This invention relates in general to optical imaging systems and more particularly to the alignment of optical components in a computed radiography laser scanning system.
In a Computed Radiography (CR) system, the laser beam is scanned over the surface of a storage phosphor screen by a galvanometer in the fast scan direction while the screen is transported under the scanline in the slow scan direction. To make the CR reader compact and manufacturable, a final fold mirror is placed in the optical path between the F-theta lens and the phosphor screen. The fold mirror introduces three degrees of freedom into the optical system. A coordinate system on the mirror has an x-axis along the fast scan dimension of the mirror, a y-axis in the plane of the mirror perpendicular to the x-axis and a z-axis normal to the mirror surface.
The z-axis degree of freedom allows the path length of the optical system to be adjusted by translating the mirror along that axis. Typically, the depth of focus of the laser is not critical and there is no need to adjust this degree of freedom.
The other two degrees of freedom are rotations about the x and y axes which allow the scanline to be positioned on the phosphor surface. It is required to rotate the scanline perpendicular to the slow scan transport direction to eliminate a parallelogram image distortion. It is also required to translate the scanline to a particular position where the laser beam is not obstructed and the phosphor screen is well controlled for height. Adjusting the scanline to the correct angle and position is practically achieved by having a sensor at each end of the scanline. These sensors are implemented behind slits along the scanline. When the scanline hits these sensors the correct angle and position is achieved.
The final fold mirror adjustment mechanism in prior CR readers used two orthogonal rotation axes. The first axis was always along the x-axis of the mirror, which provided the translation of the scanline. The second axis was perpendicular to the first axis, sometimes oriented vertically, which provided rotation of the scanline. However this axis had the problem of also translating the scanline. This coupling of the two adjustments means that an iterative adjustment process is needed.
The first axis is adjusted until sensor 1 turns on. Then a search is made using the first axis to determine whether the scanline is ahead of or behind sensor 2. The first axis is readjusted to turn sensor 1 on and the knowledge gained during the search is used to turn axis 2 in the appropriate direction to correct the scanline rotation error. However as the adjustment is made with axis 2, sensor 1 will turn off because axis 2 translates as well as rotates the scanline. It is not easy to determine that the correct rotation has been achieved. Axis 1 is adjusted again to turn on sensor 1, and sensor 2 is observed. It may or may not be on. This back and forth between the two axes is continued until both sensors are turned on simultaneously. Thus a time-consuming iterative process is used to adjust the final fold mirror.
According to the present invention there is provided a solution to these problems.
According to a feature of the present invention there is provided a method of laser beam alignment in a laser scanning system comprising:
The invention has the following advantages.
1. A simple, quick, non-iterative process is used to adjust the final fold mirror in a laser scanning optical system.
Referring now to
According to the present invention the solution is to find a second axis that decouples the rotation of the scan line across sensor 30 from the translation of the scan line at sensor 32. The first axis is used to turn on sensor 32, and a special second axis that rotates the scan line about sensor 32, which allows sensor 30 to turn on without sensor 32 turning off. Thus, a simple, quick, non-iterative process is used to adjust the final fold mirror. This special axis is not obvious to those trained in the art because it is not orthogonal to the first axis.
One characteristic of this special second axis is that the ends of the scan line translate slightly parallel to the scan line as it is adjusted. This is not a problem because when the reader is calibrated, the sweep of the galvanometer is automatically adjusted to the edges of the phosphor screen. As the scan line translates parallel to itself at sensor 32 while the second axis is being adjusted, a path length difference is introduced between the ray traveling to sensor 32 and the ray traveling to sensor 30. This uses up some of the depth of focus in the system.
There are an infinite number of the special second axes to choose from. As a refinement of the invention, there is an optimum axis, which has the added desirable property of minimizing the path length difference, and maintaining most of the depth of focus for other uses like looser tolerances on other components.
This optimum axis is found by building a mathematical model of the fold mirror and the sensor slits. A set of equations is written to calculate the path length for three rays. Ray 1 to sensor 32, ray 2 to sensor 30, and ray 3, the axial ray. A constraint equation is placed on the axial ray keeping it constant in length. The nominal geometry is all three rays are on target. The equations are written in terms of the six degrees of freedom of the position of the mirror in space. A constraint equation is written to keep ray 1 from moving off the sensor 32 slit 36 while allowing ray 1 to move along the slit 36. A constraint equation is placed on ray 2 to drive it a small distance off the sensor 30 slit 34. A numerical optimizer iterates on the six degrees of freedom of the mirror position until all the equations are satisfied while minimizing the path length difference between the rays to sensor 1 and sensor 2.
The intersection of the nominal mirror plane and the mirror plane of the solution defines the second special axis.
These equations and their optimization are easily done by a optical engineer skilled in the use of lens design software. The mechanical design of the parts that implement this axis is easily done by a mechanical designer.
Referring more particularly to
As shown in
Unfortunately, the result moves the right spot 48 which was on target on sensor 32, off sensor 32. In other words, these two adjustments are coupled and not independent. This makes for a tedious iterative adjustment process between these two adjustments. Moreover, the second adjustment also causes the laser spots 46 and 48 to shift along the length of platen 26 but this can be compensated for by adjusting the angle of galvonometer mirror 18.
According to the invention, as illustrated in
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This is a 111A application of Provisional Application Ser. No. 60/444,046, filed Jan. 31, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5506719 | Murakami et al. | Apr 1996 | A |
Number | Date | Country | |
---|---|---|---|
20040150863 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60444046 | Jan 2003 | US |