The present invention relates to systems and methods for endoscopic imaging. In particular, some implementations relate to systems and methods of real-time visual guidance for deep brain stimulation.
When deep brain stimulation is performed, it is often done with very little visual guidance and no real-time visual guidance. In some cases, the patient will undergo MRI imaging to calculate the relative distance between the point of entry of the electrode (e.g., through a hole in the skull) and the area of the brain to be stimulated. A frame is drilled to the patient's head which is then used to guide the electrode to the appropriate area of the brain as determined by information from the MRI imaging data. The surgeon slowly advances the electrode towards a deep area of the brain while using the electrode to measure the electrical activity of the brain. In some cases, the electrical activity is compared to known electrical activity of different areas of the brain to provide the surgeon with further information about the location of the electrode in the brain.
Some embodiment disclosed herein include electrodes similar to those currently available for deep-brain stimulation with added internal photoacoustic and ultrasound imaging components that enable 360-degree scanning of the region perpendicular to the axis of the electrode. These real-time scans are then displayed to a surgeon to see where a probe is located relative to the skull (using ultrasound imaging) and relative to the surrounding brain tissue (using photoacoustic imaging).
A photoacoustic and ultrasound imaging electrode has the potential to change the way deep-brain stimulation is performed. Due to the complexity and inherent danger in the procedure, the added benefit of real-time imaging information would lead to a vast improvement in this type of brain surgery.
In some embodiments, the invention provides (1) combined ultrasound and photoacoustic imaging with an electrode and (2) placement of a transducer for photoacoustic imaging outside the electrode probe. Because the transducer is positioned outside of the probe, it remains outside of the patient's skull during the procedure. In some embodiments, the electrode probe includes one or more straight rods that are also configured to operate as tunnels for ultrasound—something not currently applicable to other ultrasound imaging probes. In various embodiments, this configuration also provides the added benefit of real-time imaging feedback as well as electrical feedback typically used to guide electrode placement in deep-brain stimulation.
In some embodiments, the system is configured to emit light for photoacoustic analysis. While existing technologies can typically only peer less than 5 mm deep into the brain, systems and methods disclosed herein can be used to provide photoacoustic imaging at depths of up to 1-3 cm into the brain.
In one embodiment, the invention provides an endoscope system including a waveguide tube, a right-angle prism, a light source, and a photoacoustic transducer. The light source is coupled to the wall of the waveguide tube at a proximal end of the waveguide tube such that light from the light source propagates along the length of the waveguide tube via internal reflection within the wall. The right-angle prism is positioned at a distal end of the waveguide tube and configured to redirect light emitted at a distal end of the waveguide tube in a direction perpendicular to the length of the waveguide tube. Light emitted in the perpendicular direction causes soundwaves to be emitted by the surrounding tissue via photoacoustic effect. The interior channel of the waveguide tube is configured to conduct those soundwaves from the distal end of the waveguide tube to a proximal end of the waveguide tube where the soundwaves are detected by the photoacoustic transducer, which is acoustically coupled to the interior channel of the waveguide tube at the proximal end of the waveguide tube.
In another embodiment, the invention provides a method of operating a deep-brain stimulation probe. A light source is activated, which causes light to enter the wall of a waveguide tube and to propagate along the length of the waveguide tube via total internal reflection within the wall. This light is emitted at a distal end of the waveguide tube where it is then redirected by a right-angle prism in a direction perpendicular to the length of the waveguide tube. The perpendicularly emitted light causes the surrounding tissue to generate soundwaves through the photoacoustic effect and those soundwaves are conducted through an interior channel of the waveguide tube to a photoacoustic transducer that is acoustically coupled to the interior channel at a proximal end of the waveguide tube. The photoacoustic soundwaves are detected by the photoacoustic transducer and, based at least in part on photoacoustic image data, it is determined whether the deep-brain stimulation probe is positioned at a target location in the brain. In response to a determination that the probe is positioned at the target location, a stimulation circuit is activated to apply the deep-brain stimulation.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Photoacoustic endoscopy (PAE) can be useful as a minimally invasive tool for imaging internal organs and tissues. The photoacoustic effect is generated when photons are absorbed by select targets, thus resulting in thermoelastic expansion and the creation of a subsequent acoustic wave. A transducer (often located within the endoscope itself) is used to detect acoustic waves. Previous applications of PAE have successfully provided imaging of the vasculature along the esophagus and intestines, plaque in large arteries, and the lining of the uterus. Due in part to the size of the transducer, these PAE systems typically employ the use of imaging probes with diameters on the order of a few millimeters. For certain applications where the imaging probe is required to be minimally invasive, however, further minimization is necessary. One approach may be to attempt to reduce the size of the transducer. However, because the resulting signal-to-noise ratio of the system is often dependent on the size of the transducer, the approach of reducing the size of the transducer has limitations in in-vivo applications where deep-tissue and/or low frequency transducers are required. Another notable effect of transducer miniaturization is the decreased range of working frequencies. Accordingly, imaging probes may be constrained to shallow imaging depths (e.g., no greater than a few millimeters).
Various implementations described herein circumvent these issues, in part, by providing PAE architectures that provide light transmission and sound detection on a significantly smaller size scale. For example, in some implementations, hollow optical waveguides are configured to concentrically guide both light and sound on a smaller and less-invasive size scale. Due to their material properties (i.e., borosilicate glass and quartz glass), capillaries can be used as hollow optical waveguides. These capillary tubes can be efficiently coupled to a light source such that the light travels along the glass wall of the capillary tube by total internal reflection. Transducers are coupled to the water-filled center of a hollow optical waveguide thereby enabling sound to travel several centimeters along the length of a capillary with minimal attenuation.
Furthermore, to combine the benefits of traditional side-viewing PAE with the miniaturization of hollow optical waveguides, some implementations described herein provide side-viewing photoacoustic capillary endoscopes (PCE). This design readily enables miniaturization without the need for highly specialized transducers. The water-filled hollow center of the PCE can be coupled to transducers of virtually any size or frequency. Thus, insertion of the hollow optical waveguide into tissue provides for light delivery and sound detection at distances exceeding the depth of penetration for visible light and high-frequency ultrasound. Rotation of the probe allows for a 360-degree photoacoustic reconstruction with imaging depths approaching a centimeter.
In some implementations, the PCE architecture described herein also enables integration of light delivery along with acoustic detection without obstructing either. This is accomplished through the use of an optical and acoustic combiner located externally to the PCE and up to several centimeters from the imaging window. Thus, any noise that may be generated as a result of incident light on the transducer occurs well before acquisition of the signals of interest. PAE systems with improper optical and acoustic separation may lead to ultrasound transducers being exposed to excitation light, resulting in bright rings in image reconstructions. This results in poor signal-to-noise ratio for photoacoustic signals acquired near the imaging window. With a relatively inexpensive fabrication, the PCE is an ideal candidate for a myriad of pre-clinical and clinical applications where typical PAE systems are impractical, due to their size. As a result of the efficiency of PCE in transmitting both light and sound, further imaging modalities including fluorescence and pulse-echo ultrasound imaging may still be incorporated into the device.
In the example of
The probe housing 101 is coupled to a rotational stage 113. The rotational stage 113 includes a motor for controllably rotating the probe housing about a center axis of the probe housing 101. By controllably rotating the probe housing 101, the rotational stage 113 allows the system to capture ultrasound and photoacoustic image data in 360-degrees about the distal end of the probe housing 101 (e.g., at the sound aperture 111). The system of
In this example, the hollow cylindrical tube 201 is a borosilicate glass capillary tube, B100-75-10, Sutter Instrument, and the medical tubing 205 is medical tubing 103-0552, Vention Medical. The right-angle prism 105 is provided as an aluminum-coated right angle prism (MPCH-1.0, Tower Optical). However, in other implementations, the size and material of these components may be different. Similarly, in the example of
Light 207 from an external source (e.g., a laser light source as described in detail below) is projected into the glass material of the hollow cylindrical tube 201 and propagates along the length of the hollow cylindrical tube 201 by total internal reflection. At the distal end of the hollow cylindrical tube 201, the light 207 exits the glass material and is reflected by the right-angle prism 105 in a direction perpendicular to the length of the hollow cylindrical tube 201. The projected light 207 causes sound 209 to be returned from the tissue material due to the photoacoustic effect. The sound 209 is also reflected by the right-angle prism 105 and propagates through the interior channel 203 along the length of the hollow cylindrical tube 201.
Photoacoustic signals detected by the transducer 309 are sent to an ultrasound pulser/receiver (5077PR, Olympus Inc.), where amplification is performed through a 59 dB gain and filtered with a 1 MHz high-pass filter. Data acquisition is performed with a multipurpose reconfigurable oscilloscope (NI PXIe-5170R, National Instruments Corporation) and transferred to a computer for image reconstruction. The multipurpose reconfigurable oscilloscope has built-in programmable function input/output (PFI) lines controlled by a built-in field programmable gate array (FPGA) allowing for custom triggering and synchronization of the system.
Again,
The controller 401 is communicatively coupled to a rotational stage motor 413 to controllably rotate the probe housing during 360-degree imaging and is communicatively coupled to a linear stage motor 415 to controllably adjust an insertion depth of the probe housing. The controller 401 receives data from the photoacoustic transducer 409 and the ultrasound transducer 411, generates photoacoustic and/or ultrasound images from the received data, and output the generated image on a display screen 417. The controller 401 may also be coupled to a user input/control 419 through which a user may control the operation of the system. The insertion depth of the probe housing may be adjusted either manually (e.g., through the display 417 and user input control 419) or automatically based on the captured image data and, once the probe is placed at an appropriate depth proximal to a target tissue, the controller 401 regulates the operation of a stimulation circuit/electrodes 421 to provide deep-brain stimulation.
In the example of
If the probe housing has not yet reached its target location (step 615), the controller continues to operate the linear stage motors (step 617) and continues to perform imaging (step 603) until the target location is reached. Once the probe is positioned at the appropriate target location, the imaging module is removed (step 619) and the stimulation module is inserted into the probe housing (step 621). With the position of the probe housing confirmed, at least in part, by the image data, and the stimulation module in place, the controller then operates the stimulation circuit to provide deep-brain stimulation (step 623).
The example of
Furthermore, certain functionality as illustrated in
To demonstrate the imaging capabilities of the system described above, the imaging device is introduced into the hollow center of a cylindrical polyvinyl chloride plastisol (PVCP, M-F Manufacturing) phantom tissue and scanned from within. Line targets, embedded in the PVCP phantom tissues, are radially scanned using the methods described above. The PVCP phantom tissues are fabricated according to methods demonstrated previousl, with minor adjustments. In brief, 90 mL of PVCP is poured into a round bottom flask, submerged in an oil bath at 220 C. The mixture is allowed to heat for approximately 9 minutes while stirring under vacuum. PVCP is transferred to a glass cylinder mold with a protruding center and parallel line targets. The PVCP is allowed to remain in the mold until it reaches room temperature and solidifies. The cylindrical phantom tissue has an outer diameter of 3.8 cm, inner diameter of 3 mm, and line targets embedded. The embedded target lines consist of either carbon fiber threads with a 7.2 mm diameter are positioned approximately 1 mm from the center of the mold, or carbon fiber rods with a 254 mm diameter are positioned approximately 6.5 to 8 mm from the center. The probe housing of
The mean photoacoustic transverse FWHM is calculated to be 1.8 mm when using external illumination. Distances from the hollow cylindrical tube for each of the rods varied between 6.5 to 8.0 mm from the imaging probe. For internal illumination, the transverse FWHM is calculated to be 1.2 mm. The drop in the FWHM is likely due to the drop in excitatory light that occurred as a result of the drop in laser coupling efficiency to the glass wall of the hollow cylindrical tube. Measurements in the radial direction are performed using the singular angular position corresponding to the maximum peaks from each of the carbon fiber rods. For internal illumination, the mean FWHM in the radial direction is calculated to be 849 μm. A representative signal using internal illumination is shown in
Thus, the invention provides, among other things, systems and methods for real-time in-vivo photoacoustic imaging using a capillary waveguide and a photoacoustic transducer positioned outside of the probe housing. In some implementations, the invention provides systems and methods of image-based guidance for deep-brain stimulation. Various features and advantages of the invention are set forth in the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/644,344, filed Mar. 16, 2018, entitled “PHOTOACOUSTIC AND ULTRASOUND ENDOSCOPIC IMAGING USING A SIDE-VIEWING HOLLOW OPTICAL WAVEGUIDE,” the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62644344 | Mar 2018 | US |