The present application is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 10/801,073, filed Mar. 15, 2004, which is a Continuation-In-Part of U.S. application Ser. No. 09/852,102, now U.S. Pat. No. 6,907,383, which is a Continuation-In-Part of U.S. application Ser. No. 09/257,896, filed Feb. 25, 1999, abandoned which is a Continuation-In-Part of U.S. application Ser. No. 08/623,569, now U.S. Pat. No. 6,017,143, application Ser. No. 09/852,102 is also a Continuation-In-Part of U.S. application Ser. No. 09/383,828, now U.S. Pat. No. 6,654,697, which is a Continuation-In-Part of U.S. application Ser. No. 09/257,896, filed Feb. 25, 1999 which is a Continuation-In-Part of U.S. application Ser. No. 08/623,569, filed Mar. 28, 1996, now U.S. Pat. No. 6,017,143, the content of which is hereby incorporated by reference in its entirety.
The present invention relates to process control systems of the type used to monitor and/or control operation of industrial processes. More specifically, the present invention relates to diagnostics of such process control systems.
Field devices (devices such as process controllers, monitors and transmitters) are used in the process control industry to remotely control or sense a process variable. For example, a process variable may be transmitted to a control room by a transmitter for use in controlling the process or for providing information about process operation to a controller. For example, information related to pressure of process fluid may be transmitted to a control room and used to control the process, such as oil refining.
When a device used in industrial process fails, it is often necessary to shut down the entire process so that the failed device can be repaired or replaced. Typically, it is difficult to predict an impending failure of a process device prior to its occurrence. Thus, when the process device does fail, it occurs unexpectedly or with very little warning, and may require the unexpected shut down of the entire process. Although various attempts have been made at detecting and/or predicting a failure or impending failure, there is an ongoing need for such diagnostic techniques. Prior prediction of a pending failure allows the failing device to be replaced as desired prior to its ultimate failure.
A field mountable dedicated process diagnostic device and method for use in diagnosing operation of an industrial control or monitoring system is provided. An input receives at least one process signal related to operation of the industrial process. A memory contains diagnostic program instructions configured to implement a diagnostic algorithm using the at least one process signal. The diagnostic algorithm may be specific to the industrial process in which the device or method is implemented. A microprocessor performs the diagnostic program instructions and responsively diagnoses operation of the process based upon the at least one process signal.
The present invention provides a dedicated process diagnostic device and method for use in diagnosing operation of an industrial process control or monitoring system. The dedicated process diagnostic device does not perform functions other than diagnostics in the process control system. In other words, the device is not used to measure a process variable used in performing or monitoring process control, and is also not used to control process operation. In some embodiments, in which the device is dedicated to performing diagnostics, its computational abilities can be substantially focused on this activity. The device can be configured to comply with requirements for mounting at a remote location in the field including intrinsic safety requirements and other requirements needed for the device to be “field hardened”.
One typical technique for transmitting information involves controlling the amount of power flowing through a process control loop. Current is supplied from a current source in the control room and the transmitter controls the current from its location in the field. For example, a 4 mA signal can be used to indicate a zero reading and a 20 mA signal can be used to indicate a full scale reading. More recently, transmitters have employed digital circuitry which communicates with the control room using a digital signal which is superimposed onto the analog current signal flowing through the process control loop. One example of such a technique is the HART® communication protocol proposed by Rosemount Inc. The HART® protocol and other such protocols typically include a set of commands or instructions which can be sent to the transmitter to elicit a desired response, such as transmitter control or interrogation.
Fieldbus is a communications protocol proposed by the Fieldbus Foundation and is directed to defining a communications layer or protocol for transmitting information on a process control loop. In the Fieldbus protocol, the current flowing through the loop is not used to transmit an analog signal. Instead, all information is digitally transmitted. Further, the Fieldbus standard, and a standard known as Profibus, allow transmitters to be configured in a multi-drop configuration in which more than one transmitter is connected on the same process control loop. Other communication protocols include the MODBUS® protocol and Ethernet. In some configurations, two, three, four or any number of wires can be used to connect to the process device, including non-physical connections such as RF (radio frequency).
Diagnostic device 8, transmitter 12 and positioner 22 are coupled to a two-wire process control loop 18 which operates in accordance with the Fieldbus, Profibus or HART® standard. However, the invention is not limited to these standards or a two-wire configuration. Two-wire process control loop 18 runs between a location in the field and the control room 20. In an embodiment in which loop 18 operates in accordance with the HART® protocol, loop 18 can carry a current I which is representative of a sensed process variable. Additionally, the HART® protocol allows a digital signal to be superimposed on the current through loop 18 such that digital information can be sent to or received from transmitter 12. When operating in accordance with the Fieldbus standard, loop 18 carries digital signals and can be coupled to multiple field devices such as other transmitters. Any number of two wire process control loops 18 can be used and coupled to field mounted devices as appropriate. The configurations shown herein are for example purposes only.
Process variables are typically the primary variables which are being controlled in a process. As used herein, process variable means any variable which describes the condition of the process such as, for example, pressure, flow, temperature, product level, pH, turbidity, vibration, position, motor current, any other characteristic of the process, etc. Control signal means any signal (other than a process variable) which is used to control the process. For example, control signal means a desired process variable value (i.e. a setpoint) such as a desired temperature, pressure, flow, product level, pH or turbidity, etc., which is adjusted by a controller or used to control the process. Additionally, a control signal means, calibration values, alarms, alarm conditions, the signal which is provided to a control element such as a valve position signal which is provided to a valve actuator, an energy level which is provided to a heating element, a solenoid on/off signal, etc., or any other signal which relates to control of the process. A diagnostic signal as used herein includes information related to operation of devices and elements in the process control loop, but does not include process variables or control signals. For example, diagnostic signals include valve stem position, applied torque or force, actuator pressure, pressure of a pressurized gas used to actuate a valve, electrical voltage, current, power, resistance, capacitance, inductance, device temperature, stiction, friction, full on and off positions, travel, frequency, amplitude, spectrum and spectral components, stiffness, electric or magnetic field strength, duration, intensity, motion, electric motor back emf, motor current, loop related parameters (such as control loop resistance, voltage, or current), or any other parameter which may be detected or measured in the system. Furthermore, process signal means any signal which is related to the process or element in the process such as, for example, a process variable, a control signal or a diagnostic signal. Process devices include any device which forms part of or couples to a process control loop and is used in the control or monitoring of a process.
As discussed above,
In general, the present invention offers a new class of field mountable process device which is used to monitor process conditions, detect process abnormalities and changes and provide diagnostics related to process operation and optimization. There is an ongoing need to increase the productivity, improve quality, lower costs and comply with regulations in industrial processes. Typical process devices do not have the computational ability to support the addition of complex diagnostics. This limitation is due to power constraints, and requirements for field hardening of the device to withstand hazardous locations and harsh environmental conditions. By using a dedicated device to perform diagnostics, the limited resources of the dedicated process diagnostic device can be focused on the single task of performing diagnostics and not required to perform other process related tasks. The dedicated device provides an operator functionality to monitor process conditions and signatures, trends, changes, upsets or other abnormalities which can be analyzed and used to troubleshoot system operation. The diagnostic information can then be communicated to a host system for use as appropriate, including a controlled plant shutdown. Further, by using a dedicated process device rather than a device located in the control room to implement diagnostics, the dedicated device has access to real time process information. In contrast, when equipment located at a remote location, such as the control room, is used to perform diagnostics, the diagnostic capabilities are limited because the remote equipment has limited access to process signals. For example, control room equipment has limited input/output capabilities, limited scan or update times, and limited bandwidth. Field hardening of the device allows operation in hazardous environments or in environments in which the device is subjected to a harsh conditions. Preferably, the device operates using sufficiently low power consumption to allow operation using power completely received from a two wire process control loop. However, in some embodiments, other configurations are used such as a four wire configuration. The memory 44 can be used to provide additional capabilities such as logging, trending, and analysis. The dedicated device 8 can also be used for testing diagnostic algorithms and techniques prior to adding such functionality to other process devices. The process signals used by device 8 can be received by monitoring transmissions on the process control loop. However, process signals can also be received through dedicated sensors directly coupled to the diagnostic device 8. The diagnostics performed by the device can be based on additional information, for example control information such as a setpoint, valve position, or the like, to perform higher level loop or device specific diagnostics. The device 8 can provide multiple types of diagnostic outputs, either individually or together, including annunciations, alarm signals, control signals, etc. Communication with the process device can be through the process control loop using standard communication techniques or can be through other techniques including wireless communications or using web connectivity.
The diagnostic device 100 is configured for a location in the field near the equipment or process that is being monitored for aberrant activity. The device 100 can be connected to existing process variable measurement devices, and/or other sensors that monitor other variables useful for performing a diagnostic function. The output of the diagnostic device 100 can be configured as desired. Example outputs include a local output to a handheld device such as a wireless or clip-on device. A visual indicator can also be provided, for example providing a color coded output with red indicating an alarm condition, yellow indicating a caution condition and green indicating nominal operation. The output can also be provided over an Internet connection, or through the connection to the control room. A Local Operation Interface (LOI) can also be provided for use in configuring the device and/or for providing a diagnostic output.
The field mounted diagnostic device provides a co-located, dedicated diagnostic capability to determine whether abnormal conditions in the process exist, and if so, to what extent. The device can accept many types of sensor inputs and can be cognizant of information carried on the process control loop, such as setpoint information, to reduce inaccuracies in the diagnostics. The device can be configurable through sensor selection and software to accommodate many different types of diagnostic application requirements. The device is capable of local access and interrogation due to the co-location with the target system under diagnostic. Local output diagnostics can be used in physical observations of the system by an operator. The device need only monitor sensors and process variables required for the particular system which is being observed. The device can provide multiple outputs for viewing alarms and supporting of an appropriate level of detail as desired. Similar devices can be used for many different applications through the use of different software configurations. The device can be monitored over existing networks including communications through modems or the like. Preferably, the diagnostic device is physically hardened for field mounted applications. In such a configuration, the device should be able to withstand vibrations, caustic chemicals, electrostatic discharges, etc. for a particular installation. The output from the device can be in the form of a transmission to a remote location using wired or wireless techniques, a local output, outputs that support virtual web pages or transmission through the Internet, or other types of output. Any type of diagnostic technique can be used within the device including fuzzy logic techniques, neural network techniques, rule based techniques or the like. The device can also be configured to provide a particular input or stimulus to the process, such as through the application of an acoustic signal. Sensors within the device can monitor the response of components to the applied signal and the response can be used for the diagnostics performed by the device.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As used herein, “diagnostic sensors” are sensors which are dedicated to obtaining diagnostic measurements and are not used in controlling the process. Further, in some embodiments, program instructions which are performed by the microprocessor have the capability of learning operation of the monitored process by monitoring operation of the process.
Number | Name | Date | Kind |
---|---|---|---|
3096434 | King | Jul 1963 | A |
3404264 | Kugler | Oct 1968 | A |
3468164 | Sutherland | Sep 1969 | A |
3590370 | Fleischer | Jun 1971 | A |
3618592 | Stewart | Nov 1971 | A |
3688190 | Blum | Aug 1972 | A |
3691842 | Akeley | Sep 1972 | A |
3701280 | Stroman | Oct 1972 | A |
3849637 | Caruso et al. | Nov 1974 | A |
3855858 | Cushing | Dec 1974 | A |
3948098 | Richardson et al. | Apr 1976 | A |
3952759 | Ottenstein | Apr 1976 | A |
3973184 | Raber | Aug 1976 | A |
RE29383 | Gallatin et al. | Sep 1977 | E |
4058975 | Gilbert et al. | Nov 1977 | A |
4083031 | Pharo, Jr. | Apr 1978 | A |
4099413 | Ohte et al. | Jul 1978 | A |
4102199 | Talpouras | Jul 1978 | A |
4122719 | Carlson et al. | Oct 1978 | A |
4249164 | Tivy | Feb 1981 | A |
4250490 | Dahlke | Feb 1981 | A |
4255964 | Morison | Mar 1981 | A |
4279013 | Dahlke | Jul 1981 | A |
4337516 | Murphy et al. | Jun 1982 | A |
4383443 | Langdon | May 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4399824 | Davidson | Aug 1983 | A |
4417312 | Cronin et al. | Nov 1983 | A |
4423634 | Audenard et al. | Jan 1984 | A |
4446741 | Sirokorad et al. | May 1984 | A |
4459858 | Marsh | Jul 1984 | A |
4463612 | Thompson | Aug 1984 | A |
4517468 | Kemper et al. | May 1985 | A |
4528869 | Kubo et al. | Jul 1985 | A |
4530234 | Cullick et al. | Jul 1985 | A |
4536753 | Parker | Aug 1985 | A |
4540468 | Genco et al. | Sep 1985 | A |
4571689 | Hildebrand et al. | Feb 1986 | A |
4630265 | Sexton | Dec 1986 | A |
4635214 | Kasai et al. | Jan 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4668473 | Agarwal | May 1987 | A |
4686638 | Furuse | Aug 1987 | A |
4696191 | Claytor et al. | Sep 1987 | A |
4705212 | Miller et al. | Nov 1987 | A |
4707796 | Calabro et al. | Nov 1987 | A |
4720806 | Schippers et al. | Jan 1988 | A |
4736367 | Wroblewski et al. | Apr 1988 | A |
4736763 | Britton et al. | Apr 1988 | A |
4758308 | Carr | Jul 1988 | A |
4777585 | Kokawa et al. | Oct 1988 | A |
4807151 | Citron | Feb 1989 | A |
4818994 | Orth et al. | Apr 1989 | A |
4831564 | Suga | May 1989 | A |
4841286 | Kummer | Jun 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4866628 | Natarajan | Sep 1989 | A |
4873655 | Kondraske | Oct 1989 | A |
4907167 | Skeirik | Mar 1990 | A |
4924418 | Backman et al. | May 1990 | A |
4926364 | Brotherton | May 1990 | A |
4934196 | Romano | Jun 1990 | A |
4939753 | Olson | Jul 1990 | A |
4964125 | Kim | Oct 1990 | A |
4988990 | Warrior | Jan 1991 | A |
4992965 | Holter et al. | Feb 1991 | A |
5005142 | Lipchak et al. | Apr 1991 | A |
5019760 | Chu et al. | May 1991 | A |
5025344 | Maly et al. | Jun 1991 | A |
5043862 | Takahashi et al. | Aug 1991 | A |
5047990 | Gafos et al. | Sep 1991 | A |
5053815 | Wendell | Oct 1991 | A |
5057774 | Verhelst et al. | Oct 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
5081598 | Bellows et al. | Jan 1992 | A |
5089979 | McEachern et al. | Feb 1992 | A |
5089984 | Struger et al. | Feb 1992 | A |
5098197 | Shepard et al. | Mar 1992 | A |
5099436 | McCown et al. | Mar 1992 | A |
5103409 | Shimizu et al. | Apr 1992 | A |
5111531 | Grayson et al. | May 1992 | A |
5121467 | Skeirik | Jun 1992 | A |
5122794 | Warrior | Jun 1992 | A |
5122976 | Bellows et al. | Jun 1992 | A |
5130936 | Sheppard et al. | Jul 1992 | A |
5134574 | Beaverstock et al. | Jul 1992 | A |
5137370 | McCullock et al. | Aug 1992 | A |
5142612 | Skeirik | Aug 1992 | A |
5143452 | Maxedon et al. | Sep 1992 | A |
5148378 | Shibayama et al. | Sep 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5167009 | Skeirik | Nov 1992 | A |
5175678 | Frerichs et al. | Dec 1992 | A |
5193143 | Kaemmerer et al. | Mar 1993 | A |
5197114 | Skeirik | Mar 1993 | A |
5197328 | Fitzgerald | Mar 1993 | A |
5212765 | Skeirik | May 1993 | A |
5214582 | Gray | May 1993 | A |
5216226 | Miyoshi | Jun 1993 | A |
5224203 | Skeirik | Jun 1993 | A |
5228780 | Shepard et al. | Jul 1993 | A |
5235527 | Ogawa et al. | Aug 1993 | A |
5265031 | Malczewski | Nov 1993 | A |
5265222 | Nishiya et al. | Nov 1993 | A |
5269311 | Kirchner et al. | Dec 1993 | A |
5274572 | O'Neill et al. | Dec 1993 | A |
5282131 | Rudd et al. | Jan 1994 | A |
5282261 | Skeirik | Jan 1994 | A |
5293585 | Morita | Mar 1994 | A |
5303181 | Stockton | Apr 1994 | A |
5305230 | Matsumoto et al. | Apr 1994 | A |
5311421 | Nomura et al. | May 1994 | A |
5317520 | Castle | May 1994 | A |
5327357 | Feinstein et al. | Jul 1994 | A |
5333240 | Matsumoto et al. | Jul 1994 | A |
5340271 | Freeman et al. | Aug 1994 | A |
5347843 | Orr et al. | Sep 1994 | A |
5349541 | Alexandro, Jr. et al. | Sep 1994 | A |
5357449 | Oh | Oct 1994 | A |
5361628 | Marko et al. | Nov 1994 | A |
5365423 | Chand | Nov 1994 | A |
5365787 | Hernandez et al. | Nov 1994 | A |
5367612 | Bozich et al. | Nov 1994 | A |
5369674 | Yokose et al. | Nov 1994 | A |
5384699 | Levy et al. | Jan 1995 | A |
5386373 | Keeler et al. | Jan 1995 | A |
5388465 | Okaniwa et al. | Feb 1995 | A |
5392293 | Hsue | Feb 1995 | A |
5394341 | Kepner | Feb 1995 | A |
5394543 | Hill et al. | Feb 1995 | A |
5404064 | Mermelstein et al. | Apr 1995 | A |
5408406 | Mathur et al. | Apr 1995 | A |
5408586 | Skeirik | Apr 1995 | A |
5410495 | Ramamurthi | Apr 1995 | A |
5414645 | Hirano | May 1995 | A |
5419197 | Ogi et al. | May 1995 | A |
5430642 | Nakajima et al. | Jul 1995 | A |
5434774 | Seberger | Jul 1995 | A |
5436705 | Raj | Jul 1995 | A |
5440478 | Fisher et al. | Aug 1995 | A |
5442639 | Crowder et al. | Aug 1995 | A |
5467355 | Umeda et al. | Nov 1995 | A |
5469070 | Koluvek | Nov 1995 | A |
5469156 | Kogura | Nov 1995 | A |
5469735 | Watanabe | Nov 1995 | A |
5469749 | Shimada et al. | Nov 1995 | A |
5481199 | Anderson et al. | Jan 1996 | A |
5481200 | Voegele et al. | Jan 1996 | A |
5483387 | Bauhahn et al. | Jan 1996 | A |
5485753 | Burns et al. | Jan 1996 | A |
5486996 | Samad et al. | Jan 1996 | A |
5488697 | Kaemmerer et al. | Jan 1996 | A |
5489831 | Harris | Feb 1996 | A |
5495769 | Broden et al. | Mar 1996 | A |
5510779 | Maltby et al. | Apr 1996 | A |
5511004 | Dubost et al. | Apr 1996 | A |
5526293 | Mozumder et al. | Jun 1996 | A |
5539638 | Keeler et al. | Jul 1996 | A |
5548528 | Keeler et al. | Aug 1996 | A |
5551306 | Scarpa | Sep 1996 | A |
5555190 | Derby et al. | Sep 1996 | A |
5560246 | Bottinger et al. | Oct 1996 | A |
5561599 | Lu | Oct 1996 | A |
5570034 | Needham et al. | Oct 1996 | A |
5570300 | Henry et al. | Oct 1996 | A |
5572420 | Lu | Nov 1996 | A |
5573032 | Lenz et al. | Nov 1996 | A |
5578763 | Spencer et al. | Nov 1996 | A |
5591922 | Segeral et al. | Jan 1997 | A |
5598521 | Kilgore et al. | Jan 1997 | A |
5600148 | Cole et al. | Feb 1997 | A |
5608650 | McClendon et al. | Mar 1997 | A |
5623605 | Keshav et al. | Apr 1997 | A |
5629870 | Farag et al. | May 1997 | A |
5633809 | Wissenbach et al. | May 1997 | A |
5637802 | Frick et al. | Jun 1997 | A |
5640491 | Bhat et al. | Jun 1997 | A |
5644240 | Brugger | Jul 1997 | A |
5654869 | Ohi et al. | Aug 1997 | A |
5661668 | Yemini et al. | Aug 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5669713 | Schwartz et al. | Sep 1997 | A |
5671335 | Davis et al. | Sep 1997 | A |
5672247 | Pangalos et al. | Sep 1997 | A |
5675504 | Serodes et al. | Oct 1997 | A |
5675724 | Beal et al. | Oct 1997 | A |
5680109 | Lowe et al. | Oct 1997 | A |
5682317 | Keeler et al. | Oct 1997 | A |
5682476 | Tapperson et al. | Oct 1997 | A |
5700090 | Eryurek | Dec 1997 | A |
5703575 | Kirpatrick | Dec 1997 | A |
5704011 | Hansen et al. | Dec 1997 | A |
5705754 | Keita et al. | Jan 1998 | A |
5705978 | Frick et al. | Jan 1998 | A |
5708211 | Jepson et al. | Jan 1998 | A |
5708585 | Kushion | Jan 1998 | A |
5710370 | Shanahan et al. | Jan 1998 | A |
5710708 | Wiegland | Jan 1998 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5719378 | Jackson, Jr. et al. | Feb 1998 | A |
5731522 | Sittler | Mar 1998 | A |
5736649 | Kawasaki et al. | Apr 1998 | A |
5741074 | Wang et al. | Apr 1998 | A |
5742845 | Wagner | Apr 1998 | A |
5746511 | Eryurek et al. | May 1998 | A |
5747701 | Marsh et al. | May 1998 | A |
5752008 | Bowling | May 1998 | A |
5764539 | Rani | Jun 1998 | A |
5764891 | Warrior | Jun 1998 | A |
5781024 | Blomberg et al. | Jul 1998 | A |
5781878 | Mizoguchi et al. | Jul 1998 | A |
5790413 | Bartusiak et al. | Aug 1998 | A |
5796006 | Bellet et al. | Aug 1998 | A |
5801689 | Huntsman | Sep 1998 | A |
5805442 | Crater et al. | Sep 1998 | A |
5817950 | Wiklund et al. | Oct 1998 | A |
5825664 | Warrior et al. | Oct 1998 | A |
5828567 | Eryurek et al. | Oct 1998 | A |
5829876 | Schwartz et al. | Nov 1998 | A |
5848383 | Yuuns | Dec 1998 | A |
5854993 | Crichnik | Dec 1998 | A |
5854994 | Canada et al. | Dec 1998 | A |
5859964 | Wang et al. | Jan 1999 | A |
5869772 | Storer | Feb 1999 | A |
5876122 | Eryurek | Mar 1999 | A |
5880376 | Sai et al. | Mar 1999 | A |
5887978 | Lunghofer et al. | Mar 1999 | A |
5908990 | Cummings | Jun 1999 | A |
5923557 | Eidson | Jul 1999 | A |
5924086 | Mathur et al. | Jul 1999 | A |
5926778 | Pöppel | Jul 1999 | A |
5934371 | Bussear et al. | Aug 1999 | A |
5936514 | Anderson et al. | Aug 1999 | A |
5940290 | Dixon | Aug 1999 | A |
5956663 | Eryurek et al. | Sep 1999 | A |
5970430 | Burns et al. | Oct 1999 | A |
5995910 | Discenzo | Nov 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6006338 | Longsdorf et al. | Dec 1999 | A |
6014612 | Larson et al. | Jan 2000 | A |
6014902 | Lewis et al. | Jan 2000 | A |
6016523 | Zimmerman et al. | Jan 2000 | A |
6016706 | Yamamoto et al. | Jan 2000 | A |
6017143 | Eryurek et al. | Jan 2000 | A |
6023399 | Kogure | Feb 2000 | A |
6026352 | Burns et al. | Feb 2000 | A |
6038579 | Sekine | Mar 2000 | A |
6045260 | Schwartz et al. | Apr 2000 | A |
6046642 | Brayton et al. | Apr 2000 | A |
6047220 | Eryurek et al. | Apr 2000 | A |
6047222 | Burns et al. | Apr 2000 | A |
6052655 | Kobayashi et al. | Apr 2000 | A |
6061603 | Papadopoulos et al. | May 2000 | A |
6072150 | Sheffer | Jun 2000 | A |
6094600 | Sharpe, Jr. et al. | Jul 2000 | A |
6112131 | Ghorashi et al. | Aug 2000 | A |
6119047 | Eryurek et al. | Sep 2000 | A |
6119529 | Di Marco et al. | Sep 2000 | A |
6139180 | Usher et al. | Oct 2000 | A |
6151560 | Jones | Nov 2000 | A |
6179964 | Begemann et al. | Jan 2001 | B1 |
6182501 | Furuse et al. | Feb 2001 | B1 |
6192281 | Brown et al. | Feb 2001 | B1 |
6195591 | Nixon et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6209048 | Wolff | Mar 2001 | B1 |
6236948 | Eck et al. | May 2001 | B1 |
6237424 | Salmasi et al. | May 2001 | B1 |
6260004 | Hays et al. | Jul 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6272438 | Cunningham et al. | Aug 2001 | B1 |
6289735 | Dister et al. | Sep 2001 | B1 |
6298377 | Hartikainen et al. | Oct 2001 | B1 |
6307483 | Westfield et al. | Oct 2001 | B1 |
6311136 | Henry et al. | Oct 2001 | B1 |
6317701 | Pyotsia et al. | Nov 2001 | B1 |
6327914 | Dutton | Dec 2001 | B1 |
6347252 | Behr et al. | Feb 2002 | B1 |
6356191 | Kirkpatrick et al. | Mar 2002 | B1 |
6360277 | Ruckley et al. | Mar 2002 | B1 |
6370448 | Eryurek et al. | Apr 2002 | B1 |
6377859 | Brown et al. | Apr 2002 | B1 |
6378364 | Pelletier et al. | Apr 2002 | B1 |
6396426 | Balard et al. | May 2002 | B1 |
6397114 | Eryurek et al. | May 2002 | B1 |
6405099 | Nagai et al. | Jun 2002 | B1 |
6425038 | Sprecher | Jul 2002 | B1 |
6434504 | Eryurek et al. | Aug 2002 | B1 |
6449574 | Eryurek et al. | Sep 2002 | B1 |
6473656 | Langels et al. | Oct 2002 | B1 |
6473710 | Eryurek | Oct 2002 | B1 |
6480793 | Martin | Nov 2002 | B1 |
6492921 | Kunitani et al. | Dec 2002 | B1 |
6493689 | Kotoulas et al. | Dec 2002 | B2 |
6497222 | Bolz et al. | Dec 2002 | B2 |
6505517 | Eryurek et al. | Jan 2003 | B1 |
6519546 | Eryurek et al. | Feb 2003 | B1 |
6532392 | Eryurek et al. | Mar 2003 | B1 |
6539267 | Eruyrek et al. | Mar 2003 | B1 |
6546814 | Choe et al. | Apr 2003 | B1 |
6556145 | Kirkpatrick et al. | Apr 2003 | B1 |
6564268 | Davis et al. | May 2003 | B1 |
6567006 | Lander et al. | May 2003 | B1 |
6594603 | Eryurek et al. | Jul 2003 | B1 |
6597997 | Tingley | Jul 2003 | B2 |
6601005 | Eryurek et al. | Jul 2003 | B1 |
6611775 | Coursolle et al. | Aug 2003 | B1 |
6615149 | Wehrs | Sep 2003 | B1 |
6654697 | Eryurek et al. | Nov 2003 | B1 |
6701274 | Eryurek et al. | Mar 2004 | B1 |
6727812 | Sauler et al. | Apr 2004 | B2 |
6738388 | Stevenson et al. | May 2004 | B1 |
6751560 | Tingley et al. | Jun 2004 | B1 |
6758168 | Koskinen et al. | Jul 2004 | B2 |
6904476 | Hedtke | Jun 2005 | B2 |
6915364 | Christensen et al. | Jul 2005 | B1 |
7040179 | Drahm et al. | May 2006 | B2 |
7058542 | Hauhia et al. | Jun 2006 | B2 |
7099852 | Unsworth et al. | Aug 2006 | B2 |
7109883 | Trimble et al. | Sep 2006 | B2 |
7171281 | Weber et al. | Jan 2007 | B2 |
7254518 | Eryrurek et al. | Aug 2007 | B2 |
20020013629 | Nixon et al. | Jan 2002 | A1 |
20020032544 | Reid et al. | Mar 2002 | A1 |
20020077711 | Nixon | Jun 2002 | A1 |
20020108436 | Albuaijan | Aug 2002 | A1 |
20020121910 | Rome et al. | Sep 2002 | A1 |
20020145515 | Snowbarger et al. | Oct 2002 | A1 |
20020145568 | Winter | Oct 2002 | A1 |
20020148644 | Schultz et al. | Oct 2002 | A1 |
20020194547 | Christenson et al. | Dec 2002 | A1 |
20030014536 | Christensen et al. | Jan 2003 | A1 |
20030033040 | Billings | Feb 2003 | A1 |
20030045962 | Eryurek et al. | Mar 2003 | A1 |
20040078167 | Tan et al. | Apr 2004 | A1 |
20040093174 | Lander | May 2004 | A1 |
20040128034 | Lenker et al. | Jul 2004 | A1 |
20040199361 | Lu et al. | Oct 2004 | A1 |
20040249583 | Eryurek et al. | Dec 2004 | A1 |
20050072239 | Longsdorf et al. | Apr 2005 | A1 |
20060075009 | Lenz et al. | Apr 2006 | A1 |
20060277000 | Wehrs | Dec 2006 | A1 |
20070010968 | Longsdorf et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
999950 | Nov 1976 | CA |
1185841 | Jun 1998 | CN |
32 13 866 | Oct 1983 | DE |
35 03 597 | Jul 1986 | DE |
35 40 204 | Sep 1986 | DE |
40 08 560 | Sep 1990 | DE |
43 43 747 | Jun 1994 | DE |
44 33 593 | Jun 1995 | DE |
195 02 499 | Aug 1996 | DE |
296 00 609 | Mar 1997 | DE |
197 04 694 | Aug 1997 | DE |
19930660 | Jul 1999 | DE |
199 05 071 | Aug 2000 | DE |
19905071 | Aug 2000 | DE |
299 17 651 | Dec 2000 | DE |
199 47 129 | Apr 2001 | DE |
100 36 971 | Feb 2002 | DE |
102 23 725 | Apr 2003 | DE |
0 122 622 | Oct 1984 | EP |
0 413 814 | Feb 1991 | EP |
0 487 419 | May 1992 | EP |
0 512 794 | Nov 1992 | EP |
0 594 227 | Apr 1994 | EP |
0 624 847 | Nov 1994 | EP |
0 644 470 | Mar 1995 | EP |
0 697 586 | Feb 1996 | EP |
0 749 057 | Dec 1996 | EP |
0 825 506 | Jul 1997 | EP |
0 827 096 | Sep 1997 | EP |
0 838 768 | Sep 1997 | EP |
1 022 626 | Oct 1997 | EP |
0 807 804 | Nov 1997 | EP |
1 058 093 | May 1999 | EP |
0 335 957 | Nov 1999 | EP |
1 022 626 | Jul 2000 | EP |
2 302 514 | Sep 1976 | FR |
2 334 827 | Jul 1977 | FR |
928704 | Jun 1963 | GB |
1 534 280 | Nov 1978 | GB |
1 534 288 | Nov 1978 | GB |
2 310 346 | Aug 1997 | GB |
2 317 969 | Apr 1998 | GB |
2 342 453 | Apr 2000 | GB |
2 347 232 | Aug 2000 | GB |
56-031573 | Mar 1981 | JP |
57196619 | Feb 1982 | JP |
58-129316 | Aug 1983 | JP |
59-116811 | Jul 1984 | JP |
59-163520 | Sep 1984 | JP |
59-176643 | Oct 1984 | JP |
59-211196 | Nov 1984 | JP |
59-211896 | Nov 1984 | JP |
60-000507 | Jan 1985 | JP |
60-76619 | May 1985 | JP |
60-131495 | Jul 1985 | JP |
60-174915 | Sep 1985 | JP |
62-30915 | Feb 1987 | JP |
62-080535 | Apr 1987 | JP |
62-50901 | Sep 1987 | JP |
63-169532 | Jul 1988 | JP |
64-01914 | Jan 1989 | JP |
64-72699 | Mar 1989 | JP |
11-87430 | Jul 1989 | JP |
2-05105 | Jan 1990 | JP |
3-118424 | May 1991 | JP |
3-229124 | Oct 1991 | JP |
4-70906 | Mar 1992 | JP |
5-122768 | May 1993 | JP |
6-95882 | Apr 1994 | JP |
06242192 | Sep 1994 | JP |
06-248224 | Oct 1994 | JP |
7-063586 | Mar 1995 | JP |
07234988 | Sep 1995 | JP |
8-054923 | Feb 1996 | JP |
8-102241 | Apr 1996 | JP |
08-114638 | May 1996 | JP |
8-136386 | May 1996 | JP |
8-166309 | Jun 1996 | JP |
8-247076 | Sep 1996 | JP |
8-313466 | Nov 1996 | JP |
2712625 | Oct 1997 | JP |
2712701 | Oct 1997 | JP |
2753592 | Mar 1998 | JP |
07225530 | May 1998 | JP |
10-232170 | Sep 1998 | JP |
11-083575 | Mar 1999 | JP |
3139597 | Dec 2000 | JP |
2190267 | Sep 2002 | RU |
WO 9425933 | Nov 1994 | WO |
WO 9523361 | Aug 1995 | WO |
WO 9611389 | Apr 1996 | WO |
WO 9612993 | May 1996 | WO |
WO 9639617 | Dec 1996 | WO |
WO 9721157 | Jun 1997 | WO |
WO 9725603 | Jul 1997 | WO |
WO 9806024 | Feb 1998 | WO |
WO 9813677 | Apr 1998 | WO |
WO 9814855 | Apr 1998 | WO |
WO 9820469 | May 1998 | WO |
WO 9839718 | Sep 1998 | WO |
WO 9919782 | Apr 1999 | WO |
WO 0041050 | Jul 2000 | WO |
WO 0050851 | Aug 2000 | WO |
WO 0055700 | Sep 2000 | WO |
WO 0070531 | Nov 2000 | WO |
WO 0101213 | Jan 2001 | WO |
WO 0119440 | Mar 2001 | WO |
WO 0177766 | Oct 2001 | WO |
WO 0190704 | Nov 2001 | WO |
WO 0227418 | Apr 2002 | WO |
WO 03081002 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070010968 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10801073 | Mar 2004 | US |
Child | 11440582 | US | |
Parent | 09852102 | May 2001 | US |
Child | 10801073 | US | |
Parent | 09257896 | Feb 1999 | US |
Child | 09852102 | US | |
Parent | 08623569 | Mar 1996 | US |
Child | 09257896 | US | |
Parent | 09383828 | Aug 1999 | US |
Child | 09852102 | US | |
Parent | 09257896 | Feb 1999 | US |
Child | 09383828 | US | |
Parent | 08623569 | Mar 1996 | US |
Child | 09257896 | US |