technique may be employed, such as those described in U.S. Pat. Nos. 6,801,003 and 6,777,891, both of which are incorporated herein by reference.
An external device may be provided to reprogram the base 22 or floating light device 26. The external device may be capable of operatively coupling to the base or floating light device to download a new light show or otherwise reprogram the devices. The operative coupling may be accomplished by various means, such as by wireless communication or inductive coupling.
The floating light devices 26 need not be married to a specific base 22. Instead, the microcontrollers 112, 142 may be programmed so that any device 26 is recognized and synced with the base 22 by docking the device in the base. The syncing process may require the system 20 to be powered off to fully couple a device 26 with the base 22.
While the above embodiment of a light system 20 is described and shown as having a base 22, structure 24, and two floating light devices 26, it will be appreciated that other arrangements may be provided without departing from the scope of the claims. Specifically, the base may be provided with only a structure 24 and no floating light devices 26. Alternatively, the base 22 may be provided with a structure 24 and one floating light device 26 or more than two floating light devices 26.
As a further alternative, the decorative light system may include a base and one or more portable light devices without an illuminated structure. In the embodiment illustrated in
The base 202 includes electrical components similar to those of the previous embodiment. As schematically illustrated in
The portable light devices 204 are engageable with the base 202 for storage and charging but may be placed remotely from the base 202 for displaying light. Each portable light device 204 includes an outer housing or shell 232, at least a portion of which is translucent. The shell may be formed of glass or glass-like plastic, such as polyethylene, which displays favorable impact resistance, flexibility, chemical resistance, and clarity. Other clear plastics, such as polycarbonate, acrylic, styrene, urethanes, or polypropylene may additionally or alternatively be used. Each shell 232 may include an upper shell half 232a and a lower shell half 232b. The lower shell half 232b is sized and shaped for insertion into one of the base receptacles 212. The shell 232 may be formed using any known process, including laser welding using a clear top layer with infrared absorbing backing, silicone overmolding, or other process.
The shell 232 may include a decorative design to improve aesthetics of the portable floating devices 204. In the embodiment illustrated in
A light source is disposed within the shell 232 to radiate light from the portable light device 204. In the illustrated embodiment, first and second light sources, provided as upper and lower clusters of red, green, and blue LEDs 234, 251, are disposed within the shell. The upper cluster of LEDs 234 is mounted on an upper PCB 236, while the lower cluster of LEDs 251 is mounted on a lower PCB 250. The LED clusters generate light that is directed toward the upper and lower halves of the shell 232 to illuminate substantially the entire surface of the shell.
The portable light device 204 may include additional or alternative types of light sources. For example, the device 204 may include an LED projector or a bright LCD screen (similar to those used in cell phones) for projecting a concentrated, brighter beam of light in a desired direction. Where the portable light device 204 is buoyant and disposed in a fluid, the projecting light source may be located either on an upper surface to project onto a ceiling or wall, or a lower surface, to project light into the liquid.
Either PCB 236, 250 may carry a microcontroller 238 (
Similar to the above embodiment, each microcontroller 216, 238 may include a memory for storing a plurality of preprogrammed light shows for display by the LED clusters 234, 251. The memory may be permanent or removable, and may comprise a plurality of memories Each microcontroller 216, 238 may access the respective memory in response to input to the user interface, and implements one or mote light shows, based on the data stored in the memory.
A plurality of optical structures awe provided to diffuse light generated by the LEDs 234, 251 to obtain a substantially uniform level of light across the entire surface of the shell 232 and to conceal any internal components or otherwise eliminate shadows that the internal components may cast onto the shell 232. As used herein, “optical structures” include components that affect the direction or quality of light, such as by reflecting, diffusing, directing, or a combination thereof. Such optical structures include diffusers, reflectors, and light pipes. According to the illustrated embodiment, an upper, dome-shaped diffuser 252 encloses the upper cluster of LEDs 234, while a lower light pipe 254 encloses the lower cluster of LEDs 251. In addition, an upper diffuser liner 256 is coupled to an interior surface of the upper shell 232a while a lower diffuser liner 258 is coupled to an interior surface of the lower shell 232b. The upper and lower diffuser liners 256, 258 may be formed of a semi-opaque material that conceals the internal components of the portable light device 204 when not illuminated. The material also promotes diffusion of light when the device 204 is illuminated. To further spread and redirect light toward additional areas of the shell 232, the upper and lower PCBs 236, 250 may be coated with a reflective layer, such as white paint. The diffuser 252, light pipe 254, and diffuser liners 256, 258 are made of material that redirects and reflects light generated by the LED clusters 234, 251, thereby to more uniformly distribute the light. The optical structures may be formed of any known materials used for such applications.
While a particular combination of LED clusters and optical structures are shown in the illustrated embodiment, it will be appreciated that different combinations of light sources and diffusers, as well as optical structures for directing light other than diffusers, light pipes, and reflector's, may be used without departing from the scope of this disclosure. This may include suspending the light source above a first reflective surface, which may be a reflective coating on a PCB or a separate optical element having reflective and/or diffusive properties, and positioning additional reflectors/diffusers to direct light around the light source to eliminate or minimize any shadow it may cast Alternatively, an array of light sources may be positioned about one or more reflectors and/or diffusers extending upwardly from a PCB so that light is reflected in all directions. The light sources and reflectors/diffusers may be positioned and shaped to promote uniform distribution of light
Additional structures may be provided to conceal the radial edge of the PCB 236. As shown in
The outer reflector ring 260 may be shaped to facilitate assembly of the portable light device 204. In the illustrated embodiment, the outer reflector ring 260 includes an inner shoulder 262 sized to receive the PCB 236. A spacer ring 264 is also provided to help center the light pipe 254 with respect to the LEDs 234. The reflector ring 260 also includes an outer groove 266 sized to receive a lower edge of the upper diffuser liner 256.
The components of the portable light device 204 may be assembled as a stack of layers that are compressed or enclosed within the shell 232. Starting with an inverted upper shell half 232a, an upper diffuser liner 256 may be inserted into the upper shell half 232a, and a reflector ring 260 may be inserted onto the upper diffuser liner 256. A PCB 236, with upper dome diffuser 252, LEDs 234, battery 242, and PCB 250 attached thereto as a sub-assembly, may then be inserted into the shoulder 262 of the reflector ring 260. A spacer ring 264 and light pipe 254 may then be placed onto the lower surface of the PCB 236. A receiving coil 246 may be placed on the light pipe 254 and a lower diffuser liner 258 may be placed over the coil and light pipe and into engagement with the reflector ring 260. The lower shell 232b may then be inserted over the lower diffuser liner 258 and sealably coupled to the upper shell 232a. To accommodate manufacturing tolerances that may multiply by the numerous layers of components, a resilient gasket 270 may be disposed within the shell 232 and between two adjacent component layers. In the illustrated embodiment, the resilient gasket 270 is inserted between the coil 246 and light pipe 254.
Visually reactive elements may be provided that interact with light created by the LEDs 234 to create a dynamic, changing, or otherwise unique visual display associated with the portable light device 204. For example, graphics or coloring provided on the housing 232 may include different areas or layers of compositions that are responsive to light within different ranges of wavelengths. A first area or graphic may be readily visible in red light but obscured or otherwise less visible in other light colors. A second area or graphic may be readily visible in blue light but less visible in non-blue light colors. The portable light device may be programmed to execute a light show that includes a sequence of different colored light, including red and blue light. Accordingly, when the LEDs display a red light, the first area or graphic is highlighted or more readily visible while the second area or graphic is relatively obscured. Conversely, when the LEDs display a blue light, the first area or graphic is obscured while the second area or graphic is more readily visible. In this manner, the appearance of the graphics may change as the light show progresses through its programmed sequence.
Several different areas or layers of graphics may be patterned to generate the illusion of a moving or dynamic graphic as the LEDs generate different colors of lights. The graphics may be placed in coordinated positions and illuminated in turn by a particular sequence of lights to create the appearance of a moving display. In addition, the graphics may be directly associated with the portable light device 204, such as by depositing graphics directly on the housing 232 or by forming the graphics on a skin 235 that is then applied to the housing 232. Alternatively, the graphics may be provided on an auxiliary object intended to be illuminated by the portable light device 204, such as a backdrop, accessory, or other item. While the above example describes color-sensitive graphics, it will be appreciated that other compositions may be used to create a dynamic display, such as heat-sensitive pigments and “flop” pigments (i.e., compositions capable of displaying two different colors [instead of a single color that is highlighted or concealed]).
In certain embodiments, the light generated by one or more of the light sources may be matched to a particular material or composition to produce a unique or unexpected visual effect. When the structure is provided as a vessel, for example, the contents of the vessel may include a composition that produces a visual effect when illuminated by light having a wavelength within a particular range. When the portable devices 26 or 204 are buoyant, they may be placed in a vessel of liquid, such as a bathtub full of water, which also includes a visually reactive composition. In an exemplary embodiment, the visually reactive composition may be a UV absorbing dye that is responsive to light having a wavelength in the UV range to produce a unique visual effect.
External surface treatments may be applied to the housing 232 to achieve a desired effect. For example, where the portable light device 204 is buoyant and used in a bathtub, a layer of soap or bath oil may be applied to the housing 232 outer surface to generate bubbles or condition the bath water. Other surface treatments may be provided in the form of screens having apertures through which the light is projected, thereby to form shaped beams of light that are projected onto surrounding surfaces. The apertures may be formed in any shape, such as circles or stars, and may include a variety of different shapes. Still further, the surface treatment may include a composition that resists mold, mildew, soap scum, or other undesirable bio-film on the surface of the device.
The external surface treatment may be carried directly by the housing, such as by overmolding the surface treatment onto the housing 232 After use, the device 204 may be sent out for remolding or traded in for a new device carrying the surface treatment. Alternatively, the surface treatment may be carried by a separate substrate that is then applied to the housing 232, such as the shrink-wrap skin 235 discussed above.
It is also anticipated that various other sensors and/or switches could be used to control the disclosed light sources. The portable light device 204, for example, may include sensors to modify operation of the light source. A temperature sensor may be provided that measures the temperature of a liquid in which the light is disposed. The microcontroller may receive a temperature signal from the sensor and operate the light source to display a color corresponding to the temperature. For example, a blue light may be generated when the water is below a specified temperature or a red light may be generated when the water is above a specified temperature. Such a sensor is particularly suited for use as a child bathwater warning, to indicate when the water is too hot. Instead of temperature, a light sensor could be provided to turn the system on or off based on ambient light in the room, a sound sensor could be provided to turn the system on in response to detected sounds, a motion sensor could be provided to turn the system on in response to detected motion near the light object, etc Incorporation of these types of conventional sensors is within the knowledge of one of ordinary skill in the art. Therefore, a detailed description of each of these features has been omitted for the sake of brevity.
The sensors may also be used to interact with exterior devices. For example, the sensor may detect the presence of a wireless network and initiate communications with that network. Alternatively, the sensor may detect the presence of auxiliary rechargeable devices, such as a toothbrush or shaver, and modify operation of the charging coil to allow charging of these additional devices.
To further enhance entertainment value, the portable light device 204 may include the ability to generate sound. A speaker may be provided for playing selected sounds or music. An MP3 player may be incorporated into the device 204 for storing and playing music. The MP3 player may be coupled to a speaker provided in the device 204, or may wirelessly communicate with remote speakers or headphones.
Various additional capabilities may be built in to the portable light device 204. For example, the device 204 may include a dispenser, such as a piezo-electric pump, for dispensing soap, bath oil, fragrance, cleaning additive, or other substance. The device 204 may also include one or mote heaters to maintain the surrounding environment (such as bathwater) at a desired temperature, or jets for spraying a mist of liquid into the air. The device 204 may also incorporate a timer to indicate when a selected period of time has elapsed. Still further, in addition to decorative light, the device 204 may provide other forms of lighting, such as task lighting. The alternative form of light may be generated by the same light source or an additional light source.
A remote control may be provided for operating the light system. Instead of a permanently mounted user interface as shown in
As will be understood from the foregoing, the above systems use portable light devices that may have a variety of specific applications. Where the portable light device is buoyant, it may be used in a variety of places in addition to the bathtub. It may, for example, but used as a decorative object in any vessel of liquid, such as a swimming pool decoration, a tea light, or as a punch bowl decoration. The device may further be only semi-buoyant such that the entire device is below the surface of the liquid.
The portable light devices may be used in various non-liquid applications as well. For example, the portable light devices may be used as candle holders (that may hold real candles), salt and pepper shakers, and wine decanters. The devices may be formed in the shape of food-related vessels, such as plates, trays, bowls, and platters. The devices may also be used in beverage glasses and coasters. A plurality of glasses may be stored together in a bar area and may be operated to display a coordinated light show prior to or during use as a vessel. Still further, the portable light devices may be formed as wine stoppers suitable for closing open bottles of wine. Items intended for use by a particular person, such as a dinner plate or wine glass, may be assigned a specific color or light show that is then displayed by the appropriate portable light device to provide a visual reminder indicating with whom each piece is associated.
The portable light devices have additional home applications outside of the kitchen, food, and beverage items noted above. The devices may be used as an interactive home guide, in which the each device displays a color or show associated with a particular room or area of the house. The colors or shows may be associated with specific directions or commands to encourage specific behavior. For example, when the device is carried into an area that is off limits or not intended to receive guests, the device may generate a red light to indicate that the guest should return from that area. The device may also encourage a guest to continue in a desired direction by generating a green light. When used as a guide, the portable light device may be formed as any easily held object, such as a small globe or a drinking vessel. Alternatively, the portable light devices may be used as rechargeable night lights that may be placed as desired throughout the home without limiting placement to existing outlets, as with conventional night lights.
The base used in the decorative light system may have additional functionality as a universal charger for other devices. The base may be adapted to recharge other objects, such as an electric shavers and toothbrushes, thereby to provide a bathroom suite. The base may also provide a storage location for other non-rechargeable items, such as a hair blush or a drinking cup.
The portable light device also has applications outside the home. The portable light device may include an RF or motion sensor that allows use as a security system, where the light will illuminate when triggered. Multiple devices may also be placed along an outdoor pathway to provide walkway lights. The device may further be used as a child safety device, wherein the device illuminates a particular color when the child is moving out of a particular range. The devices may also be used with or incorporated into vehicles, such as the spokes of a bicycle or car rims.
Additionally, while the housings of the preferred embodiments are described as being substantially clear and un-concluded, it may be desirable in some applications to, for example, make the housing of a light object color tinted, to include particles (e.g., reflective particles or material having different refractive index than housing material) or air bubbles suspended in the housing, or the like. The only requirement is that the housing be translucent, as that tern is used herein.
While the light sources are shown and described as one or more LEDs or RGB LED arrays, other lighting elements may alternatively be used as the first and second light sources, such as incandescent bulbs, fluorescent bulbs, or the like. Moreover, any number, shape, and size of lighting elements may advantageously be used as the first and second light sources, based on various design considerations such as power consumption, desired light intensity, operating temperature, and the like.
While the switches of the disclosed embodiments are shown as push-button switches, other types of switches could also be used. In one alternative, one or more of the switches could be activated by touching anywhere on the device, by applying a conductive coating (e.g., Indium Titanium Oxide) to the surface of the housing and/or the base. When the user touches a part of the light object coated with the conductive coating, this would amount to moving the control switch to the next position or cycling the mode switch to the next mode. Alternatively, if the base is made of a conductive metal, the touch control could be applied to the base without the need for any conductive coating. In another alternative, one or more of the switches could be rotary switches
The user interface may also include a dial that indicates the color that the LEDs should be set to for a solid color of any hue. This dial may be labeled with a rainbow that allows the user to select the color that pleases them at any time.
In another alternative, a portion of the program memory containing the light show data onboard the microcontroller and/or memory may be reprogrammed with new light show data via a standard personal computer through a serial, USB, or other known interface.
In yet another alternative, rather than providing a transceiver in each of the base and portable light devices, the base may include a transmitter while the portable light devices include receivers.
The embodiments discussed above are representative of preferred embodiments and are provided fox illustrative purposes only. Although specific structures, dimensions, components, etc., have been shown and described, such are not limiting. The various features and elements of the embodiments can be interchanged, rearranged, omitted, and/or combined in various different combinations to achieve a desired result.
These and other modifications and variations are contemplated within the scope of this disclosure
Disclosed light systems provide various color changing light shows and/or illumination modes, and systems providing synchronized light shows by a plurality of light devices are also disclosed. The disclosed light systems provide entertainment and decoration and are aesthetically pleasing.
This application claims the benefit of U S. Provisional Application No 60/804,073, filed on Jun. 6, 2006, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
699355 | Rains et al. | May 1902 | A |
1956796 | Hull | May 1934 | A |
D119201 | Bolton | Feb 1940 | S |
2429379 | Swain | Oct 1947 | A |
2818770 | Cilurzo | Jan 1958 | A |
3000774 | Swedlow et al. | Sep 1961 | A |
3119565 | Nottingham | Jan 1964 | A |
3205350 | Roszkowski et al. | Sep 1965 | A |
3218447 | Pardue | Nov 1965 | A |
3531636 | Birch | Sep 1970 | A |
3612651 | McCurdy | Oct 1971 | A |
3735113 | Stott | May 1973 | A |
3748457 | Balitzky et al. | Jul 1973 | A |
3760179 | Addington, Jr. | Sep 1973 | A |
3826250 | Adams | Jul 1974 | A |
223165 | Gismondi | Oct 1974 | A |
4088880 | Walsh | May 1978 | A |
4234907 | Daniel | Nov 1980 | A |
4305117 | Evans | Dec 1981 | A |
4315502 | Gorges | Feb 1982 | A |
4420711 | Takahashi | Dec 1983 | A |
4450511 | Micha | May 1984 | A |
4483681 | Weinblatt | Nov 1984 | A |
4503563 | Johnson | Mar 1985 | A |
4510555 | Mori | Apr 1985 | A |
4519017 | Maurice | May 1985 | A |
4528989 | Weinblatt | Jul 1985 | A |
4553534 | Stiegler | Nov 1985 | A |
4561043 | Thompson | Dec 1985 | A |
4575660 | Zaharchuk et al. | Mar 1986 | A |
4640266 | Levy et al. | Feb 1987 | A |
4647620 | De Lucchi et al. | Mar 1987 | A |
4727296 | Zaharchuk et al. | Feb 1988 | A |
4754372 | Harrison | Jun 1988 | A |
4775935 | Yourick | Oct 1988 | A |
4777937 | Rush et al. | Oct 1988 | A |
4779174 | Staten et al. | Oct 1988 | A |
4782430 | Robbins et al. | Nov 1988 | A |
4793560 | Baarman et al. | Dec 1988 | A |
4875144 | Wainwright | Oct 1989 | A |
4885663 | Parker | Dec 1989 | A |
4892106 | Gleeson, III | Jan 1990 | A |
4901922 | Kessener et al. | Feb 1990 | A |
4929021 | Kaye | May 1990 | A |
4933815 | Parthasarathy | Jun 1990 | A |
4955975 | Mori | Sep 1990 | A |
4965701 | Voland | Oct 1990 | A |
4972305 | Blackburn | Nov 1990 | A |
4974136 | Noori-Shad | Nov 1990 | A |
5021928 | Maurice | Jun 1991 | A |
5047006 | Brandston et al. | Sep 1991 | A |
5060119 | Parthasarathy | Oct 1991 | A |
5066085 | Gimbutas | Nov 1991 | A |
5070435 | Weller | Dec 1991 | A |
5076747 | Baarman et al. | Dec 1991 | A |
5144545 | Klitzing | Sep 1992 | A |
5149317 | Robinson | Sep 1992 | A |
5183323 | Maurice | Feb 1993 | A |
5211699 | Tipton | May 1993 | A |
5243517 | Schmidt et al. | Sep 1993 | A |
5247491 | Kwiatkowski | Sep 1993 | A |
5249105 | Koizumi | Sep 1993 | A |
5255171 | Clark | Oct 1993 | A |
5259830 | Masuda | Nov 1993 | A |
5266070 | Hagiwara et al. | Nov 1993 | A |
5276599 | Neeley | Jan 1994 | A |
5292345 | Gerardo | Mar 1994 | A |
5299103 | Kielland | Mar 1994 | A |
5301090 | Hed | Apr 1994 | A |
5318503 | Lord | Jun 1994 | A |
5387178 | Moses | Feb 1995 | A |
D356389 | Chen | Mar 1995 | S |
5409445 | Rubins | Apr 1995 | A |
5426474 | Rubtsov et al. | Jun 1995 | A |
5432876 | Appeldorn et al. | Jul 1995 | A |
5441777 | Howell | Aug 1995 | A |
5518497 | Widjaja et al. | May 1996 | A |
5547721 | Kuo | Aug 1996 | A |
5568964 | Parker et al. | Oct 1996 | A |
5575553 | Tipton | Nov 1996 | A |
5577990 | Widjaja et al. | Nov 1996 | A |
5599274 | Widjaja et al. | Feb 1997 | A |
5624177 | Rosaia | Apr 1997 | A |
5645578 | Daffers et al. | Jul 1997 | A |
5691886 | Stacy | Nov 1997 | A |
D391007 | Hergert | Feb 1998 | S |
5725472 | Weathers | Mar 1998 | A |
5743616 | Giuliano et al. | Apr 1998 | A |
5785407 | Ratcliffe et al. | Jul 1998 | A |
5823431 | Pierce | Oct 1998 | A |
5823652 | Vann | Oct 1998 | A |
5842771 | Thrasher et al. | Dec 1998 | A |
5860724 | Cheng | Jan 1999 | A |
5879068 | Menashrov et al. | Mar 1999 | A |
5896457 | Tyrrel | Apr 1999 | A |
5931558 | Chen | Aug 1999 | A |
5934796 | Quereau | Aug 1999 | A |
5951278 | Young et al. | Sep 1999 | A |
5980065 | Wooderson | Nov 1999 | A |
5989655 | Meng | Nov 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6030108 | Ishiharada et al. | Feb 2000 | A |
6030264 | Carter | Feb 2000 | A |
6065848 | Tucker et al. | May 2000 | A |
6076741 | Dandrel et al. | Jun 2000 | A |
6132056 | Ruthenberg | Oct 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6166496 | Lys | Dec 2000 | A |
6211626 | Lys | Apr 2001 | B1 |
6217188 | Wainwright et al. | Apr 2001 | B1 |
6220718 | Burgess | Apr 2001 | B1 |
6220742 | Lloyd et al. | Apr 2001 | B1 |
6224241 | Oswald | May 2001 | B1 |
6233564 | Schulze | May 2001 | B1 |
6239716 | Pross | May 2001 | B1 |
6241361 | Thrasher et al. | Jun 2001 | B1 |
6241362 | Morrison | Jun 2001 | B1 |
6247827 | Carter | Jun 2001 | B1 |
6269491 | Zankow | Aug 2001 | B2 |
6299338 | Levinson | Oct 2001 | B1 |
6305817 | Johnston | Oct 2001 | B1 |
6309084 | Lin | Oct 2001 | B1 |
6319572 | Howell | Nov 2001 | B1 |
6336735 | Eddins | Jan 2002 | B1 |
6341874 | Rubin | Jan 2002 | B1 |
6341882 | Lin et al. | Jan 2002 | B1 |
6375342 | Koren et al. | Apr 2002 | B1 |
6393192 | Koren | May 2002 | B1 |
6416180 | Strobl | Jul 2002 | B1 |
6416198 | VanderSchuit | Jul 2002 | B1 |
6433483 | Michael et al. | Aug 2002 | B1 |
6453484 | Pinciaro | Sep 2002 | B1 |
6464371 | Bender | Oct 2002 | B2 |
6479965 | Barbeau et al. | Nov 2002 | B2 |
6480649 | Lee | Nov 2002 | B2 |
6488393 | Burnham | Dec 2002 | B1 |
6494851 | Becher | Dec 2002 | B1 |
6498440 | Stam et al. | Dec 2002 | B2 |
6502953 | Hajianpour | Jan 2003 | B2 |
6511196 | Hoy | Jan 2003 | B1 |
6513954 | Ebersole | Feb 2003 | B2 |
6543925 | Kuykendal | Apr 2003 | B2 |
6544165 | McNew | Apr 2003 | B1 |
6545428 | Davenport et al. | Apr 2003 | B2 |
6558022 | Kawahara | May 2003 | B2 |
6567009 | Ohishi et al. | May 2003 | B2 |
6577080 | Lys | Jun 2003 | B2 |
6584346 | Flugger | Jun 2003 | B2 |
6607499 | Becher | Aug 2003 | B1 |
6608453 | Morgan et al. | Aug 2003 | B2 |
6628885 | Wilkie et al. | Sep 2003 | B1 |
6629722 | Brunfeld | Oct 2003 | B1 |
6634762 | Cilia | Oct 2003 | B2 |
6637676 | Zieger et al. | Oct 2003 | B2 |
6644561 | Daane | Nov 2003 | B1 |
6655812 | Parker et al. | Dec 2003 | B2 |
6659622 | Katogi et al. | Dec 2003 | B2 |
6669352 | McKinney | Dec 2003 | B2 |
6712494 | Hodge | Mar 2004 | B1 |
6741901 | Lu et al. | May 2004 | B2 |
D492443 | Smith et al. | Jun 2004 | S |
6755349 | Beidokhti | Jun 2004 | B2 |
6774584 | Lys et al. | Aug 2004 | B2 |
6776507 | Chen | Aug 2004 | B2 |
6781329 | Mueller et al. | Aug 2004 | B2 |
6788001 | Mueller et al. | Sep 2004 | B2 |
6793360 | Goslee | Sep 2004 | B2 |
6793362 | Tai | Sep 2004 | B2 |
6801003 | Schanberger et al. | Oct 2004 | B2 |
6802635 | Robertson et al. | Oct 2004 | B2 |
6806659 | Mueller et al. | Oct 2004 | B1 |
D498857 | Smith et al. | Nov 2004 | S |
6811286 | Mateescu et al. | Nov 2004 | B2 |
6817734 | Hauck | Nov 2004 | B2 |
6819080 | Barbeau et al. | Nov 2004 | B2 |
6824289 | VanderSchuit | Nov 2004 | B2 |
6827464 | Koren et al. | Dec 2004 | B2 |
D501271 | Barbeau et al. | Jan 2005 | S |
6848822 | Ballen et al. | Feb 2005 | B2 |
6851827 | Clemente et al. | Feb 2005 | B2 |
6851844 | Guy | Feb 2005 | B2 |
6854869 | Fernandez | Feb 2005 | B1 |
6858993 | Lee et al. | Feb 2005 | B2 |
6863415 | Lu | Mar 2005 | B2 |
6869202 | Tufte | Mar 2005 | B2 |
6869204 | Morgan et al. | Mar 2005 | B2 |
6874909 | VanderSchuit | Apr 2005 | B2 |
6880948 | Koch | Apr 2005 | B2 |
6897624 | Lys et al. | May 2005 | B2 |
6902301 | Kieronski | Jun 2005 | B2 |
6929379 | Clemente et al. | Aug 2005 | B2 |
6935760 | Bar-Cohen | Aug 2005 | B2 |
6936000 | Flugger | Aug 2005 | B2 |
6936978 | Morgan et al. | Aug 2005 | B2 |
6953276 | Graham | Oct 2005 | B2 |
6955443 | Solowiej | Oct 2005 | B2 |
6956338 | Clark et al. | Oct 2005 | B1 |
6965205 | Piepgras et al. | Nov 2005 | B2 |
6966666 | Liu | Nov 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
6969954 | Lys | Nov 2005 | B2 |
7014336 | Ducharme et al. | Mar 2006 | B1 |
7049766 | Lewis et al. | May 2006 | B2 |
7063432 | VanderSchuit | Jun 2006 | B2 |
D530040 | Smith et al. | Oct 2006 | S |
7207701 | Kennedy et al. | Apr 2007 | B2 |
20020113555 | Lys et al. | Aug 2002 | A1 |
20020141058 | Yoshitaka | Oct 2002 | A1 |
20020159257 | Grajear | Oct 2002 | A1 |
20020159258 | Beeman | Oct 2002 | A1 |
20030012025 | Christen | Jan 2003 | A1 |
20030021117 | Chan | Jan 2003 | A1 |
20030028260 | Blackwell | Feb 2003 | A1 |
20030081408 | Tal | May 2003 | A1 |
20030090897 | Su | May 2003 | A1 |
20030095409 | Cheng | May 2003 | A1 |
20030174500 | Kameda et al. | Sep 2003 | A1 |
20030179564 | Gancl et al. | Sep 2003 | A1 |
20030191359 | McNew | Oct 2003 | A1 |
20030229409 | Shelton et al. | Dec 2003 | A1 |
20030233269 | Griffin et al. | Dec 2003 | A1 |
20040032730 | Ciarrochi, Jr. | Feb 2004 | A1 |
20040042201 | Lee | Mar 2004 | A1 |
20040052082 | Oswald | Mar 2004 | A1 |
20040064357 | Hunter et al. | Apr 2004 | A1 |
20040066650 | Hung | Apr 2004 | A1 |
20040066652 | Hong et al. | Apr 2004 | A1 |
20040070972 | Huang | Apr 2004 | A1 |
20040090787 | Dowling et al. | May 2004 | A1 |
20040105261 | Ducharme et al. | Jun 2004 | A1 |
20040116039 | Mueller et al. | Jun 2004 | A1 |
20040136177 | Lewis et al. | Jul 2004 | A1 |
20040136189 | Vanderschuit | Jul 2004 | A1 |
20040160199 | Morgan et al. | Aug 2004 | A1 |
20040178751 | Mueller et al. | Sep 2004 | A1 |
20040207997 | Stewart et al. | Oct 2004 | A1 |
20040212992 | Chen | Oct 2004 | A1 |
20040233661 | Taylor | Nov 2004 | A1 |
20040240890 | Lys et al. | Dec 2004 | A1 |
20040246703 | Adams | Dec 2004 | A1 |
20040264195 | Chang et al. | Dec 2004 | A1 |
20050013129 | Zhang | Jan 2005 | A1 |
20050024892 | Cabrera | Feb 2005 | A1 |
20050030744 | Ducharme et al. | Feb 2005 | A1 |
20050035728 | Schanberger et al. | Feb 2005 | A1 |
20050036300 | Dowling et al. | Feb 2005 | A1 |
20050040774 | Mueller et al. | Feb 2005 | A1 |
20050044617 | Mueller et al. | Mar 2005 | A1 |
20050062440 | Lys et al. | Mar 2005 | A1 |
20050078472 | Wiest | Apr 2005 | A1 |
20050087255 | Humphrey et al. | Apr 2005 | A1 |
20050099304 | Humphrey | May 2005 | A1 |
20050135113 | Wang et al. | Jun 2005 | A1 |
20050141214 | Fotherby | Jun 2005 | A1 |
20050151489 | Lys et al. | Jul 2005 | A1 |
20050157487 | Epstein | Jul 2005 | A1 |
20050157490 | Klose | Jul 2005 | A1 |
20050162851 | Kazar et al. | Jul 2005 | A1 |
20050174473 | Morgan et al. | Aug 2005 | A1 |
20050195596 | Van Brocklin et al. | Sep 2005 | A1 |
20050195598 | Dancs et al. | Sep 2005 | A1 |
20050201118 | Hirokazu | Sep 2005 | A1 |
20050207159 | Maxik | Sep 2005 | A1 |
20050213314 | Mochlachvili et al. | Sep 2005 | A1 |
20050236998 | Mueller et al. | Oct 2005 | A1 |
20050248299 | Chemel et al. | Nov 2005 | A1 |
20050253533 | Lys. et al. | Nov 2005 | A1 |
20050254232 | Bently et al. | Nov 2005 | A1 |
20050254241 | Harwood | Nov 2005 | A1 |
20050264261 | Barbeau et al. | Dec 2005 | A1 |
20060002110 | Dowling et al. | Jan 2006 | A1 |
20060012987 | Ducharme et al. | Jan 2006 | A9 |
20060016960 | Morgan et al. | Jan 2006 | A1 |
20060050509 | Dowling et al. | Mar 2006 | A9 |
20060072317 | Noordhoek | Apr 2006 | A1 |
20060076908 | Morgan et al. | Apr 2006 | A1 |
20060087831 | Kramer | Apr 2006 | A1 |
20060092630 | Kennedy et al. | May 2006 | A1 |
20060095780 | Reed | May 2006 | A1 |
20060176686 | McVicker | Aug 2006 | A1 |
20070008726 | Brown | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
20200001786 | Mar 2006 | DE |
1251721 | Oct 2002 | EP |
778438 | Jul 1957 | GB |
2002237201 | Aug 2002 | JP |
2004342587 | Dec 2004 | JP |
WO 03026358 | Mar 2003 | WO |
WO 03078894 | Sep 2003 | WO |
WO 03089838 | Oct 2003 | WO |
WO2004084163 | Sep 2004 | WO |
WO2005008127 | Jan 2005 | WO |
WO 2005095848 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070291488 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60804073 | Jun 2006 | US |