This invention relates to signs, windscreens, decorative displays, and the like, that are made by adapting a mesh structure such as chain link fence.
Mesh fences, and chain link types in particular, are very common. As these fences consist of thin strands that define a large number of relatively large openings, these fences do not block either the wind or the view. It is often desirable that the fence be adapted to function as a windscreen or to provide privacy. Because many of these fences are visible to the public from roadways or other public fences, it is sometimes desirable to use them to carry advertising, informational or decorative materials. Various methods have been devised to adapt these fences to form windscreens, signs or displays by affixing things to or within the mesh. For example, U.S. Pat. Nos. 4,512,556 and 5,899,442 to Meglino describe slats that are inserted horizontally within the links of a chain link fence, effectively filling the openings and providing windbreaking and/or privacy. As described in U.S. Pat. No. 5,899,442, these slats have a complex cross-section and made of multiple materials, and as such are relatively expensive. Further, the slats do not permit one to easily make signs or complex shapes or symbols. The slats, once installed, cannot be rearranged easily to form a new pattern, design, symbols or message.
More complex designs and symbols can be formed if individual openings in the fence or mesh are separately covered. This general approach allows one to cover each individual opening with a covering having a predetermined color and/or texture (or to selectively cover only certain openings). Patterns, designs and symbols can be created through the placement of the coverings of the various colors or textures over individual openings in the fence. U.S. Pat. Nos. 3,964,197, 5,177,890 and 5,441,239 are all examples of this approach.
In U.S. Pat. No. 5,441,239, the individual coverings consist of two mating pieces that are snapped together over intersecting strands. This approach is expensive because two separate, three dimensional pieces must be formed to cover each opening, and labor intensive as the pieces must each be brought into position and snapped together. In U.S. Pat. No. 5,177,890, the individual coverings form rigid loops having an opening through which a horizontal fence strand is inserted. The coverings snap together after the strand is inserted to close the loop. This approach still requires relatively expensive covering pieces and is labor-intensive to install because the loops must be passed over the fence strands and then snapped closed. Because the loops are designed to hang over horizontal strands, this approach is not suitable for use in most chain link fences, where the strands are disposed at an angle to the horizontal.
In U.S. Pat. No. 3,964,197, openings in a chain link fence are filled with specially-shaped tiles that engage two of the strands that form each opening in the fence. Each engaging mechanism is a sequence of three tabs located along one end of the tile. The tabs are separated by cut-outs for receiving the strand. The center tab is bent downward slightly, so the strand fits under the first tab, over the second tab and under the third tab. The tiles are curved so that the strand is held tightly between the tabs. As before, the complex tile design increases the cost of the tiles quite substantially. The tabs protrude from the surface of the fence. As they must be somewhat rigid (sheet metal is taught as the preferred material) in order to hold their curved shape and to snap securely to the strands, the protruding tabs tend to have sharp edges which represent a safety hazard.
Accordingly, it would be desirable to provide an inexpensive and safe method for adapting strand meshes to form signs, windbreaks, privacy screens, decorative displays and the like.
In one aspect, this invention is a flat tile of a flexible, resilient material having a body portion in the shape of a parallelogram and tabs extending outwardly from each of said sides, said body portion being adapted to substantially fill a parallelogram-shaped opening in a strand mesh, said opening being formed by two intersecting pairs of substantially parallel strands, and said tabs each being adapted to fit between one of said pairs of substantially parallel strands.
In a second aspect, this invention is a flat tile of a flexible, resilient material, said tile comprising a body portion having the shape of a rhombus of from 1 to 2⅜ inches on each side, and tab portions extending from about ¼ to ¾ inch from each side of the body portion.
In another aspect, this invention is a method of modifying a mesh having a plurality of openings each being formed by two intersecting pairs of substantially parallel strands, comprising inserting flat tiles of the first aspect of this invention into at least a portion of such openings, such that the body portions of the tiles substantially fill the opening and the tiles are held in place in the opening by engagement of said tab portions with the strands.
In yet another aspect, this invention is a mesh having a plurality of openings each being formed by two intersecting pairs of substantially parallel strands, where flat tiles are inserted into at least a portion of such opening in a predetermined pattern, wherein the flat tiles have a body portion in the shape of a parallelogram and tabs extending outwardly from each of said sides, said body portion being adapted to substantially fill said opening, and said tabs each being adapted to fit between one of said pairs of substantially parallel strands and hold the tile in the opening through engagement with at least some of strands that form the opening.
The tile of the invention consists of a body portion in the approximate shape of a parallelogram. The body portion is adapted (i.e., sized and shaped) to substantially fill a parallelogram-shaped opening in the strand mesh. The area of the body portion is preferably at least 75%, more preferably at least 90%, even more preferably at least 95% of the area of the opening in the strand mesh.
Along each side of the body are tabs that extend outwardly from the body portion. Those tabs extend outwardly enough to extend past the strands defining the opening in the strand mesh. The width of the tabs is such that they each fit between one of the pairs of parallel strands that define the opening in the strand mesh.
The length of the tabs is such that when the tile is in place in the opening, the tabs extend over the respective strands forming the boundary of the opening and engage with the strands to hold the tile in place, by engaging with perpendicularly opposing pairs of strands. As shown in
The mesh configuration shown in
The mesh configuration shown in
The most common mesh sizes for chain link fences in the North American market are squares with sides of 1¾, 2, 2⅛, 2¼ or 2⅜ inches. Mesh size is calculated from strand inner edge to opposing strand inner edge—i.e., the inside dimensions of the mesh. A tile as shown in
Tabs 20b , c, d and e may each be narrower than the sides of body 20a, if desired. They may also have irregular or curved exterior edges if desired. Examples of such tabs are shown in
The mesh configuration shown in
When adjacent openings are filled with tiles, as shown in
It should be noted that although the mesh described is a metal mesh used in chain link fence, the uses of this invention are not limited to chain link fence. Other kinds of mesh for which it can be used include welded strand mesh of the kind used to reinforce concrete, but also often used as temporary fencing around construction sites. The invention may also be used in mesh structures created as part of other artifacts, including for example, shopping carts and baskets, supermarket shelves, playpens and the like. In all these cases, the principal of operation would remain, but the size and configuration of the tile would be modified to suit the mesh. The invention may also be used for mesh where the parallel strands are of material other than metal, including plastic meshes (of various kinds) including those used in ski areas or gardens or to surround temporary construction work. Equally, it can be used in string or rope mesh. Further, the tile design may be easily adapted for meshes of other shapes such as hexagonal.
It should also be understood that although the drawings and representations of most kinds of mesh appear geometrically precise, in reality there are many minor variations caused by differences in tension in the mesh, localized damage, paint, or even corrosion. It is a further advantage of this invention that the flexibility and resiliency of the tiles used in this invention allow them to accommodate such variations.
The tiles of the invention are made from any flexible and resilient material. For purposes of this invention, a material is “flexible and resilient” if it can be deformed sufficiently to be inserted within the opening of a strand mesh and yet regains its original shape after insertion (except to the extent constrained by the strand mesh itself). The tile is preferably deformable under finger pressure. Suitable materials of construction include thermoplastic or thermosetting polymers of various types, paper, cardboard, metal, corrugated cardboard, or virtually any other type of flexible sheet material. Polymer sheet materials such as vinyl (PVC), polypropylene and polyethylene sheet are generally preferred, as they have particularly suitable physical properties and are or can be made resistant to exposure to moisture, humidity and sunlight. Paper or cardboard which has been treated to enhance its resistance to water for example, by coating with wax or polymer layers is also very suitable. The thickness of the tiles is sufficient to give the requisite flexibility and resiliency, and optimal thicknesses will vary with the particular material of construction. In general, tiles 0.005 to 0.075 inches in thickness are suitable, with thickness of 0.01 to 0.06 being preferred.
The tiles can be made simply and inexpensively by stamping them from a flat sheet material. The body portion and tabs are typically stamped simultaneously from a single piece of starting material. Because the tiles are flat, they stack easily, reducing transportation costs and making handling easier.
The tiles may be colored, either by incorporating the coloring into the material of construction or by applying colors or patterns to the surface of the tile (or starting sheet material). The tile may have a reflective, phosphorescent or luminescent surface if desired. The tiles may also be transparent. The tiles can be designed so that either or both faces are show surfaces. In the former case, the tiles will usually appear the same when viewed from either side, although the pattern made up by the tiles will be reversed. The opposing faces of the tiles may be the same or different. The tiles may be arranged into patterns, designs and/or symbols (such as numbers or lettering) through appropriate positioning of tiles of various colors in selected opening in the mesh, or by inserting tiles only in selected openings in the mesh.
A strand mesh having tiles of the invention in its openings can be used as privacy screens, windbreaks, noise barriers, sun shades, signs, advertising media, message board, art displays and the like.
The tiles may also function as labels or tags when affixed to openings in a strand mesh. In such cases, the tiles are typically printed or carry labels which contain, for example, instructions, product information, product identification, safety information, delivery information or other data.
The tiles may also function as fasteners, by which other objects may be affixed to the strand mesh. The object is affixed to one or more tiles by any suitable means, and the tile(s) inserted into openings in the mesh as described above. Of particular interest are larger and/or more complex design elements which may be desirable in a particular case. However, any object can be affixed to a strand mesh in this manner, to the extent that the tiles can support the object's weight. This is illustrated in
Having described the invention generally, it will be recognized that various modifications can be made thereto without departing from the scope thereof as limited only by the appended claims.
This application is a continuation of application Ser. No. 10/607,920, filed Jun. 27, 2003.
Number | Date | Country | |
---|---|---|---|
Parent | 10607920 | Jun 2003 | US |
Child | 11273538 | Nov 2005 | US |