This invention is related to the area of stem cells and stem-like cells. In particular, it relates to cardiac cells having regenerative uses.
The mammalian heart has long been considered to be a highly specialized organ unable to repair itself after injury. The recent recognition that the heart contains its own pool of stem cells has ushered in a new era of cardiac biology and therapeutics. Cardiac stem cells (CSCs) express a variety of stem cell antigens (e.g. c-kit, sca-1, is1-1, SSEA-1, ABCG2) and cardiac-specific markers (e.g. NKx2.5, GATA4, α-MHC) (Lyngbaek et al., 2007; Barile et al., 2007); when transplanted, they contribute to regeneration of injured myocardium and improve cardiac function. Nevertheless, little is known regarding the sources of cardiac stem cells. The focus to date has been on seeding from circulating blood pools (Yeh et al., 2003; Shyu et al., 2006) versus endogenous cardiac origin, e.g. as embryonic remnants (Torella et al., 2006).
Here, we consider dedifferentiation as yet another potential source of CSCs. Dedifferentiation can change the phenotype and functions of specialized cells, rendering them closer to their ancestors with augmented plasticity. For instance, pigment cells derived from neural crest can dedifferentiate and reprogram to become multipotent self-renewing progenitors expressing early neural marker genes Sox10, FoxD3, Pax3 and Slug, and give rise to glial cells and myofibroblasts (Real et al., 2006). Dedifferentiation is a common occurrence in plants; plant protoplasts from tobacco leaves have been reported to undergo a transitory phase conferring pluripotentiality, that precedes signal-dependent re-entry into the cell cycle (Zhao et al., 2001).
In adult cardiomyocytes, dedifferentiation has been investigated extensively at the phenotypic level. Compared to normal myocytes, dedifferentiated cells become physiologically more “neonatal”, while morphologically they flatten and spread in culture, with increased diameter and surface area (Ausma et al., 2001; Fredj et al., 2005). Sarcomeric structures are lost, with disorganized myofibrils (Bird et al., 2003; Horackova and Byczko, 1997) and dramatically altered expression of cardiac α-actinin,α-MHC, α-MLC, etc (Benardeau et al., 1997b; Bird et al., 2003). A phenomenon akin to in vitro dedifferentiation has also been described in vivo, in fibrillating atria (Rucker-Martin et al., 2002), chronically-ischemic myocardium, and in the border zone of myocardial infarcts (Dispersyn et al., 2002; Driesen et al., 2007). Such dedifferentiated myocytes are not apoptotic and presumably reflect adaptations to abnormal myocardial stress (Dispersyn et al., 2002).
There is a continuing need in the art for new sources of regenerative cells for therapy of heart diseases.
According to one embodiment of the invention a method for obtaining stem-cell-like myocyte-derived cells (MDCs) from atrial or ventricular heart tissue is provided. Cells are isolated from atrial or ventricular heart tissue to form a cell suspension. The cell suspension may be optionally purified to increase the proportion of myocytes in the cell suspension. The cells are cultured in a medium comprising a mitogen. A composition comprising MDCs is thereby formed.
According to some embodiments, cells are harvested at a plurality of time points from the medium comprising MDCs to form a plurality of samples of MDCs. The proliferative capacity of one or more of the samples of MDCs is assessed. One or more of the samples of MDCs is then clonally proliferated. One or more of the samples of MDCs is tested to confirm expression of one or more marker of stem cells selected from the group consisting of c-kit, sca-1, MCR1, CD34, CD33, alpha-MHC, NKx2.5, GATA4, and CD105.
Also provided by the present invention is an isolated preparation of cardiac stem-like cells. The cells proliferate in culture and express a marker selected from the group consisting of c-kit, NKx2.5, and GATA4. The cells can be derived from adult cardiac atrial or ventricular myocytes.
These and other embodiments which will be apparent to those of skill in the art upon reading the specification provide the art with methods and tools for regenerating cardiac tissue after disease has damaged cardiac tissue.
FIG. 7A(a-d)-7B(a-c). (S3) Mitosis and Cytokinesis of cardiomyocytes.
(
We investigated dedifferentiation of adult atrial and ventricular myocytes. The salient results are that in vitro cell culture conditions can promote dedifferentiation that is associated with down-regulation of cell cycle inhibitors 14-3-3η and p21, and that the dedifferentiated cells can divide and generate cardiac precursor cells that are positive for c-kit, Nkx2.5 and GATA4. The dedifferentiated adult mammalian cardiomycytes are an abundant source of cells for use in cardiac cell regenerative therapies.
Surprisingly, applicants have found that adult myocytes, derived from the atrium or ventricles, can dedifferentiate and become stem-cell like (MDCs). The stem-cell likeness is reflected in the expression of c-Kit (detectable by RT-PCR), which adult myocytes do not express. When these MDCs differentiate, they lose expression of c-Kit. We have not detected expression of Sca-1 under current conditions in the MDCs, although conditions may be found in which it would be expressed. One distinguishing feature of the MDCs is their cell size. The MDCs (10-30 um) are bigger than regular cardiac stem cells (approx 6-10 um diameter) or bone marrow stem cells (6-8 um).
Myocytes can be isolated from either atrial or ventricles of the heart. These can be obtained from any source, for example from biopsies (endomyocardial or surgical specimens), cadavers, animal donors, etc. As is known in the art, the tissue can be mechanically macerated to produce and liberate myocytes. Enzymes, such as proteases, can also be used to liberate myoctyes from the tissue. Purification of adult myocytes can be by any means known in the art. These include differential centrifugation, culturing under selective conditions, differential harvesting of cultured cells, and gradient centrifugation. The purification, however, is optional.
In order to dedifferentiate isolated adult cardiac myoctyes, one can culture them in the presence of mitogens. Proliferating cells results which have altered properties. Any mitogen can be used. Mitogens present in serum can be used, including bovine, fetal bovine, human, porcine, and ovine sera. Any amount between 0.1 to 20% serum can be used, for example, from 0.1 to 1%, from 1% to 5%, from 5% to 10%, from 10% to 15%, and from 15% to 20%. The amount can be increased, in steps increases or in a gradient, as growth progresses. Purified growth factors can be used as mitogens, including but not limited to VEGF, HGV, IGF, FGF, EGF, GCSF, GMCSF, MCSF, CSF-1, and PDGF. Changes in proliferation markers, proliferative index, and marker expression can be seen in as little as 3, 5, 7, 9, 11 days. Culturing can be carried out from 1 to 60 days. Cultures can be reseeded to maintain a high proliferative index. Cell cycle inhibitor expression decreases and proliferative index increases from the initial.
The electrophysiology of the cells also changes as they are cultured. Inward rectifier potassium current and membrane resting potential decreased as cells dedifferentiated. In addition, electrical capacitance of the cells decreased.
Cardiomyocytes can be isolated from any mammals. These include rodents and primates. Exemplary animal sources include rat, mouse, guinea pig, goat, rabbit, pig, and human. Cardiomyocytes can be obtained from laboratory animals, cadavers, or patients. If human cardiomyocytes are used, they can be delivered back to the same patient or to different patients. They can be stored at any stage in the process, before dedifferentiation, after dedifferentiation, and after redifferentiation.
The MDCs demonstrate the ability to differentiate. For example, they form spheres. The spheres express less CD34 and c-Kit than the MDCs.
Because the MDCs have the ability to redifferentiate, they are useful for treating patients and animals with heart disease or heart disease models. Such diseases include chronic heart failure, post-myocardial infarction, right ventricular failure, pulmonary hypertension, ventricular dysfunction induced by a cytotoxic agent, and ventricular dysfunction induced by an anti-neoplastic agent. The MDCs can be introduced by any means known in the art, including but not limited to intracoronary infusion via a catheter, intramyocardial injection via a catheter, and intramyocardial injection during surgery.
The above disclosure generally describes the present invention. All references disclosed herein are expressly incorporated by reference. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.
We purified enzymatically-separated cardiomyocytes from hearts of adult rats, guinea pigs or mice using multiple differential centrifugation and Percoll gradient separation steps. Tests of morphology (
In addition to these long-recognized morphological and physiological changes, we found that plated myocytes begin to divide and give rise to daughter cells within 3-7 days in culture. Expression of aurora B in the cleavage gap between cells indicates that new divided, BrdU-positive cells with barely detected cTnT are from cardiomyocytes which typically express cTnT (
Although the dedifferentiation mechanism has been studied intensively and better elucidated in myocytes from amphibians and zebrafishes (Straube and Tanaka, 2006b; Lien et al., 2006; Ahuja et al., 2007), it is poorly understood in mammalian cardiomyocytes (Engel et al., 2005; Driesen et al., 2006; Montessuit et al., 2004). We analyzed cell cycle progression in this cell culture model by studying the active cell cycle markers Ki67, histone H3 and BrdU incorporation by immunocytochemistry. Ki-67 is a vital molecule for cell proliferation that is expressed in proliferating cells at all phases of the active cell cycle, but is absent in resting (G0 phase) cells. After 2d in culture, 11±8% and 6±2% of atrial and ventricular myocytes, respectively, re-entered active cell cycle and expressed Ki-67, with gradually increased levels, reaching to 80±11.9% and 46±11% at 11 d for atrial and ventricular myocytes, respectively (p<0.001) (
To further decipher the mechanisms underlying the cell cycle progression and their differences between atrial and ventricular myocytes, we investigated the expressions of interrelated factors like 14-3-3 (YWHAH), p21 and p53 that are critical checkpoint regulators in cell cycle progression (Ahuja et al., 2007) by immunocytochemical detection of cells cultured for 5 days. Expression of the negative cell cycle regulator 14-3-3 has been shown to prevent the cell cycle progression and serum-induced proliferation (Du et al., 2005; Yang et al., 2006). As predicted, the expression of 14-3-3η, an abundant isoforms in the heart (He et al., 2006), was significantly lower in freshly isolated atrial myocytes than in fresh ventricular myocytes. Furthermore, on day 5, when was the faster response period of cell cycle progression for both types of cells, expression of 14-3-3η was dramatically reduced (
Myocytes cultured in normal density become confluent after 1-2 weeks (Fig S4A) and thereafter clusters of loosely-adherent phase-bright round cells emerged above the monolayer of dedifferentiated/proliferating cells (
Dedifferentiation, e.g., in pigment cells, has been demonstrated to contribute to stem cells and tissue regeneration (Real et al., 2006). We asked if MDC that is distinct from cardiomyocytes in morphology and electrophysiology, have any characteristics of cardiac stem cells (Smith et al., 2007; Boyle et al., 2006). By direct and indirect fluorescent immunostaining, we found that rat MDC do indeed express stem cell markers c-kit and CD34, but little or weak, if any, sca-1 or CD90 (data not shown); 61±19.7% freshly harvested MDC were positive to c-kit. Furthermore, in the area of MDC clusters, there were cells in the layer strongly positive for c-kit immunostaining (
To further confirm the expression of stem cell markers in MDC, we performed RT-PCR to test the expression of different transcripts. c-kit was expressed in heart tissue, bone marrow cells, and MDCs. In addition, the other cardiac stem cell transcript sca-1 was undetectable in MDC; endothelial precursor marker gene CD34 was present in MDC. Cardiac transcripts α-MHC, Nkx2.5, and GATA4 were all detected in MDC, heart tissue and purified myocytes as well (
MDC self-organized into spheres 3-5 days after the cluster cells became more confluent. There were 0˜4 spheres in each well of a 6-well culture plate, depending on the condition of cells. MDC spheres either loosely adhered to the culture layer or became suspended in medium, and show slow spontaneous activity within 2-5 days of sphere stage (Fig S4C. The semi-adherent spheres could be harvested by gentle pipetting. Semi-adherent or suspending spheres flattened onto the bottom when seeded into fibronectin-coated plates, and gave rise to cells off the spheres, which eventually stopped beating while turning into monolayer cells (
In the spheres, most cells were positive for α-MHC, connexin 43 (Cx43), and CD31 immunostaining, and some positive for c-kit. Some cells off the sphere also express cTnT and others express c-kit (
Isolation, Purification, and Primary Culture of Cardiomyocytes
Cardiomyocytes were isolated from adult male Wistar-Kyoto rats (4-8 weeks, 70-120 g), Hartley guinea pigs (3-5 weeks, 300-380 g) or C57BL/6 mice (4-6 weeks, 17-21 g) by enzymatic digestion of the whole heart on a Langendorff apparatus with similar protocol as previously described. (Zhang et al., 2006; Kizana et al., 2007) Heparinized animals were anaesthetized by sodium pentobarbital (Ovation Pharmaceuticals Inc, Deerfield, Ill.). Hearts were rapidly excised and cleaned to remove blood in ice-cold Tyrode's solution before mounted to a Langendorff apparatus conjugating to a pressure monitoring device, and perfused retrogradely with the following four oxygenated solutions in sequential order: modified Tyrode's solution containing 1.0 mM Ca2+ (2 min), Ca2+-free Tyrode's solution (2-3 min), Ca2+-free Tyrode's solution containing 0.2 Wunsch unit/ml of collagenase made from Liberase Blendzyme 4 (Roche Molecular Biochemicals, Indianapolis, Ind.) for 10-20 min depending on species and digest conditions. Digested atrium and ventricles were cut off and minced in Kruftbrühe (KB) solution, then filtered through a 200 um nylon mesh to remove big piece of undigested tissues. Isolated cells were rinsed in KB solution and let settled by gravity for 3 times to remove debris and non-cardiomyocytes. Resuspended cells in KB solution were loaded above the top layer of Percoll gradient which was formed by 20%, 40%, and 70% of Percoll to separate myocytes from debris and other types of cells. After three washes in KB solution, myocytes were resuspended in KB solution or in culture media for further experiments. Modified Tyrode's solution contained (mM): NaCl 105, KCl 5.4, KH2PO4 0.6, NaH2PO4 0.6, NaHCO3 6, KHCO3 5, CaCl2 1, MgCl2 1, HEPES 10, glucose 5, taurine 20 (pH 7.35 with NaOH), and KB solution had (mM): KCl20, KH2PO4 10, K-glutamate 70, MgCl2 1, glucose 25, β-hydroxybutyric acid 10, taurine 20, EGTA 0.5, HEPES 10, and 0.1% albumin (pH 7.25 with KOH).
Purified myocytes were resuspended in Medium 199 (Invitrogen, Carlsbad, Calif.) supplemented with 110 mg/L sodium pyruvate, 0.1 mM β-mercaptoethanol, 100 U/ml penicillin, 100 μg/ml streptomycin, and 5% FBS (Invitrogen) and cultured in laminin-coated 6-well culture plates or 100 mm dishes in normal density of 6000 and 9000 cells/cm2 for ventricular and atrial myocytes respectively, at 37° C. for 1 hr before wash to remove dead and non-adherent cells, and repeated once after 1 hr of culture. Serum concentration in medium was gradually increased to 10% and 20%. On the second and third day of plating, medium was replaced to remove dead cells, and then maintained for prolonged culture while partially changed about every 5 days.
Cell Imaging and Tracking
In order to verify the proliferation of dedifferentiated myocytes, cells were plated in lower density as compared to normal dense culture for MDC production. Numeric grid-marked coverslips (Bellco Biotechnology, Vineland, N.J.) coated with laminin were used to identify the cellular changes during the culture, under time-lapse microscope (Nikon TE-2000E inverted microscope) for continuous analysis, or under regular inverted microscope (Nikon TE-2000U), with phase contrast objectives and images were captured with a monochrome CCD camera (Q-Imaging, Surrey, BC, Canada) with a program suite Image Pro Plus (Media Cybernetics, Bethesda, Md.). At the end of the tracking, cells were subjected to analysis of markers related to cell cycle progression and stem cell when needed. A 3CCD Color video camera (Sony) connected to a personal computer was used to capture real-time images and videos of beating cells and spheres.
Culture of Myocyte-Derived Cells
At about 10 days to 2 weeks after the culture, the loosely adherent myocytes-derived cells (MDC) were harvested by gentle pipetting for 3 times with a disposable transfer pipette. Cells were cultivated in same medium as of the serum-rich myocyte culture medium, for the experiments detecting the markers in fresh isolated cells. Alternatively, MDC culture medium which was DMEM/F 12 supplemented with 0.1 mM β-mercaptoethanol, bFGF 0.1 ng/ml, TGF- β 1 ng/ml, 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% FBS, was used to maintain the cells in 95% humidity, 5% CO2, at 37° C.
Labelling of Myocytes with BrdU
Cells were loaded with 3-bromo-2-deoxyuridine (BrdU; 5 μM) for various periods before immunocytochemical assay (Engel et al., 2005).
Fluorescent Immunocytochemistry
Cellular phenotypes in the cultures were analyzed similarly as previously described (Smith et al., 2007; Zhang et al., 2006) using immunofluorescence. To test the expression of stem cell markers, rabbit polyclonal antibody (pAb) against c-kit (CD117) (Santa Cruz Biotechnology, Santa Cruz, Calif.) or Oct-4 (Abcam, Cambridge, Mass.), mouse monoclonal antibody (mAb) against Sca-1 (Invitrogen), goat pAb against Thy-1 (CD90) were used as primary antibodies. Expression of cardiac markers were tested using antibodies included mouse mAb of cardiac specific α-MHC from Abcam, α-actin from Sigma, and rabbit pAb Cx43 and GATA4 from Invitrogen, goat pAb Nkx2.5 from Santa Cruz Biotechnologie, Inc. Primary antibodies against cell cycle-specific molecules included: Ki67, Histone H3 (phosphor S10) and anti-bromodeoxyuridine (BrdU) were from Abcam. The specificity of antibodies was confirmed by blocking peptides or control cells. Donkey anti-mouse, anti-rabbit, or anti-goat antibodies with fluorescent conjugation were used as secondary antibodies.
Direct immunostaining were also performed to test the expression of stem cell markers in freshly harvested MDC using PE-conjugated mouse mAbs against c-kit (BD Biosciences), Sca-1 (Invitrogen), or FITC-conjugated CD90 (Abeam).
In MDC spheres, stem cell and cardiac markers were detected using whole-mount immunofluorescent techniques and examined with standard and Z-stack confocal laser scan microscope (LSM 510; Zeiss). The acquisition settings were optimized to avoid false positive or false negative staining Images were processed by LSM 510 software suite.
RT-PCR
Reverse-transcription Polymerase Chain Reaction (RT-PCR) was performed to test the mRNA expression of both stem cell and cardiac markers. Extraction of total RNA from rat heart tissue, bone marrow cells flushed from femurs, purified myocytes, MDC, and MDC spheres, and one-step RT-PCR were carried out with commercially available kits (Qiagen, Valencia, Calif.). Primer pairs for c-kit, sca-1, Oct 4, α-MHC, GATA4, and NKx2.5, β-actin are listed in Table S1.
Statistics
Data were expressed as mean±SEM, and paired or un-paired Student t-test were used to exam the significance of difference between groups, with a p<0.01 considered as significant different.
The disclosure of each reference cited is expressly incorporated herein.
Ahuja, P., Sdek, P., and MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 87, 521-544.
Ausma, J., Litjens, N., Lenders, M. H., Duimel, H., Mast, F., Wouters, L., Ramaekers, F., Allessie, M., and Borgers, M. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J. Mol. Cell Cardiol. 33, 2083-2094.
Barile, L., Chimenti, I., Gaetani, R., Forte, E., Miraldi, F., Frati, G., Messina, E., and Giacomello, A. (2007). Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med. 4 Suppl 1, S9-S14.
Beltrami, A. P., Urbanek, K., Kaj stura, J., Yan, S. M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C. A., and Anversa, P. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750-1757.
Benardeau, A., Hatem, S. N., Rucker-Martin, C., Tessier, S., Dinanian, S., Samuel, J. L., Coraboeuf, E., and Mercadier, J. J. (1997a). Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J. Mol. Cell Cardiol. 29, 1307-1320.
Benardeau, A., Hatem, S. N., Rucker-Martin, C., Tessier, S., Dinanian, S., Samuel, J. L., Coraboeuf, E., and Mercadier, J. J. (1997b). Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J. Mol. Cell Cardiol. 29, 1307-1320.
Bird, S. D., Doevendans, P. A., van Rooijen, M. A., Brutel, d. l. R., Hassink, R. J., Passier, R., and Mummery, C. L. (2003). The human adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423-434.
Boyle, A. J., Schulman, S. P., Hare, J. M., and Oettgen, P. (2006). Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation 114, 339-352.
Burton, P. B., Yacoub, M. H., and Barton, P. J. (1999). Cyclin-dependent kinase inhibitor expression in human heart failure. A comparison with fetal development. Eur. Heart J. 20, 604-611.
Chabner B A (1982). Cytosine arabinoside. In Pharmacologic Principles of Cancer Treatment, Chabner B A, ed. (Philadelphia, WB: Saunders Co.), pp. 387-401.
Darling, D. L., Yingling, J., and Wynshaw-Boris, A. (2005). Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68, 281-315.
de la Fuente, R., Abad, J. L., Garcia-Castro, J., Fernandez-Miguel, G., Petriz, J., Rubio, D., Vicario-Abejon, C., Guillen, P., Gonzalez, M. A., and Bernad, A. (2004). Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Exp. Cell Res. 297, 313-328.
Dispersyn, G. D., Geuens, E., Ver, D. L., Ramaekers, F. C., and Borgers, M. (2001). Adult rabbit cardiomyocytes undergo hibernation-like dedifferentiation when co-cultured with cardiac fibroblasts. Cardiovasc. Res. 51, 230-240.
Dispersyn, G. D., Mesotten, L., Meuris, B., Maes, A., Mortelmans, L., Flameng, W., Ramaekers, F., and Borgers, M. (2002). Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur. Heart J. 23, 849-857.
Driesen, R. B., Dispersyn, G. D., Verheyen, F. K., van den Eijnde, S. M., Hofstra, L., Thone, F., Dijkstra, P., Debie, W., Borgers, M., and Ramaekers, F. C. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res. 68, 37-46.
Driesen, R. B., Verheyen, F. K., Dijkstra, P., Thone, F., Cleutjens, J. P., Lenders, M. H., Ramaekers, F. C., and Borgers, M. (2007). Structural remodelling of cardiomyocytes in the border zone of infarcted rabbit heart. Mol. Cell Biochem.
Driesen, R. B., Verheyen, F. K., Dispersyn, G. D., Thone, F., Lenders, M. H., Ramaekers, F. C., and Borgers, M. (2006). Structural adaptation in adult rabbit ventricular myocytes: influence of dynamic physical interaction with fibroblasts. Cell Biochem. Biophys. 44, 119-128.
Du, J., Liao, W., Wang, Y., Han, C., and Zhang, Y. (2005) Inhibitory effect of 14-3-3 proteins on serum-induced proliferation of cardiac fibroblasts. Eur. J. Cell Biol. 84, 843-852.
Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., Jiang, H., Wang, Y., and Keating, M. T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175-1187.
Engel, F. B., Schebesta, M., and Keating, M. T. (2006). Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell Cardiol. 41, 601-612.
Fredj, S., Bescond, J., Louault, C., and Potreau, D. (2005). Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J. Cell Physiol 202, 891-899.
Gartel, A. L., Serfas, M. S., and Tyner, A. L. (1996). p21--negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138-149.
Gruh, I., Beilner, J., Blomer, U., Schmiedl, A., Schmidt-Richter, I., Kruse, M. L., Haverich, A., and Martin, U. (2006). No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113, 1326-1334.
He, M., Zhang, J., Shao, L., Huang, Q., Chen, J., Chen, H., Chen, X., Liu, D., and Luo, Z. (2006). Upregulation of 14-3-3 isoforms in acute rat myocardial injuries induced by burn and lipopolysaccharide. Clin. Exp. Pharmacol. Physiol 33, 374-380.
Hermeking, H. and Benzinger, A. (2006). 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 16, 183-192.
Horackova, M. and Byczko, Z. (1997). Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp. Cell Res. 237, 158-175.
Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., and Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl. Acad. Sci. U.S.A 95, 8801-8805.
Kang, S. K., Park, J. B., and Cha, S. H. (2006). Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev. 15, 423-435.
Kizana, E., Chang, C. Y., Cingolani, E., Ramirez-Correa, G. A., Sekar, R. B., Abraham, M. R., Ginn, S. L., Tung, L., Alexander, I. E., and Marban, E. (2007). Gene Transfer of Connexin43 Mutants Attenuates Coupling in Cardiomyocytes. Novel Basis for Modulation of Cardiac Conduction by Gene Therapy. Circ. Res.
Laframboise, W. A., Scalise, D., Stoodley, P., Graner, S. R., Guthrie, R. D., Magovern, J. A., and Becich, M. J. (2007). Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am. J. Physiol Cell Physiol 292, C1799-C1808.
Laronga, C., Yang, H. Y., Neal, C., and Lee, M. H. (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J. Biol. Chem. 275, 23106-23112.
Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., and Poss, K. D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607-619.
Li, J. M. and Brooks, G. (1999). Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur. Heart J. 20, 406-420.
Lien, C. L., Schebesta, M., Makino, S., Weber, G. J., and Keating, M. T. (2006). Gene expression analysis of zebrafish heart regeneration. PLoS. Biol. 4, e260.
Lyngbaek, S., Schneider, M., Hansen, J. L., and Sheikh, S. P. (2007). Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res. Cardiol. 102, 101-114.
Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein, B., and Jacks, T. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935-944.
Michalopoulos, G. K. and DeFrances, M. C. (1997). Liver regeneration. Science 276, 60-66.
Montessuit, C., Rosenblatt-Velin, N., Papageorgiou, I., Campos, L., Pellieux, C., Palma, T., and Lerch, R. (2004). Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4. Cardiovasc. Res. 64, 94-104.
Oh, H., Chi, X., Bradfute, S. B., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Schwartz, R. J., Entman, M. L., and Schneider, M. D. (2004). Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann. N. Y. Acad. Sci. 1015, 182-189.
Poss, K. D. (2007). Getting to the heart of regeneration in zebrafish. Semin. Cell Dev. Biol. 18, 36-45.
Real, C., Glavieux-Pardanaud, C., Le Douarin, N. M., and Dupin, E. (2006). Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev. Biol.
Roninson, I. B. (2002). Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179, 1-14.
Rucker-Martin, C., Pecker, F., Godreau, D., and Hatem, S. N. (2002). Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovasc. Res. 55, 38-52.
Shyu, W. C., Lee, Y. J., Liu, D. D., Lin, S. Z., and Li, H. (2006). Homing genes, cell therapy and stroke. Front Biosci. 11, 899-907.
Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., and Marban, E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896-908.
Straube, W. L. and Tanaka, E. M. (2006a). Reversibility of the differentiated state: regeneration in amphibians. Artif. Organs 30, 743-755.
Straube, W. L. and Tanaka, E. M. (2006b). Reversibility of the differentiated state: regeneration in amphibians. Artif. Organs 30, 743-755.
Thijssen, V. L., Ausma, J., and Borgers, M. (2001). Structural remodelling during chronic atrial fibrillation: act of programmed cell survival. Cardiovasc. Res. 52, 14-24.
Torella, D., Ellison, G. M., Mendez-Ferrer, S., Ibanez, B., and Nadal-Ginard, B. (2006). Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med. 3 Suppl 1, S8-13.
Tseng, A. S., Engel, F. B., and Keating, M. T. (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem. Biol. 13, 957-963.
Von Harsdorf, R. (2001). Can cardiomyocytes divide? Heart 86, 481-482.
Walder, S., Zhang, F., and Ferretti, P. (2003). Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Dev. Genes Evol. 213, 625-630.
Welikson, R. E., Kaestner, S., Reinecke, H., and Hauschka, S. D. (2006). Human umbilical vein endothelial cells fuse with cardiomyocytes but do not activate cardiac gene expression. J. Mol. Cell Cardiol. 40, 520-528.
Yang, H., Zhang, Y., Zhao, R., Wen, Y. Y., Fournier, K., Wu, H. B., Yang, H. Y., Diaz, J., Laronga, C., and Lee, M. H. (2006). Negative cell cycle regulator 14-3-3sigma stabilizes p27 Kip1 by inhibiting the activity of PKB/Akt. Oncogene 25, 4585-4594.
Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M., Willerson, J. T., and Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108, 2070-2073.
Yoshizumi, M., Lee, W. S., Hsieh, C. M., Tsai, J. C., Li, J., Perrella, M. A., Patterson, C., Endege, W. O., Schlegel, R., and Lee, M. E. (1995). Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J. Clin. Invest 95, 2275-2280.
Zhang, Y., Han, H., Wang, J., Wang, H., Yang, B., and Wang, Z. (2003). Impairment of HERG (human ether-a-go-go related gene) K+ channel function by hypoglycemia and hyperglycemia: Similar phenotypes but different mechanisms. J. Biol. Chem. 278, 10417-10426.
Zhang, Y., Xiao, J., Wang, H., Luo, X., Wang, J., Villeneuve, L. R., Zhang, H., Bai, Y., Yang, B., and Wang, Z. (2006). Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am. J. Physiol Heart Circ. Physiol 291, H1446-H1455.
Zhao, J., Morozova, N., Williams, L., Libs, L., Avivi, Y., and Grafi, G. (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J. Biol. Chem. 276, 22772-22778.
This invention was made using funds from the United States government, which therefore retains certain rights in the invention. A grant from the National Institutes of Health, HL083109, was used.
Number | Date | Country | |
---|---|---|---|
60858006 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12513754 | Nov 2009 | US |
Child | 12685222 | US |