Deep brain stimulation lead

Information

  • Patent Grant
  • 11167126
  • Patent Number
    11,167,126
  • Date Filed
    Monday, August 26, 2019
    4 years ago
  • Date Issued
    Tuesday, November 9, 2021
    2 years ago
Abstract
The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
Description
BACKGROUND OF THE DISCLOSURE

Deep brain stimulation (DBS) is a neurostimulation therapy which involves electrical stimulation systems that stimulate the human brain and body. DBS can be used to treat a number of neurological disorders. Typically DBS involves electrically stimulating a target area of the brain.


SUMMARY OF THE DISCLOSURE

According to one aspect of the disclosure, a neurological lead includes a planar formed, cylindrical film that defines a lumen. The planar formed, cylindrical film includes a distal end, a proximal end, and a plurality of electrodes. The planar formed, cylindrical film can also include a ribbon cable extending from the distal end of the planar formed, cylindrical film into the lumen. The film can include a plurality of layers that can include a first polymeric layer, a first silicon based barrier layer at least partially disposed over the first polymeric layer, and a first metal layer at least partially disposed over the first silicon based barrier layer. Other layers can include a second silicon based barrier layer at least partially disposed over the first metal layer or the first silicon based barrier layer. The second silicon based barrier layer can define a first plurality of through-holes. Another layer can be a second polymeric layer that is at least partially disposed over the second silicon based barrier layer. The second polymeric layer can define a second plurality of through holes. The first plurality of through-holes is substantially aligned with the second plurality of through holes to define each of the plurality of electrodes. The film can also include a second metal layer disposed on the first metal layer.


In some implementations, the first metal layer can form the plurality of electrodes and a plurality of traces. The first metal layer can also form a plurality of contact pads disposed on the ribbon cable. Each of the plurality of contact pads are electrically coupled with at least one of the plurality of electrodes by a trace formed in the first metal layer. The second metal layer can include gold and the first metal layer can include one of platinum and titanium.


The first and second silicon based barrier layers can include at least one of Silicon Nitride, Silicon Oxide, Silicon Carbide, Polysilicon, Amorphous Silicon, Titanium Dioxide, and Titanium III Oxide. A thickness of the first and second silicon based barrier layers can be between about 100 nm and about 2 μm thick.


According to another aspect of the disclosure, a method of forming a neurological lead can include forming a planar film that includes a plurality of electrodes and a ribbon cable extending from a distal end thereof. Forming the film can include depositing a first silicon based barrier layer at least partially over a first polymeric layer and depositing a first metal layer at least partially over the first silicon based barrier layer. The method can also include depositing a second silicon based barrier layer partially over the first metal layer and the first silicon based barrier layer, and then depositing a second polymeric layer at least partially over the second silicon based barrier layer. Forming the film can also include depositing a second metal layer on the first metal layer. The method to form the lead can also include heating the formed planar film and molding the heated planar film into a cylinder, which defines a lumen. The method can also include extending the ribbon cable into the lumen defined by the cylinder.


In some implementations, the method also includes forming the plurality of electrodes and contact pads in the first metal layer. A plurality of traces can electrically couple each of the plurality of contact pads to at least one of the plurality of electrodes. The method can also include depositing the second metal layer on the plurality of contact pads. Each of the plurality of electrodes can be defined by etching a plurality of through holes in the second silicon based barrier layer and the second polymeric layer. The first and second silicon based barrier layers can include at least one of silicon nitride, silicon oxide, silicon carbide, polysilicon, amorphous silicon, titanium dioxide, and titanium III oxide.


According to another aspect of the disclosure a neurological lead can include a planar formed, cylindrical film defining a lumen. The planar formed, cylindrical film can include a distal end and a proximal end. The planar formed, cylindrical film may also include a plurality of electrodes disposed on an outer surface of the formed cylinder and a ribbon cable extending from the distal end of the planar formed, cylindrical film. The ribbon cable can extend into the lumen toward the proximal end of the planar formed, cylindrical film. The lumen of the planar formed, cylindrical film can be filled with an encapsulating polymer, and a tube body can be coupled with the proximal end of the planar formed, cylindrical film.


The lead can also include a plurality of contact pads disposed on the ribbon cable. Each of the plurality of contact pads can be electrically coupled to at least one of the plurality of electrodes. The lead can also include a gold layer disposed on each of the plurality of contact pads. The gold layer can be between about 5 μm and about 50 μm thick. The lead can also include a peripheral trace partially surrounding each of the plurality of electrodes and coupled with each of the plurality of electrodes at two or more locations.


In some implementations, the lead can include one or more orientation marks that are aligned with a directional electrode or the ribbon cable. The one or more orientation marks can be radiopaque.


In some implementations, the at least one of the plurality of electrodes includes a mesh configuration. One of the plurality of electrodes can include rounded corners.


According to another aspect of the disclosure, a method of manufacturing a neurological lead can include providing a planar film comprising a distal end, a proximal end, a plurality of electrodes, and a ribbon cable extending from the distal end of the planar film. The method can include forming the planar film into a cylinder that defines a lumen. The ribbon cable can be extended into the lumen defined by the cylinder, and then the lumen is filled with an encapsulating polymer.


The method can also include heating the planar film. In some implementations, the proximal end of the planar film is coupled with a catheter. The ribbon cable can be coupled with the stylet in some implementations. The method can also include disposing a radiopaque dye on the planar film.





BRIEF DESCRIPTION OF THE DRAWINGS

The figures described herein are for illustration purposes. In some instances various aspects of the described implementations may be shown exaggerated or enlarged to facilitate an understanding of the described implementations. In the drawings, like reference characters generally refer to like features, functionally similar and/or structurally similar elements throughout the various drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the teachings. The drawings are not intended to limit the scope of the present teachings. The systems and methods may be better understood from the following illustrative description with reference to the following drawings in which:



FIG. 1 illustrates an example system for performing neurostimulation.



FIG. 2 illustrates an example stimulation lead for use in neurostimulation.



FIGS. 3A and 3B illustrate the distal end and example stimulation lead in greater detail.



FIG. 4 illustrates a flow chart of an example method for manufacturing a stimulation lead.



FIGS. 5A-5M illustrate an example method for manufacturing the MEMS film.



FIGS. 6A-6B illustrate the MEMS film being molded into a cylinder.



FIG. 7A illustrates the formed MEMS film coupled to a stylet.



FIG. 7B illustrates the lead wires coupling with the ribbon cable of the MEMS film.



FIG. 7C illustrates the process of wire bonding the lead wire to a contact pad.



FIGS. 8A and 8B illustrates the extension of the ribbon cable into the lumen of the molded MEMS film.



FIGS. 9A and 9B illustrate the proximal end of the stimulation lead.



FIGS. 10A-10C illustrate the placement of the orientation mark along a portion of the body.



FIGS. 11A-11I illustrate MEMS film configurations that include different electrode designs.



FIG. 12 illustrates an electrode with redundant periphery traces.



FIGS. 13A and 13B illustrate the application of a second polymeric layer to the first isolating layer illustrated in FIG. 12.



FIGS. 14A and 14B illustrate equipotential surfaces in an electrode when a voltage is applied at trace boundaries.



FIGS. 15A and 15B illustrate electrode current densities.



FIGS. 16A and 16B illustrate rounded corner electrodes with periphery traces.



FIG. 17 illustrates a current density distribution in an electrode with rounded corners and coupled to a periphery trace.



FIG. 18 illustrates a MEMS film with a plurality of electrodes configured as mesh electrodes.



FIG. 19 illustrates a mesh configured electrode.



FIG. 20 illustrates a mesh electrode configuration with a plurality of bands.



FIG. 21 illustrates a finite element analysis model of the current density around a mesh gradient electrode.



FIG. 22 illustrates the current density along an arc length circumferential to the electrode modelled in FIG. 21.



FIG. 23A illustrates a MEMS film with gradient electrodes turned perpendicular to the length of the stimulation lead.



FIGS. 23B-23E illustrate a finite element analysis of a gradient mesh electrode.



FIGS. 24A and 24B illustrate a MEMS film configuration without a ribbon cable.



FIGS. 25A-25C illustrate a MEMS film without a ribbon cable coupled to a style and coupled with a lead body.



FIGS. 26A-26H illustrate methods for maintaining the cylindrical shape of the planar formed, cylindrical MEMS film.



FIGS. 27A-27C illustrate example end cap electrodes.



FIG. 28A illustrates a MEMS film coupled to an existing stimulation lead.



FIG. 28B illustrates the MEMS film of FIG. 28A in a planar configuration.



FIGS. 29A-29D illustrate the distal end of a stimulation lead configured with electrodes distributed longitudinally along the axis of the stimulation lead.



FIGS. 29E and 29F illustrate the MEMS film in a planar configuration before being disposed on the external tube.



FIGS. 30A and 30B illustrate the stimulation lead implanted near a patient's spinal cord.



FIG. 31 illustrates the process of electro-galvanically thickening electrodes.



FIG. 32A illustrates a cross section of a stimulation lead with no platinum growth.



FIG. 32B illustrates a cross section of a stimulation lead with platinum growth.



FIGS. 33A-33N illustrate the method of manufacturing a MEMS film with a second, encapsulated metal layer.



FIGS. 34A-34E illustrate an example of a MEMS film with two metal layers.



FIGS. 35A and 35B illustrate an example proximal end of the stimulation lead.



FIG. 36 illustrates an example MEMS film to be disposed within an encapsulating tube.



FIGS. 37A and 37B illustrate two views of a platinum contact.



FIGS. 38A and 38B illustrate the coupling of the contacts with the MEMS film.



FIG. 38C illustrates the coupling of lead wires to the MEMS film with contacts.



FIG. 38D illustrates an example stimulation lead with a MEMS film disposed within an encapsulating tube.





DETAILED DESCRIPTION

The various concepts introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the described concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.



FIG. 1 illustrates an example system 50 for performing neurostimulation. The system 50 includes a stimulation lead 100 implanted into the brain 124 of a patient 102. The stimulation lead 100 is coupled with a stimulator 122 through cables 126. The stimulator 122 generates therapeutic, electrical stimulations that can be delivered to the patient's brain 124 by the stimulation lead 100.



FIG. 2 illustrates an example stimulation lead 100. The stimulation lead 100 includes a body 150. The body 150 may also be referred to as a tube body, tube, or catheter. The body 150 includes a number of orientation marks 156. At a distal end 105, the stimulation lead 100 includes a MEMS film 110. At a proximal end 180, the stimulation lead 100 includes a plurality of contacts 190.


At the proximal end 180 of the stimulation lead 100, the stimulation lead 100 includes one or more contacts 190. The contacts 190 can be used to establish an electrical connection between the electrodes of the MEMS film 110 and the implanted stimulator 122. For example, each of the contacts 190 can be coupled with one or more electrodes of the MEMS film 110. The stimulator 122 may then couple with the contacts 190 through a plurality of cables 126 to stimulate tissue or record physiological signals.


The distal end 105 of the stimulation lead 100 can include a MEMS film 110. FIG. 3A illustrates the distal end 105 and example MEMS film 110 in greater detail. The MEMS film 110 can be wrapped or assembled around the distal end 105 of the body 150 or formed into a semi-rigid cylinder that is coupled to the end of the body 150. The MEMS film 110 includes a plurality of electrodes 120. The MEMS film 110 can also include a ribbon cable 125 that wraps over the most distal end of the MEMS film 110 and extends into a lumen defined by the MEMS film 110. As described below, the ribbon cable 125 is coupled with one or more lead wires 160. A portion of the length of the lead wires 160 are wrapped around a stylet 153.


The MEMS film 110 can include one or more electrodes 120. As illustrated, the MEMS film 110 includes 12 electrodes. In some implementations, the MEMS film 110 can include between about 6 and about 64 electrodes, between about 8 and about 32, between about 8 and about 24, or between about 8 and about 12 electrodes. The electrodes 120 can be configured as directional or omnidirectional electrodes. Omnidirectional electrodes may wrap substantially around (e.g., at least 80%, or at least 90%) the circumference MEMS film 110 when the MEMS film 110 is formed into a cylinder, and the directional electrodes may wrap only around a portion of the circumference (e.g., less than 80%) the planar formed, cylindrical MEMS film 110. One or more directional electrodes can electrically couple to form an omnidirectional electrode. For example, the three distal most electrodes 120 may be electrically coupled together to form an omnidirectional electrode at the tip of the stimulation lead 100. In some implementations, the MEMS film 110 can include a plurality of omnidirectional electrodes and a plurality of directional electrodes. For example, the electrodes 120 may be configured as two omnidirectional electrodes and six directional electrodes.


Electrical traces can couple each of the electrodes 120 with one or more of the lead wires 160. For example, the traces may run under an insulative layer of the MEMS film 110 to the ribbon cable 125, where the traces terminate and are coupled with the one or more lead wires 160. In some implementations, the stimulation lead 100 includes one lead wire 160 for each of the electrodes 120. In other implementations, the stimulation lead 100 includes fewer lead wires 160 than electrodes 120 because one or more of the lead wires 160 are electrically coupled with more than one of the electrodes 120. For example, when the MEMS film 110 includes two omnidirectional electrodes and six directional electrodes, the stimulation lead 100 may include eight lead wires 160. The lead wires 160 can run along the length of the body 150 toward the proximal end 180 of the body 150. The lead wires 160 may traverse the length of the body 150 in the lumen of the body 150. At the proximal end 180 of the MEMS film 110, the lead wires 160 may be electrically coupled with the contacts 190.



FIG. 3B illustrates the underside of the distal end 105 of the stimulation lead 100. In some implementations, the MEMS film 110 can be initially formed as a planar film that is formed into a cylinder. This method of forming the MEMS film 110 can create a connecting seam 111.


The MEMS film can include a plurality of layers. In some implementations, the MEMS film includes five layers. The five layers can include a first polymeric layer and a first silicon based barrier layer that is at least partially deposited (or otherwise disposed) over the first polymeric layer. The MEMS film 110 can also include a first metal layer that is at least partially deposited (or otherwise disposed) over the first silicon based barrier layer. Other layers can include a second silicon based barrier layer at least partially deposited (or otherwise disposed) over the first metal layer and the first silicon based barrier layer. The second silicon based barrier layer can define a first plurality of through-holes over portions of the first metal layer. Another layer of the MEMS film 110 can be a second polymeric layer that is at least partially deposited (or otherwise disposed) over the second silicon based barrier layer. The second polymeric layer can also define a plurality of through holes. The plurality of through-holes of the second silicon based barrier layer and the second polymeric layer are substantially aligned to define each of the plurality of electrodes 120 and contact pads 145 of the MEMS film 110.



FIG. 4 illustrates a flow chart of an example method 400 for manufacturing a stimulation lead. The method 400 can include forming a planar MEMS film (step 401). The planar MEMS film can then be molded into a cylinder (step 402). A ribbon cable of the MEMS film may then be extended into a lumen of the molded cylinder (step 403). The molded MEMS film may then be coupled with a lead body (step 404).


As set forth above, the method 400 can begin with the forming of a planar MEMS film (step 401). The planar MEMS film may be a planar version of the MEMS film 110. The planar MEMS film can be referred to generically as the MEMS film 110. In some implementations, the MEMS film 110 includes a plurality of layers. The MEMS film 110 can include one or more polymeric layers, one or more silicon based barrier layers, and one or more metal layers. For example, the MEMS film 110 can include a first polymeric layer, a first silicon based barrier layer, a first metal layer, a second silicon based barrier layer, a second polymeric layer, and a second metal layer. The silicon based barrier layers can improve adhesion of the layers, improve scratch resistance of the metal layers, and impede the flow of ions and humidity between the layers. Ions and humidity can traverse a polymeric layer and cause electrical short circuits in the metal layer of a MEMS device. The silicon based barrier layers can prevent or reduce the flow of ions and the introduction of humidity into or between the layers. Accordingly, the reduction of ion flow and humidity between the layers by the silicon based barrier layers can improve the performance and durability of the MEMS film 110.



FIGS. 5A-5M illustrate an example method for manufacturing the MEMS film 110. More particularly, FIGS. 5A-5M illustrate a cross-sectional view of an example thin-film micro-fabrication method for fabricating the MEMS film 110. The MEMS film 110 can be fabricated using a plurality of techniques and the below describe method illustrates one possible method for fabricating the MEMS film 110. The fabrication procedure can include a series of procedural steps in which various layers are deposited or removed (e.g., etched) to achieve a final form. The cross sections in FIG. 5A through FIG. 5M demonstrate the process steps to build a MEMS film 110.


In a first step illustrated in FIG. 5A, a carrier substrate 201 is provided, such as a wafer composed of a crystalline material, such as silicon, or an amorphous material, such as a thermal shock resistant borosilicate glass or other suitable smooth supportive material. A first layer 202, which can include one or more sub-layers, is applied to a surface of the wafer 201. One of the sub-layers can be a sacrificial layer deposited on the wafer 201, which is removed in a subsequent electrochemical etching step. In some implementations, the sacrificial sub-layer is preceded by another sub-layer, referred to as an underlayer, which can serve to form the electrochemical cell required to etch the sacrificial layer. The sacrificial sub-layer can be aluminum, or an alloy of aluminum such as AlSi, which has a smaller granularity, whereas the underlayer can be a TiW alloy such as Chrome or similar metal. In some implementations, when the sacrificial sub-layer is not implemented, the removal of the resulting device from the substrate is difficult and could result in damage to the finished device.


Referring to FIG. 5B, the next step in the fabrication process can include depositing a first polymeric layer 205. The first polymeric layer 205 can be deposited upon the sacrificial layer 202 by MEMS processes such as, but not limited to, (i) spin coating a liquid polymer precursor such as Polyimide or Silicone precursor; (ii) depositing a polymer through chemical vapor deposition as is done with parylene-C; or (iii) laminating a polymer sheet onto the wafer. In some embodiments, the polymer layer 205 is heated, or baked, to polymerize. In some implementations, the first polymeric layer 205 includes polyamic-acid dissolved in NMP and spun onto the sacrificial layer 202 in liquid form. The polymeric layer 205 is heated into a imidized polyimide. The polymer in its cured form is between about 5 μm and about 15 μm thick. The polymer layers of the MEMS film can serve as a barrier to water, humidity, and isolate the components of the MEMS film.



FIG. 5C illustrates the deposition of a silicon based barrier layer. The silicon based barrier layer can serve both as a layer to aid the adhesion and durability of subsequent layers. The silicon based barrier layer can also serve as an ionic barrier, and limit ions from reaching the metal layers, which could compromise electrical performance. The silicon based barrier layer can also block humidity from reaching the interlayers and the metal layer, which could create short circuits and compromise electrical isolation.


In some implementations, the silicon based barrier layer is deposited onto the first polymeric layer 205 by vapor deposition techniques such as chemical vapor deposition (CV) and plasma enhanced chemical vapor deposition (PECVD), or by sputtering techniques such as direct current (DC) or RF (Radio Frequency) sputtering. The silicon based barrier layer can include Silicon Nitride, Silicon Oxide, Silicon Carbide, Poly-Silicon, or Amorphous-Silicon. The silicon based barrier layer can also include other non-conductive materials, such as Titanium Dioxide or Titanium (III) Oxide. The final thickness of the silicon based barrier layer can range from about 20 nm to about 2 μm. In some implementations, the silicon based barrier layer is about 400 nm to about 600 nm, which can permit the silicon based barrier layer to be flexible enough to bend during subsequent assembly techniques.


Now referring to FIG. 5D, a metal layer 215 can be deposited over the entire wafer on the surface of the silicon based barrier layer 210. Subsequently, a photoresist layer 217 can be deposited. The photoresist layer 217 can be defined by exposing areas of the photoresist layer 217 to ultra-violet light and developing those areas in a solvent. Thus, the exposed areas of the photoresist layer 217 will be selectively removed and areas of the metal layer 215 will be exposed. The areas of the metal layer 215 covered by the photoresist layer 217 can form the electrodes, traces, and other components of the final product that are within the metal layer.


The metal layer 215 can include a variety of metals such as titanium, platinum, gold, and others metals used in neuromodulation. To improve adhesion of a metal layer 215, the metal layer 215 can be applied in layers. For example, the metal layer 215 can be applied as a first layer, such as titanium, then a middle layer, such as platinum, and finally an upper layer, such as titanium. This tri-layer metal structure can improve adhesion below and above the platinum layer by using the titanium as an adhesion layer to the silicon based barrier layer. The typical thicknesses for the adhesion layer of titanium can be between about 20 nm and about 100 nm or between about 25 nm and about 75 nm. Typical thicknesses for the platinum layer can be between about 200 nm and about 7 μm, between about 400 nm and about 5 μm, between about 400 nm about 3 μm, between about 400 nm and about 1 μm, or between about 400 nm and about 700 nm. In some implementations platinum can be replaced by another, high charge transfer capable material such as iridium oxide.



FIG. 5E illustrates the process after the etching of the metal layer 215. As illustrated, the metal layer 215 can be locally removed in the areas that were not covered by the photoresist 217. In some implementations, etching of the metal layer is performed in a plasma etcher such as a Reactive Ion Etcher. In some implementations, titanium and platinum can be etched with chlorine gas. After the etching process is finished, the photoresist layer 217 can be removed using a solvent.


Another method to deposit and define the metal layer is using the so-called “lift off” technique. In this method the photoresist layer can be deposited onto the silicon based barrier layer 210 first. The photoresist layer can be defined using photolithography. The metal layer 215 can then be deposited through this “lift off” mask, and the remaining photoresist removed in a solvent. In this method the metal layer is transferred onto the silicon based barrier layer without the need of plasma etching and may have some process costs and speed advantages.


Referring next to FIG. 5F, a deposition of a second barrier layer 220 is performed. The second barrier layer can be deposited using the same techniques as the first silicon based barrier layer 210. The second barrier layer 220 can be the same thickness, or a different thickness as the first silicon based barrier layer. In some implementations, the second silicon based barrier layer is optional. The second silicon based barrier layer 220 and the first silicon based barrier layer 210 can substantially surround (e.g., at least 80%) the metal layer 215, rendering it electrically isolated. In order to etch and define the first and second silicon based barrier layer 210 and 220, respectively, a second photoresist layer 227 is deposited and photolithographically defined with clean room techniques.


The two silicon based barrier layers are etched, as illustrated in FIG. 5G. The silicon based barrier layers can be etched using a plasma etch. An example of an etching process would be a reactive ion etching using a tetrafluoromethane gas, (CF4). The second photoresist layer 227 can be removed using a solvent dissolution.



FIG. 5G illustrates an example where the edges of the silicon based barrier layers 210 and 220 are defined, but the etch does not reach the metal layer 215. In some implementations the photolithography can include an opening above the metal layer 215, which would result in exposing the metal layer 215.



FIG. 5H illustrates the application of a second polymer layer 230. The second polymer layer 230 can be the same or a different polymer from the first polymer layer 205, and it can be the same or a different thickness.



FIG. 5I illustrates the deposition of a third photoresist 237, which can form the etching perimeter of the first and second polyimide layers 205 and 230, respectively. In some implementations, prior to the applying the third photoresist 237, a sacrificial layer, such as Silicon Dioxide or Silicon Nitride, is deposited in order to serve as an etch mask for the polyimide etch. For example, a silicon dioxide layer of thickness of about 500 nm can be deposited, which will serve as the etch mask for the process.



FIG. 5J illustrates the result of an oxygen plasma etching of the first and second polyimide layers 205 and 230, respectively. If applied, the silicon dioxide layer can be removed through an additional etch.



FIG. 5K illustrates the deposition of a fourth photoresist layer 247. In some implementations, the fourth photoresist layer 247 does not cover part of the metal layer 215. For example, the opening 232 can be maintained to create a region for a gold layer to grow.



FIG. 5L illustrates the galvanic growth of a thick gold layer 250 into the opening 232. In some implementations, the gold layer 250 is achieved by connecting the metal traces in the wafer to a perimetric metal band that allows an electrical connection between the edge of the wafer and the metal opening 232. When immersed in a galvanic bath and a current applied, the gold will grow on the metal layer 215 using the metal layer 215 as the seed layer for galvanic growth. In some implementations, the gold layer 250 is about 2 μm to about 20 μm thick. The fourth photoresist layer 247 can be removed using a solvent.



FIG. 5M illustrates the removal of the MEMS film from the wafer 201. The removal of the fourth photoresist layer 247 exposes the electrode opening 233. The MEMS film can be removed from the wafer 201 by the removal of the sacrificial layer 202 using electrochemically etching. Removal of the sacrificial layer 202 frees the underside of the MEMS film from the wafer 201. In some implementations, the sacrificial layer 202 is removed by placing the wafer in a saline bath with a high NaCl concentration. A platinum electrode also placed in the bath can be used as a reference, and a voltage can be applied to the aluminum layer with respect to the platinum electrode. The electrochemical cell created by the aluminum and TiW etches the aluminum—separating the MEMS film from the wafer 201.


In some implementations, when the MEMS wafer is completed, and the individual devices have been removed, further process steps can occur before to assemble the wafers into a cylindrical shape.


Referring again to FIG. 4, the method 400 can also include molding the MEMS film 110. In some implementations, the MEMS film 110 is molded into a cylinder shape that defines a lumen. FIGS. 6A-6B illustrate the MEMS film 110 being molded into a cylinder.



FIG. 6A illustrates a planar view of the MEMS Film 110. As illustrated, the MEMS film 110 includes twelve electrodes 120. The electrodes 120 can be generally rectangular in shape with rounded corners. The ribbon cable 125 extends from the distal end of the MEMS film 110. The ribbon cable 125 can include one or more traces that electrically couple the electrodes 120 to the contact pads 145. In some implementations, each of the contact pads 145 are electrically coupled with one or more electrodes 120.



FIG. 6B illustrates the molded MEMS film 110. In some implementations, the MEMS film 110 is heated to and then molded to form a cylinder. The MEMS film 110 can be heated and molded using a thermal reflow method. In some implementations, the MEMS film 110 is heated to about 300° C. when molded. The formed cylinder can have an internal diameter of between about 0.5 mm and about 2 mm, between about 1 mm and about 1.5 mm, or between about 1.3 mm and about 1.5 mm after formed into a cylinder. The cylinder shape of the MEMS film 110 can be formed by inserting the MEMS film 110 into a tube with the same diameter that is required for the final device. The MEMS film 110, within the tube, can be heated to a temperature which causes the polymer insulator to slightly reflow and take the new form of the tube.


The end of the ribbon cable 125 can be coupled to a stylet 153. FIG. 7A illustrates the formed MEMS film 110 coupled to the stylet 153. Coupling the MEMS film 110 to the stylet 153 can render the distal end of the ribbon cable 125 rigid and can simplify later assembly steps. For example, coupling the stylet 153 with the ribbon cable 125 can ease the coupling of the lead wires 160 to the contact pads 145. The stylet 153 can include a metallic material (e.g., stainless steel), a ceramic material, or a polymeric material. In some embodiments, the stylet 153 can be radio-opaque such that the surgeon can visualize the stimulation lead 100 in an x-ray or CT scan during the implantation process to control the final placement of the stimulation lead 100. The stylet 153 can also be used to determine the rotation of the stimulation lead because the stylet 153 is partly planar along its longitudinal axis.



FIG. 7B illustrates the lead wires 160 coupling with the ribbon cable 125 of the MEMS film 110. In some implementations, the lead wires 160 are coiled around the stylet 153. The lead wires 160 can be coupled with the contact pads 145 through laser welding, ultrasonic bonding, crimping, thermocompression bonding, or wire bonding. In some implementations, the lead wires 160 are locally flattened to increase the surface area of the lead wires 160 that comes into contact with the contact pads 145.



FIG. 7C illustrates the process of wire bonding a lead wire 160 to a contact pad 145. As illustrated, a lead wire 160 lies across the contact pad 145. The insulation at the end of the lead wire 160 can be removed so the conductor within the lead wire 160 can make contact with the contact pad 145. A wire bond 147 connects the contact pad 145 to the lead wire 160. A weld can be formed between the wire bond 147, the contact pad 145, and the lead wire 160 through the use of heat, pressure, ultrasonic energy, or combinations thereof.


Referring again to FIG. 4, the method 400 can also include extending the ribbon cable into the lumen formed by the molding of the MEMS film (step 403). The ribbon cable 125 can be folded such that a portion of the ribbon cable 125 and a portion of the stylet 153 are disposed within the lumen defined by the formed MEMS film 110. In some implementations, the lumen defined by the MEMS film 110 can be back filled with an encapsulating polymer, such as an epoxy. The MEMS film 110 can be placed in a cylindrical mold prior to the backfilling with the polymer. Backfilling the MEMS film 110 can serve to secure the lead wires 160 in place and electrically encapsulate the connections within the lumen. In some implementations, the backfilling process can also be used to form a cylindrical form to the distal end of the stimulation lead 100.



FIG. 8A illustrates the extension of the ribbon cable into the lumen of the molded MEMS film 110. The ribbon cable 125 can be folded such that a portion of the ribbon cable 125 and a portion of the stylet 153 is disposed within the lumen formed by the molded MEMS film 110. The portion of the ribbon cable 125 and the stylet 153 can be extended into the lumen by temporarily opening the cylinder along the seam 111.



FIG. 8B illustrates the MEMS film 110 after the backfilling process. The lumen defined by the MEMS film 110 can be backfilled, or co-molded, with a polymeric material. The backfilling process can seal the MEMS film 110 in place and electrically isolate the lead wires 160 connected to the contact pads 145 at the end of the ribbon cable 125. The backfilled polymer can fill the interior of the lumen and can also create a distal, hemispherical tip 151. In some implementations, an internal cylinder 161 is added proximal to the backfilling material over the lead wires 160. The internal cylinder 161 can reduce abrupt changes in compliance (e.g., flexibility) in the final device, when transitioning from the flexible lead wires 160 to the relatively rigid polymeric filling of the back filled MEMS film 110.


Referring again to FIG. 4 among others, the method 400 can also include coupling the molded film to a lead body (step 404). The body 150 can couple with the molded MEMS film 110 by glue or adhesive. In some implementations, the body 150 can be molded over a portion of the proximal end of the MEMS film 110. In addition to securing the body 150 to the MEMS film 110, molding the body 150 over the MEMS film 110 can help the MEMS film 110 maintain a cylindrical shape. The proximal end of the body 150 can include the one or more contacts 190.



FIGS. 9A and 9B illustrate the proximal end 180 of the stimulation lead 100. The proximal end 180 of the stimulation lead 100 can include a plurality of contacts 190. As illustrate, the proximal end 180 of the stimulation lead 100 includes eight contacts 190. Each of the contacts 190 are electrically coupled with at least one of the lead wires 160. In some implementations, the proximal end 180 of the stimulation lead 100 is stiffer when compared to other portions of the stimulation lead 100. The added stiffness of the proximal end 180 can assist in the coupling of the proximal end 180 with a stimulator or an extension cable. The stimulation lead 100 can also include a lumen 182, which is illustrated in FIG. 9B. In some implementations, the lumen 182 runs the length of the stimulation lead 100.



FIGS. 10A-10C illustrate the placement of the orientation mark 156 along a portion of the body 150. The orientation mark 156 can enable a neurosurgeon to determine the placement and rotation of the stimulation lead 100 when the stimulation lead 100 is implanted within the patient. For example, the orientation mark 156 may enable the neurosurgeon to determine the axial orientation (e.g., rotation) of the stimulation lead 100 and determine towards what anatomical structure the directional electrodes are facing. In some implementations, the orientation mark 156 can be a solid line extending the length of the stimulation lead 100. The orientation mark 156 can also include a dashed line or a series of dots.


The orientation mark 156 can be aligned with a specific feature (or landmark of the stimulation lead 100). For example, the orientation mark 156 can be aligned with a directional electrode 120, as illustrated in FIG. 10A. In another example, the orientation mark 156 can be aligned with the seam 111 of the MEMS film 110, as illustrated in FIG. 10B. The orientation mark 156 can also be aligned with a gap between two electrodes 120 or with the ribbon cable 125 (as illustrated, for example, in FIG. 10C).


The orientation mark 156 can be a stamped ink line or can be applied to the stimulation lead 100 during the extrusion body 150 as a dye, for example. The orientation mark 156 can alter the reflectivity of the body 150 and may be implemented as a radiopaque ink or dye in order to provide intra-operative and post-operative imaging. In some embodiments, laser marking can be used to locally change the texture, color, or reflectivity of the body 150 to serve as the orientation mark 156.


The MEMS film 110 can include a combination of stimulating electrodes and recording electrodes. In some implementations, an electrode 120 can be recording electrode or a stimulating electrode, or both. For example, to act as a stimulating electrode, the electrode 120 may be coupled with a stimulator, and to act as a recording electrode, the electrode 120 may be coupled with an analog-to-digital converter and an amplifier. In some implementations, the recording electrodes and the stimulating electrodes may be shaped or configured differently. For example, the recording electrodes may be smaller in size compared to the stimulating electrodes.


A neurosurgeon may record from one or more of the electrodes 120 during the implantation of the stimulation lead 100. For example, the neurosurgeon may record neurophysiological activity in the beta band (approximately 15-30 Hz) of neural activity because the beta band is closely associated with motor behavior.



FIGS. 11A-11I illustrate planar MEMS film 110 configurations that include different electrode designs. Each of the MEMS film 110 include three columns of electrode 120 and can therefore record electrical activity in three directions, labeled 0 degrees, 120 degrees, and 240 degrees. The MEMS film 110 may also include more than three columns of electrodes 120 to enable the stimulation lead 100 to record and stimulation in more than three directions. Each of the electrodes 120 of each of the different MEMS films 110 can be electrically isolated from one another to form directional electrodes or one or more of the electrodes 120 can be electrically coupled to one another to form omni-directional electrodes. For reference, when the MEMS films illustrated in FIGS. 11A-11I are molded into a cylinder, the end of the MEMS film toward the bottom of the page is coupled to the body 150.



FIG. 11A illustrates the MEMS film 110 configured to have both elongated electrodes 120 and circular electrodes 120. The elongated electrodes can include semicircular ends. In some implementations, the circular electrode may be configured for use as recording electrodes and the elongated electrodes may be configured for stimulating neurological tissue. The recording electrodes can record neurological activity during the surgical descent of the stimulation lead 100 into the brain. By having recording electrodes close to the stimulation electrode, the electrical activity captured by the recording electrodes after stimulation from the stimulating electrodes can be clinically relevant to the stimulation lead 100 placement. In some implementations, recording data captured from any or all recording electrodes can be clinically relevant to determine which of the stimulating electrodes should be used to stimulate a specific target. FIG. 11B illustrates a similar implementation, but with electrodes that include rounded corners rather than semicircular ends.



FIG. 11C illustrates an implementation of a planar MEMS film where the electrodes 120 are of the same dimensions. In some implementations, the most proximal row of electrodes and most distal rows of electrodes are each electrically interconnected, and therefore each row can act as a circumferential electrode.



FIG. 11D illustrates a planar MEMS film with electrodes 120 configured as circular electrodes. The electrodes 120 configured as circular electrodes may improve charge density considerations around the edges of the electrode. FIG. 11E illustrates a planar MEMS film with electrodes 120 configured as circular electrodes of different sizes. The larger circular electrodes may be used for stimulation and the smaller circular electrodes may be used for recording. FIG. 11F illustrates a planar MEMS film with electrodes 120 configured as circular electrodes where the rows are placed closely together.



FIG. 11G illustrates a planar MEMS film with an electrode arrangement where the electrodes 120 are configured as elongated electrodes and circular electrodes. The elongated electrodes can be configured as recording electrodes and are interlaced along each row with the circular electrodes, which may be configured as stimulating electrodes. FIG. 11H illustrates a planar MEMS film with an electrode arrangement where each electrode 120 includes an inner portion 294 and an outer portion 292. In some implementations, the inner portion is a stimulation electrode and the outer portion 292 is a recording electrode. FIG. 11I illustrates a planar MEMS film where each electrode includes four bands 299. In some implementations, two or more of the bands 299 are electrically coupled together.


One or more of the electrodes 120 can include redundant traces that improve reliability of the stimulation lead 100. The electrodes 120 can be connected to the contact pads 145 on the end of the ribbon cable 125 via metal traces that are embedded in the MEMS film 110. The traces can have several redundancies around the periphery of the electrode 120 to reduce the likelihood that the electrode 120 will become disconnected from the contact pad 145 to which the electrode 120 is coupled. This design is demonstrated in FIG. 12, for example, with a simplified embodiment of a MEMS electrode film 300.



FIG. 12 illustrates a MEMS film with electrodes with redundant periphery traces. As illustrated a metal layer is deposited onto a polymeric layer 305. The metal layer can include the contact pads 145, the traces 315, the periphery traces 314, and the electrodes 120. Each periphery trace 314 can extend around the perimeter of an associated electrode 120. The periphery trace 314 can be coupled with an electrode 120 at a plurality of connection points 316. Each electrode 120 can include four connection points 316. In some implementations, each electrode 120 includes one or more connection points 316 per edge of the electrode 120. For example, the electrodes 120 illustrated in FIG. 12 are squares with four edges and one connection point 316 per edge. In some implementations, the contact pads 145 can also be surrounded by a periphery trace 314.



FIGS. 13A and 13B illustrate the application of a second polymeric 325 (or isolating layer) to the first isolating layer 305 illustrated in FIG. 12. The second polymeric layer 325 can include a plurality of through holes 310 that align with the electrodes 120 and the contact pads 145. The silicon based barrier layer that can be deposited over the metal layer can also include a plurality of through holes that align with the through holes 310 of the second polymeric layer. The second polymeric 325 can be bonded to the surface of the first polymeric layer 305 and the metal conductive layer. The second polymeric 325 can be photolithographically defined. The resulting stack of layers is demonstrated in FIG. 13B, where the electrodes 120 and corresponding contact pads 145 are apparent through the through holes 310, but the traces 315 and periphery traces 314 are hidden from view and electrically isolated from the outside environment.



FIGS. 14A and 14B illustrate equipotential surfaces in an electrode when a voltage is applied at trace boundaries. In FIG. 14A, the electrode is only coupled to a single trace 315 and does not include a periphery trace 314. In some implementations, the junction between the trace 315 and the electrode 120 is an area where the applied voltage is highest. FIG. 14A illustrates the equipotential surfaces 332 in an electrode 120 when a voltage is applied at trace 315. The potential is concentrated at a corner, near the junction between the trace 315 and the electrode 120. In some implementations, the concentrated potential can contribute to device reliability issues at the junction. FIG. 14B illustrates an electrode 120 with a peripheral trace 314. The peripheral trace 314, with four connection points to the electrode 120 better distributes the potential 337 throughout the electrode 120. The distribution of the potential can increase electrode health and provide redundancies if one of the connection points break.


The electrodes 120 can include rounded electrode corners to decrease focal points of current density on each of the electrodes 120. FIG. 15A illustrates rectangular electrode 120 with a voltage applied to the electrode. High current densities can be generated at the corners of the electrode in this example. FIG. 15B illustrates an electrode 120 with rounded or semicircular ends, which can reduce the current density relative to rectangular corners. Reducing current density can protect the electrode from degradation.



FIGS. 16A and 16B illustrate example rounded corner electrodes with periphery traces. FIG. 16A illustrates a MEMS film with four rounded corners electrodes 120. The electrodes 120 are connected to contact pads 145 through the traces 315. The trace 315 are coupled with periphery traces 314 that enable voltage distribution to be equal at contact points 316, and thereby distributed the voltage more evenly across the electrode surface. As illustrated, the periphery traces 314 do not encircle the perimeter of the electrodes 120; however, in some implementations, the periphery traces 314 can fully encircle the perimeter of the electrodes 120. FIG. 16B illustrates the MEMS film with a second polymeric layer 375 in place, encapsulating the periphery traces 314 and the traces 315.



FIG. 17 illustrates a current density distribution in an electrode with rounded corners and coupled to a periphery trace. A rounded corner electrode 120 is fully surrounded by a periphery trace 314. The periphery trace 316 makes two connections to the electrode 120. When a potential is applied to the trace 315, the equipotential regions 382 distribute around the periphery trace 316 and enter the electrode 120 at the two connection points. By applying the potential to multiple points of the electrode 120, the potential is more evenly distributed across the electrode 120.


The electrodes 120 can include meshes. FIG. 18 illustrates a MEMS film 110 with a plurality of electrodes 120 configured as mesh electrodes. A mesh electrode configuration can be used to concentrate current density in certain areas of the electrode surface—for example, the center. FIG. 19 illustrates an electrode 120 configured as a mesh electrode. A mesh electrode 120 can include a plurality of concentric bands. In some implementations, each of the bands are of the same thickness and in other implementations, as illustrated in FIG. 19, each of the bands may be narrower toward the center of the electrode 120. Narrowing each of the bands towards the center of the mesh electrode 120 can increase current density towards the center of the electrode 120, and thereby limit the spread of current from the electrode's perimeter. In some implementations, a mesh electrode has the effect of concentrating the volume of tissue being influenced by the electric current to the center of the electrode, therefore increasing the effect of directional stimulation in the patient.



FIG. 20 illustrates a mesh electrode configuration with a plurality of bands. The MEMS film 420 includes a plurality of mesh gradient electrodes 427. Each of the mesh gradient electrodes 427 includes a plurality of electrode bands 423. In some implementations, the bands are narrower toward the center of the mesh gradient electrode 427. The narrowing of the bands can concentrate current density towards the center of the electrode 427. FIG. 21 illustrates a finite element analysis model of the current density 425 around a mesh gradient electrode, which shows that current density is the highest toward the center of the mesh gradient electrode 423. FIG. 22 illustrates the current density 425 along an arc length circumferential to the electrode modelled in FIG. 21. The numerical analysis illustrated in FIGS. 21 and 22 shows that current density peaks can be shifted away from the periphery of the electrodes and into the center of the electrode using mesh electrodes.



FIG. 23A illustrates a MEMS film with gradient electrodes turned perpendicular to the length of the stimulation lead 100. The gradient mesh electrode 427 is implemented on the MEMS film to concentrate a volume of the current longitudinally along the MEMS film. FIGS. 23B and 23C illustrate a finite element analysis model of the electric potential at the surface of the gradient mesh electrode 427 when in contact with conductive media. The numerical analysis demonstrates that the current density peaks 426 can be shifted away from the periphery of the electrodes and toward the center of the electrode 427 using a gradient mesh. FIG. 23D illustrates the peaks of current density 426 along the electrode longitude, and suggests that with proper gradient meshing the peaks of high current density can be driven away from the periphery toward the center of the electrode. FIG. 23E illustrates the difference between current density 2301 of a non-meshed electrode. The current density 2301 of the non-meshed electrode includes current density peaks at its periphery. The current density 2302 of the gradient mesh electrode includes a plurality of peaks toward the center of the electrode.


In some implementations, the gradient mesh configurations increase efficacy of electrical stimulation in human subjects by avoiding side effects and concentrating a stimulation signal on regions of intended targets.



FIGS. 24A and 24B illustrate a MEMS film 110 configuration without a ribbon cable. FIG. 24A illustrates a MEMS film 110 without a ribbon cable in a planar configuration. A contact pad area 525 extends from the MEMS film 110. The contact pad area 525 a plurality of contact pad 145. The electrode 120 is electrically coupled with one or more contact pads 145 by traces. The MEMS film 110 can also include a plurality of vias 527 (or holes in the MEMS film 110). The vias 527 can aid in assembly, by enabling the encapsulating epoxy to flow around the contact pad area 525 and fully encapsulate the contact pad area 525. The vias 527 can also improve bending at the junction of the MEMS film 110 and the contact pad area 525.



FIG. 24B illustrates the MEMS Film 110 after thermal reforming into a cylindrical shape. The molded MEMS film 110 defines an inner lumen 530. The contact pad area 525 is folded into the lumen 530. In some implementations, the lumen 530 is backfilled with an encapsulating epoxy.



FIG. 25A illustrates MEMS film without a ribbon cable coupled to a style and coupled with a body 150. As illustrated the top portion of the MEMS film without a ribbon cable is removed to view the interior of the lumen defined by the molded MEMS film. The contact pad area 525 is coupled with a stylet 153 and lead wires 160 are coupled with the contact pads 145. FIG. 25B illustrates the same embodiment as illustrated in FIG. 25A, but from a different angle. In these and other examples, sections of the MEMS film are removed to illustrate the inner features.



FIG. 25C illustrates the MEMS Film 110 without a ribbon cable in an assembled and overmolded state. After the lead wires 160 are welded in place, MEMS Film 110 is back-filled with a polymer or epoxy solution to order to fortify the cylindrical shape. The polymer also encapsulates and isolates the lead wires 160 connections to the contact pads 145. In some implementations, the MEMS film without a ribbon cable is more reliable compared to a MEMS film with a ribbon cable. The contact pad area 525 can also provide more spacing between electrode sites 120 for traces leading to the contact pads 145.



FIGS. 26A-26H illustrate methods for maintaining the cylindrical shape of the planar formed, cylindrical MEMS film. FIG. 26A illustrates a MEMS film 110 that can maintain the cylindrical shape with hooks and clips. The MEMS film 110 can include two hooks 607 and two notches 605, or other number of hooks or notches. FIG. 26B illustrates the planar formed, cylindrical MEMS film 110 with the hook 607 coupled with the notch 605. When the MEMS film 110 is formed into a cylinder, the hook 607 and notches 605 on opposite sides of the MEMS film 110 are aligned with one another. Each hook 607 can slide into the recess of its matching notch 607. In some implementations, the seam of the planar formed, cylindrical MEMS film 110 may also be glued in place.



FIG. 26C illustrates the use of securing holes 625 to maintain the cylindrical shape of the planar formed, cylindrical MEMS film 110. The MEMS film 110 includes a hole 625 at each of the corners of the MEMS film 110. In some implementations, the MEMS film 110 can also include addition holes 625 along each long edge of the MEMS film 110. As illustrated in FIG. 26D, when the MEMS film 110 is formed into a cylinder, two holes 625 are aligned with one another. A wire 627 can be run through each of the holes 625 to secure the seam and maintain the cylindrical shape of the planar formed, cylindrical MEMS film 110. The wire 627 can be a metal or polymer wire, a staple, or a clip.



FIG. 26E illustrates the distal end of a planar formed, cylindrical MEMS film 110. The MEMS film 110 can include an under hang 634 that is positioned under the opposite edge 632 of the MEMS film 110. The under hang 634 can provide a platform for applying an adhesive. The under hang 634 and the opposite edge 632 can be mechanically pressed together to form a seal at the seam of the planar formed, cylindrical MEMS film 110. In some implementations, the under hang 634 can extend into the lumen defined by the planar formed, cylindrical MEMS Film 110. In these implementations, when the lumen is backfilled with epoxy, the under hang 634 can be trapped within the epoxy, preventing the unraveling of the planar formed, cylindrical MEMS Film 110. In some implementations, as illustrated in FIG. 26F, the under hang embodiment can include a plurality of holes 625. As in the above, illustrated example, the two edges of the MEMS film 110 can be bound together by a wire 627 that passes through each of the holes 625.



FIGS. 26G and 26H illustrate an over molding method for maintaining the cylindrical shape of the planar formed, cylindrical MEMS film 110. Once formed into a cylindrical shape, an end cap can form a collar 655 over the distal end of the MEMS film 110. The body 150 can form a collar 655 over the proximal end of the MEMS film 110. As illustrated by FIG. 26H, the collar 655 of the end cap (and the collar 655 of the body 150) overlaps the MEMS film 110 by a predetermined distance 657. In some instances, the collar 655 may extend longitudinally over the seam 111 in order to enclose the gap formed by the edges of the MEMS film 110 along the length of the cylinder shape.


The stimulation lead 100 can include distal recording sites on the end cap of the stimulation lead 100. FIG. 27A illustrates an example MEMS film 110 with end cap electrodes. The stimulation lead 100 can include a plurality of end cap electrodes 715 coupled with the end cap 725 of the stimulation lead 100. As illustrated in FIG. 27A, the stimulation lead 100 includes five end cap electrodes 715 disposed along four end tags 710. The end cap electrodes 715 can be used to identify neural activity during the implantation of the stimulation lead 100 into a patient's brain. The end tags 710 can be coupled with the end cap to ensure that the end cap electrodes 715 remain in place during implantation.



FIG. 27B illustrates an end view of the stimulation lead 100 configured to include distal recording sites. As described above, the stimulation lead 100 may include five end cap electrodes 715 disposed on the surface of the end cap 725. The stimulation lead 100 may include a central end cap electrode 715 and then a plurality of end cap electrodes 715 positioned slightly proximal to the central end cap electrode 715. In some implementations, one of the end cap electrodes 715 positioned slightly proximal to the central end cap electrode 715 is pointed in each of the anterior, posterior, lateral, and medial directions.



FIG. 27C illustrates the planar MEMS film 110 with end cap electrodes 715. Four end tags 710 extend from the distal end of the MEMS film 110. In some implementations, the MEMS film 110 may include more than four end tags 710. For example, the MEMS film 110 may include between 5 and 12 end tags 710. At least one end cap electrode 715 is disposed on each of the end tags 710. In some implementations, one of the end tags 710 is longer and includes an additional end cap electrode 715. The longer end tag 710 can extend to the apex of the end cap 725, and the end cap electrode 715 at the end of the loner end tag 710 is the central end cap electrode 715 when applied to the end cap 725.


A MEMS film can couple with an existing stimulation lead. FIG. 28A illustrates a MEMS film 730 coupled to an existing stimulation lead, such as a Medtronic 3389 DBS Lead (Medtronic Inc., MN). The MEMS film 730 can be positioned between or around existing ring electrodes 755. The MEMS film 730 can add additional electrodes 120 and end cap electrodes 715 to the existing stimulation lead. The addition of the MEMS film 730 can add the ability of recording or stimulating directionally to the existing stimulation lead. FIG. 28B illustrates the MEMS film 730 in a planar configuration. The MEMS film 730 includes four electrodes 120 disposed along a single arm 742 and one end cap electrode 715. In some implementations, the MEMS film 730 includes multiple rows of electrodes 120 disposed across one or more arms 742. Each of the arms 742 can be configured to fit between each of ring electrodes 755.


The stimulation lead can have electrodes distributed longitudinally along the axis of the stimulation lead. The electrodes can be distributed longitudinally along the axis of the stimulation lead to enable for flexion between electrode locations. A flexible stimulation lead can be used in spinal cord or pelvic floor stimulation, for example.



FIG. 29A illustrates the distal end of a stimulation lead 760 configured with electrodes distributed longitudinally along the axis of the stimulation lead 760. The stimulation lead 760 includes a MEMS film 770, which can enable flexion between electrode sites. The MEMS film 770 is connected to the lead wires 160 which are within the external tube 765 to which the MEMS film 770 is disposed.



FIGS. 29B-29D illustrates enlarged views of the distal end of the stimulation lead 760. The MEMS film 770 includes a plurality of electrodes 120 that wrap around the circumference of the external tube 765. Each electrode 120 is coupled with a contact pad 145 through traces embedded in a respective ribbon cable 125. A lead wire 160 is connected and bonded to each of the contact pads 145 through welding, bonding, or gluing to electrically coupled each of the electrodes 120 to the proximal end of the MEMS film 770. All subsequent electrode sites 775 on MEMS film 770 are assembled in the same manner. FIG. 29C and FIG. 29D provide additional planar perspectives of the same distal end of the Neurostimulation lead 760.



FIG. 29E illustrates the MEMS film 770 in a planar configuration before being disposed on the external tube 765. The MEMS film 770 includes a plurality of electrodes 120 disposed on tabs 780. The tabs 780 are connected together by the ribbon cable 125, which includes the contact pad 145 for at least one of the electrodes 120. FIG. 29F illustrates another configuration of the MEMS film 770 where more than one electrode 120 is disposed on each of the tabs 780. The number of contact pads 145 is increased on each ribbon cable 125 to match the number of electrodes 120 disposed on each of the tabs 780. In some implementations, between 2 and 12 electrodes can be disposed on each of the tabs 780.



FIGS. 30A and 30B illustrate the stimulation lead 760 implanted near a patient's spinal column. The flexible nature of the stimulation lead 760 enables the stimulation lead 760 to be inserted between vertebrae 815 to be positioned near the spinal cord 817.


In some implementations, the platinum electrodes are thickened. The platinum of the electrodes can be electro-galvanically thickened past its native thickness. For example, one method is to insert the distal end of the stimulation lead into an electro-galvanic bath and apply current to the contacts in order to initiate the growth of a platinum layer. FIG. 31 illustrates the process of electro-galvanically thickening electrodes. A stimulation lead 100 is inserted into a bath 842 and a current is applied using a galvanic source 845. In some implementations, one advantage of growing the thickened layer on the molded stimulation lead 100, and not the planar stimulation lead 100 on its carrier wafer, is that the thickened layer may not be stressed when subsequently molded into the cylindrical shape. In these implementations, plasma deposition methods may be used to deposit additional platinum, or other materials such as iridium oxide, to thicknesses greater than the native thickness of the electrode.



FIG. 32A illustrates a cross section of a stimulation lead 100 with no platinum growth, and FIG. 32B illustrates a cross section of a stimulation lead 100 with platinum growth. FIGS. 32A and 32B illustrate that each stimulation lead 100 include a first polyimide layer 870, a first silicon based barrier layer 872, a first metal layer 878, a second silicon based barrier layer 874, and a second polyimide layer 876. As illustrated in FIG. 32B, a galvanically grown platinum layer 880 is deposited on regions where the metal seed layer 878 is exposed. The growth of a platinum layer 880 can be close to the superior surface of the second polyimide layer 876 (e.g., within a few microns), or the platinum layer 880 can provide a platinum thickness that is flush to the surface of the second polyimide layer 876.


In some implementations, the traces, or other metal components of the stimulation lead 100 are disposed in a second metal layer below the metal layer that includes the electrodes 120. Traces in a second metal layer enable the traces to connect to the contact pads and electrode as places other than the edge of the contact pad or electrode. This can enable a more uniform current density for the contact pads and electrodes. Also, each connection to the electrode can make contact with the same electrical potential—improving the uniformness of the current density. FIGS. 33A-33N illustrate the method of manufacturing a MEMS film with a second encapsulated metal layer.



FIG. 33A illustrates the first step of the process where a carrier substrate 901 is provided. A first layer 902 including at least two sub-layers can be applied to a surface of the substrate 901. One of the sub-layers of the first layer 902 can be a sacrificial layer which is later removed in a subsequent electrochemical etch step to separate the finished MEMS film from the carrier substrate 901. The sacrificial sub-layer can be preceded by another sub-layer, referred to as an underlayer, which can serve to form the electrochemical cell to etch the sacrificial layer.


Referring to FIG. 33B, the next step in the fabrication process can include depositing a first polymeric layer 905 upon the sacrificial layer 902. The first polymeric layer can be between about 2 μm and about 15 μm thick.


Referring to FIG. 33C, a silicon based barrier layer 910 can be deposited. The silicon based barrier layer 910 can be between about 500 nm and about 5 μm thick, which can enable the silicon based barrier layer 910 to be flexible enough to bend during subsequent assembly techniques.



FIG. 33D illustrates a first metal layer 915 deposited over the entire wafer on the surface of the silicon based barrier layer 910. The structures within the first metal layer 915, such as traces and contacts, can be structured using photolithographic techniques. The first metal layer 915 can be generally incorporated by depositing several metal layers, such as Titanium, Platinum, and again Titanium, to form a tri-layer which can improve adhesion. The tri-layer can be deposited with thicknesses of 50 nm, 300 nm, and 50 nm respectively.


Referring to FIG. 33E, a second silicon based barrier layer 920 can be deposited. The second silicon based barrier layer 920 can be deposited using the same techniques as the first silicon based barrier layer 910 and can be generally of a similar thickness. In some implementations, the second silicon based barrier layer 920 is slightly thinner than the first silicon based barrier layer 910. As illustrated by FIG. 33E, the second silicon based barrier layer 920 and the first silicon based barrier layer 910 completely surround the metal layer 915 rendering it electrically isolated.



FIG. 33F illustrates that a local etching of the second silicon based barrier layer 920 can be performed to create creates a silicon based barrier layer via (or through hole) 917 that exposes the first metal layer 915.


Referring to FIG. 33G, a second metal layer 925 is deposited on the surface of the second silicon based barrier layer. The second metal layer 925 includes similar metal to the first metal layer 915, and can be about the same or similar thickness to the first metal layer 915. The second metal layer 925 comes into electrical contact with the first metal layer 915 through the silicon based barrier layer via 917.



FIG. 33H illustrates the depositing of a third silicon based barrier layer 927. The third silicon based barrier layer 927 can be deposited in a method similar to the first silicon based barrier layer 910, and can be of the same or similar thickness as the first silicon based barrier layer 910.



FIG. 33H illustrates the etching of the layers. The silicon based barrier layers can be etched using a plasma etch. An example of an etching process includes a reactive ion etching using a tetrafluoromethane gas, (CF4). A photoresist layer can be used to define which areas are etched. Openings in the third silicon based barrier layer 927 can be created in order to expose the second or first metal layers.



FIG. 33I illustrates a second polymer layer 930 deposited on the substrate. The second polymer layer 930 can be the same or a different polymer from the first polymer layer 905, and the second polymer layer 930 can be the same or a different thickness. In some implementations, the second polymer layer 930 is polyimide and is between about 2 μm and about 15 μm thick.



FIG. 33J illustrates the result of an oxygen plasma etching of the first and second polyimide layers 905 and 930, respectively. The etching process creates openings 932 in the second polyimide layer 930 to expose the third silicon based barrier layer 927.



FIG. 33K illustrates the etching of the third silicon based barrier layer 925 to create metal openings 933 to expose the second metal layer 925. In some implementations, the openings 933 can also descend to regions of the first metal layer 915. The openings 933 can define the regions of the electrodes 120 that come into contact with the neural tissue or for define contact pads 145.



FIG. 33L illustrates the deposition of a photoresist layer 935 over the substrate. The photoresist layer 935 can maintain the exposed metal opening 933. The opening 937 in the photoresist layer 935 can create a region for a gold layer to grow.



FIG. 33M illustrates the galvanic growth of a thick gold layer 940 in the opening 937. The gold layer 940 can be grown by connecting all metal traces in the wafer to a perimetric metal band that allows electrical connection between the edge of the wafer and the metal opening 937. In some implementations, the gold growth layer 940 of about 5 μm to about 20 μm thick.



FIG. 33N illustrates that the photoresist layer 935 has been removed to expose the electrode opening 943. The MEMS film is now removed from the wafer 901 by the removal of the sacrificial layer 902 using electrochemically etching.



FIGS. 34A-34E illustrate an example of a MEMS film with two metal layers. FIG. 34A illustrates a first metal layer 915 deposited over a first polymeric layer and silicon based barrier layer 953. The placement of the traces in a different metal layer than the electrodes can improve the potential distribution on the surface of electrodes by dispatching traces from a central point of equivalent potential. For example, a potential or current can be applied to the pad 959, the current travels down the trace 315 toward an equipotential cross 955 at a given potential. From the equipotential cross 955, the current travels to each of the four extremities 954 at similar potentials to one another.



FIG. 34B illustrates the application of the second silicon based barrier layer 920. The second silicon based barrier layer 920 includes a number of vias 917 that are configured to align with the ends of the extremities 954 and the pads 959.



FIG. 34C illustrates the application of a second metal layer to the silicon based barrier layer 920. The second metal layer includes the electrodes 120 and the contact pads 145. Each of the electrodes 120 includes a plurality of contact points 977 that make contact with the first metal layer 915 through the vias 917. In other implementations, the electrodes 120 do not include contact points 977, and the electrodes 120 make contact with the first metal layer 915 through vias 917 that are positioned within the body of the electrodes 120.



FIG. 34D illustrates the application of the third silicon based barrier layer and the second polyimide layer 930. The third silicon based barrier layer and the second polyimide layer 930 include through holes 982 that define the electrodes 120 and the contact pads 145.



FIG. 34E illustrates the complete MEMS film. The second polyimide layer 930 defines the electrodes 120 and the contact pads 145. In some implementations, the use of a second metal layer improve the permissible electrode sizes, orientation, and quantity because moving the traces to a separate layer frees surface area within the electrode metal layer, enabling greater freedom to move and arrange electrodes.



FIG. 35A illustrates an example proximal end 180 of the stimulation lead 100. In some implementations, the proximal end contacts 190 can be implemented as a MEMS film. Implementing the proximal end contacts 190 as a MEMS film can decrease the diameter of the proximal end 180 and improve the manufacturability of the proximal end contacts 190. The proximal end 180 can be configured to be compatible with existing extension cables such as the Medtronic 37081 cable. The extension cables can couple the stimulation lead 100 with the implantable stimulator 122, which can be, for example, a Medtronic Activa PC. In some implementations, the proximal end 180 can be configured to be compatible with extension cables that have a smaller pitch between the contacts than compared to the Medtronic 37081. The MEMS film 1910 of the proximal end 180 can be manufactured using the above described MEMS film manufacturing methods. For example, the proximal MEMS film 1910 can be formed as a planar film that is premolded into a cylindrical shape and backfilled with a polymer or epoxy. FIG. 35B illustrates the proximal end 180 from a different angle.


As illustrate in FIGS. 35A and 35B, the MEMS film 1910 includes a distal portion 1915, which incorporates a plurality of contact pads 145 that electrically couple the MEMS film 1910 to the lead wires 160, which run through the lead body 150 toward the distal end of the stimulation lead 100. A proximal portion 1915 of the MEMS film 1910, can include a plurality of proximal contacts 190. The proximal contacts 190 can be in electrical communication with one or more of the contact pads 145 on the distal portion 1915 of the MEMS film 1910. In some implementations, the contact pads 145 are ring electrodes. The proximal portion 1911 and distal portion 1915 of the MEMS film 1910 can be coupled with one another by one or more interconnects 1925. Traces electrically coupling the contacts 190 of the proximal portion 1911 with the contacts 145 of the distal portion 1915 can be housed within the interconnects 1925. In some implementations, redundant traces are included within the at least one of the interconnects 1925. Redundant traces can help guard against a device failure should one interconnect 1925 break. A lumen 1950 is defined through the proximal end 180 of the stimulation lead 100. The lumen 1950 can be configured to permit the passage of an implantation stylet, which can provide stiffness to the stimulation lead 10 during implantation.


In some implementations, the proximal end 180 can include a stiff region distal to the proximal end contacts 190. The stiff region can be between about 1 cm and about 5 cm or between about 1.5 cm and about 2.5 cm long, e.g., substantially 2 cm. The stiff region can help a neurosurgeon push the proximal end 180 into the female end of an extension cable.


In some implementations, the proximal contacts 190 can be thickened using the above described electro-galvanic deposition methods. Thickening the proximal contacts 190 can be advantageous for repeated coupling of an extension cable to the proximal end 180 because the thickened metal layer can improve the proximal contacts' resistances to scratches, making the proximal contacts 190 more reliable and durable. In some implementations, the MEMS film techniques described herein can also be used to implement the extension cable.


In some implementations, a MEMS film can be disposed within an encapsulating tube that is coupled with the body 150. FIG. 36 illustrates an example MEMS film 110 disposed within an encapsulating tube. The MEMS film 110 can include a plurality of bond pads 1961 onto which contacts can be coupled. In some implementations, the bond pads 1961 are metal surfaces similar to the electrodes 120. In some implementations, the internal MEMS film 110 can have a smaller diameter when formed into a cylinder than compared to, for example, the cylinder formed from the MEMS film 110 illustrated in FIG. 3A where the MEMS film 110 is not disposed in an encapsulating tube. The diameter of the tube encapsulated MEMS film 100 can be between about 0.5 mm and about 1.5 mm. The internal MEMS film 110 can also include a plurality of contact pads 145.



FIGS. 37A and 37B illustrate two views of a contact 1970. In some implementations, the contact 1970 can be relatively thicker when compared to an electrode 120. The contact 1970 can be formed by longitudinally splitting a platinum cylinder with a lumen into a plurality of sections. In some implementations, the platinum cylinder can have an internal diameter between about 0.5 mm and about 1.5 mm and an external diameter between about 0.7 mm and 1.7 mm. In some implementations, a wall of the platinum cylinder is about 0.2 mm thick. The platinum cylinder can be divided into contracts 1970 by laser micromachining the cylinder. In some implementations, the contacts 1970 include platinum, titanium, or other conductive materials with an iridium oxide coating.



FIGS. 38A and 38B illustrate the coupling of the contacts 1970 with the MEMS film 1955. As illustrated, a contact 1970 is coupled with each of the bond pads 1961. In some implementations, the contacts 1970 are coupled with the bond pads 1961 by, for example, laser welding, thermocompression bonding, ultrasonic bonding, conductive gluing, wire bonding, or brazing. FIG. 38B illustrates a contact 1970 coupled to each of the bonding pads 1961. In some implementations, each of the contacts 1970 is much thicker than the MEMS film 110. Once coupled with the MEMS film 110, the contacts 1970 are electrically coupled to the contacts 145 through traces embedded within the MEMS film 110. In some implementations, the contacts 1970 are coupled with the MEMS film 110 after the MEMS film 110 is formed into a cylinder and made rigid by, for example, backfilling the defined lumen with a polymer. In some implementations, the bonding pads 1961 are substantially the same size as the portion of the contacts 1970 that is coupled with the MEMS film 110. In other implementations, the bonding pads 1961 can be larger or smaller than the portion of the contacts 1970 that are coupled with the MEMS film 10. In some implementations, the contact bonding pads 1961 can be cylindrical contacts, or include different sizes and geometries, with some sizes dedicated to simulation, while others are dedicated to recording.



FIG. 38C illustrates the coupling of lead wires 160 to the MEMS film 110 with contacts 1970. The lead wires 160 can be coiled as they run the length of the body 150. A lead wire 160 can be coupled with each of the contact pads 145. FIG. 38D illustrates an example stimulation lead with a MEMS film disposed within an encapsulating tube. The encapsulating tube 1990 encapsulates the MEMS film 110, including the contact pads 145 and the end of the lead wires 160. When encapsulated in the tube 1990, the contacts 1970 are exposed and can be flush with the outer surface of the tube 1990. The tube 1990 can be flush with the body 150. In some implementations, the tube 1990 is formed by overmolding the MEMS film 110 with an epoxy. The overmolding can secure the contracts 1970 to the MEMS film 110 while keeping the surface of the contacts 1970 exposed in order to conduct electrical current to the target site. The overmolding can also electrically isolate the contacts 145 and lead wires 160.


Various implementations of the microelectrode device have been described herein. These embodiments are giving by way of example and not to limit the scope of the present disclosure. The various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, implantation locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the disclosure.


Devices described herein as either acute or chronic may be used acutely or chronically. They may be implanted for such periods, such as during a surgery, and then removed. They may be implanted for extended periods, or indefinitely. Any devices described herein as being chronic may also be used acutely.


The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Modifications and variations can be made without departing from its spirit and scope of this disclosure. Functionally equivalent methods and apparatuses may exist within the scope of this disclosure. Such modifications and variations are intended to fall within the scope of the appended claims. The subject matter of the present disclosure includes the full scope of equivalents to which it is entitled. This disclosure is not limited to particular methods, reagents, compounds compositions or biological systems, which can vary. The terminology used herein is for the purpose of describing particular embodiments, and is not intended to be limiting.


With respect to the use of substantially any plural or singular terms herein, the plural can include the singular or the singular can include the plural as is appropriate to the context or application.


In general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). Claims directed toward the described subject matter may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, such recitation can mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). Any disjunctive word or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, can contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” includes the possibilities of “A” or “B” or “A and B.”


In addition, where features or aspects of the disclosure are described in terms of Markush groups, the disclosure is also described in terms of any individual member or subgroup of members of the Markush group.


Any ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. Language such as “up to,” “at least,” “greater than,” “less than,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, a range includes each individual member.


One or more or any part thereof of the techniques described herein can be implemented in computer hardware or software, or a combination of both. The methods can be implemented in computer programs using standard programming techniques following the method and figures described herein. Program code is applied to input data to perform the functions described herein and generate output information. The output information is applied to one or more output devices such as a display monitor. Each program may be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language can be a compiled or interpreted language. Moreover, the program can run on dedicated integrated circuits preprogrammed for that purpose.


Each such computer program can be stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The computer program can also reside in cache or main memory during program execution. The analysis, preprocessing, and other methods described herein can also be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein. In some embodiments, the computer readable media is tangible and substantially non-transitory in nature, e.g., such that the recorded information is recorded in a form other than solely as a propagating signal.


In some embodiments, a program product may include a signal bearing medium. The signal bearing medium may include one or more instructions that, when executed by, for example, a processor, may provide the functionality described above. In some implementations, signal bearing medium may encompass a computer-readable medium, such as, but not limited to, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, memory, etc. In some implementations, the signal bearing medium may encompass a recordable medium, such as, but not limited to, memory, read/write (R/W) CDs, R/W DVDs, etc. In some implementations, signal bearing medium may encompass a communications medium such as, but not limited to, a digital or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.). Thus, for example, the program product may be conveyed by an RF signal bearing medium, where the signal bearing medium is conveyed by a wireless communications medium (e.g., a wireless communications medium conforming with the IEEE 802.11 standard).


Any of the signals and signal processing techniques may be digital or analog in nature, or combinations thereof.


While certain embodiments of this disclosure have been particularly shown and described with references to preferred embodiments thereof, various changes in form and details may be made therein without departing from the scope of the disclosure.

Claims
  • 1. A neurological lead, comprising: an external tube comprising a proximal end and a distal end; anda planar formed, cylindrical film coupled with the external tube, the planar formed, cylindrical film comprising: a plurality of electrodes disposed longitudinally along the planar formed, cylindrical film, each electrode of the plurality of electrodes having one or more rounded corners; anda plurality of periphery traces defined along the planar formed, cylindrical film, each periphery trace of the plurality of periphery traces at least partially encircling a perimeter of a corresponding electrode of the plurality of electrodes and electrically coupled with the corresponding electrode via at least two connection points.
  • 2. The neurological lead of claim 1, comprising: the one or more rounded corners of each electrode of the plurality of electrodes to decrease focal points of current density on the electrode.
  • 3. The neurological lead of claim 1, comprising: the one or more rounded corners of each electrode of the plurality of electrodes to protect the electrode from degradation.
  • 4. The neurological lead of claim 1, comprising: the at least two connection points positioned along the perimeter of the corresponding electrode to define at least two corresponding regions in the corresponding electrode to distribute electrical potential.
  • 5. The neurological lead of claim 1, comprising: a plurality of traces defined along the planar formed, cylindrical film, each trace of the plurality of traces electrically coupled with a corresponding periphery trace of the plurality of periphery traces via a connection point to distribute voltage across the plurality of periphery traces.
  • 6. The neurological lead of claim 1, comprising: a plurality of tabs distributed longitudinally along the planar formed, cylindrical film; andat least one of the plurality of electrodes disposed on each of the plurality of tabs.
  • 7. The neurological lead of claim 1, comprising: a plurality of ribbon cables distributed longitudinally along the planar formed, cylindrical film, each ribbon cable of the plurality of ribbon cables arranged between a pair of the plurality of electrodes.
  • 8. The neurological lead of claim 1, comprising: a plurality of contacts defined longitudinally along the planar formed, cylindrical film, each contact electrically coupled with a corresponding periphery trace of the plurality of periphery traces via a trace.
  • 9. A neurological lead, comprising: an external tube; anda planar formed, cylindrical film coupled with the external tube, the planar formed, cylindrical film comprising: a first insulative layer defined longitudinally along the planar formed, cylindrical film;a first metallic layer mechanically coupled with the first insulative layer, the first metallic layer including a plurality of periphery traces;a second metallic layer mechanically coupled with the first insulative layer and with the first metallic layer, the second metallic layer including a plurality of rounded electrodes, each rounded electrode of the plurality of rounded electrodes at least partially surrounded by a corresponding periphery trace of the plurality of periphery traces and electrically coupled with the corresponding periphery trace via a plurality of connection points;a second insulative layer mechanically coupled with the first insulative layer, the first metallic layer, and the second metallic layer, the second insulative layer defining a plurality of apertures to expose the plurality of rounded electrodes.
  • 10. The neurological lead of claim 9, comprising: each rounded electrode of the plurality of rounded electrodes of the second metallic layer to decrease focal points of current density on the rounded electrode and to protect the rounded electrode from degradation.
  • 11. The neurological lead of claim 9, comprising: the plurality of connection points on the first metallic layer positioned along a perimeter of a corresponding rounded electrode of the plurality of rounded electrodes to define a plurality of regions in the corresponding rounded electrode to distribute electrical potential among the plurality of regions in the corresponding rounded electrode.
  • 12. The neurological lead of claim 9, comprising: the planar formed, cylindrical film including a barrier layer disposed between the first metallic layer and the second metallic layer, the barrier layer defining a plurality of vias to pass the plurality of connection points electrically coupling the corresponding periphery trace with one of the plurality of rounded electrodes.
  • 13. The neurological lead of claim 9, comprising: the first metallic layer of the planar formed, cylindrical film including a plurality of traces, each trace of the plurality of traces electrically coupled with one of the plurality of periphery traces via a connection point to distribute voltage across the plurality of periphery traces.
  • 14. The neurological lead of claim 9, comprising: a plurality of ribbon cables distributed longitudinally along the planar formed, cylindrical film, each ribbon cable of the plurality of ribbon cables arranged between a pair of the plurality of rounded electrodes.
  • 15. A method of forming neurological leads, comprising: forming a film, comprising: a plurality of electrodes disposed longitudinally along the film, each electrode of the plurality of electrodes having one or more rounded corners; anda plurality of periphery traces defined along the film, each periphery trace of the plurality of periphery traces at least partially encircling a perimeter of a corresponding electrode of the plurality of electrodes and electrically coupled with the corresponding electrode via at least two connection points; andmolding the film into a cylinder, the cylinder defining a lumen.
  • 16. The method of claim 15, comprising: depositing an insulative layer to support the plurality of periphery traces;depositing a metallic layer on the insulative layer; andetching the metallic layer to form the plurality of periphery traces along the film.
  • 17. The method of claim 15, comprising depositing a barrier layer to separate the plurality of periphery traces from the plurality of electrodes;forming a plurality of vias through the barrier layer; anddepositing a metallic layer on the barrier layer;etching the metallic layer to form the plurality of electrodes along the film and to form the at least two connection points through the plurality of vias to electrically couple with the plurality of electrodes.
  • 18. The method of claim 15, comprising forming the film comprising the at least two connection points positioned along the perimeter of the corresponding electrode to define at least two corresponding regions in the corresponding electrode to distribute electrical potential.
  • 19. The method of claim 15, comprising forming the film comprising a plurality of ribbon cables distributed longitudinally along the film, each ribbon cable of the plurality of ribbon cables arranged between a pair of the plurality of electrodes.
  • 20. The method of claim 15, comprising forming the film comprising a plurality of traces defined along the film, each trace of the plurality of traces electrically coupled with a corresponding periphery trace of the plurality of periphery traces via a connection point to distribute voltage across the plurality of periphery traces.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority as a continuation application under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/015,625 filed on Jun. 22, 2018, which claims priority as a continuation application under 35 U.S.C. § 120 of U.S. patent application Ser. No. 15/281,468 filed on Sep. 30, 2016, which is a continuation of U.S. patent application Ser. No. 14/470,423 filed on Aug. 27, 2014. The contents of the forgoing applications are herein incorporated by reference in their entirety.

US Referenced Citations (832)
Number Name Date Kind
4245645 Arseneault et al. Jan 1981 A
4550733 Liss et al. Nov 1985 A
4837049 Byers et al. Jun 1989 A
4917093 Dufresne et al. Apr 1990 A
4928297 Tsutsui et al. May 1990 A
4969468 Byers et al. Nov 1990 A
4989617 Memberg et al. Feb 1991 A
5095905 Klepinski Mar 1992 A
5215088 Normann et al. Jun 1993 A
5345936 Pomeranz et al. Sep 1994 A
5391250 Cheney et al. Feb 1995 A
5400784 Durand et al. Mar 1995 A
5419777 Hofling May 1995 A
5458629 Baudino et al. Oct 1995 A
5496369 Howard, III Mar 1996 A
5524338 Martyniuk et al. Jun 1996 A
5628317 Starkebaum et al. May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5679355 Alexander et al. Oct 1997 A
5683422 Rise Nov 1997 A
5697651 Fernandes Dec 1997 A
5697975 Howard et al. Dec 1997 A
5702429 King Dec 1997 A
5713922 King Feb 1998 A
5713923 Ward et al. Feb 1998 A
5716377 Rise et al. Feb 1998 A
5727552 Ryan Mar 1998 A
5752979 Benabid May 1998 A
5755759 Cogan May 1998 A
5782798 Rise Jul 1998 A
5797970 Pouvreau Aug 1998 A
5800474 Benabid et al. Sep 1998 A
5800535 Howard, III Sep 1998 A
5814092 King Sep 1998 A
5824029 Weijand et al. Oct 1998 A
5792186 Rise Nov 1998 A
5833709 Rise et al. Nov 1998 A
5833714 Loeb Nov 1998 A
5843148 Gijsbers et al. Dec 1998 A
5893883 Torgerson et al. Apr 1999 A
5913882 King Jun 1999 A
5921924 Avitall Jul 1999 A
5927277 Baudino et al. Jul 1999 A
5941906 Barreras et al. Aug 1999 A
5957958 Schulman et al. Sep 1999 A
5975085 Rise Nov 1999 A
5978702 Ward et al. Nov 1999 A
5991668 Leinders et al. Nov 1999 A
6011996 Gielen et al. Jan 2000 A
6018682 Rise Jan 2000 A
6024095 Stanley, III Feb 2000 A
6033403 Tu et al. Mar 2000 A
6038480 Hrdlicka et al. Mar 2000 A
6050992 Nichols Apr 2000 A
6094598 Elsberry et al. Jul 2000 A
6104960 Duysens et al. Aug 2000 A
6109269 Rise et al. Aug 2000 A
6125300 Weijand et al. Sep 2000 A
6128537 Rise Oct 2000 A
6129685 Howard, III Oct 2000 A
6161047 King et al. Dec 2000 A
6205359 Boveja Mar 2001 B1
6205361 Kuzma et al. Mar 2001 B1
6216043 Swanson et al. Apr 2001 B1
6227203 Rise et al. May 2001 B1
6253109 Gielen Jun 2001 B1
6253110 Brabec et al. Jun 2001 B1
6263237 Rise Jul 2001 B1
6266564 Hill et al. Jul 2001 B1
6295476 Schaenzer Sep 2001 B1
6301492 Zonenshayn Oct 2001 B1
6319241 King et al. Nov 2001 B1
6330466 Hofmann et al. Dec 2001 B1
6337997 Rise Jan 2002 B1
6343226 Sunde et al. Jan 2002 B1
6353762 Baudino et al. Mar 2002 B1
6356784 Lozano et al. Mar 2002 B1
6356786 Rezai et al. Mar 2002 B1
6356787 Rezai et al. Mar 2002 B1
6364875 Stanley, III Apr 2002 B1
6366813 DiLorenzo Apr 2002 B1
6374140 Rise Apr 2002 B1
6375666 Mische Apr 2002 B1
6379353 Nichols Apr 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6434431 Camps et al. Aug 2002 B1
6459936 Fischell et al. Oct 2002 B2
6479999 DeMeester et al. Nov 2002 B1
6484059 Gielen Nov 2002 B2
6493590 Wessman et al. Dec 2002 B1
6510347 Borkan Jan 2003 B2
6529774 Greene Mar 2003 B1
6538443 Morich et al. Mar 2003 B2
6549812 Smits Apr 2003 B1
6556873 Smits Apr 2003 B1
6560472 Hill et al. May 2003 B2
6560486 Osorio et al. May 2003 B1
6581046 Ahissar Jun 2003 B1
6587733 Cross et al. Jul 2003 B1
6591128 Wu et al. Jul 2003 B1
6594524 Esteller et al. Jul 2003 B2
6597953 Boling Jul 2003 B2
6643552 Edell et al. Nov 2003 B2
6671544 Baudino Dec 2003 B2
6675046 Holsheimer Jan 2004 B2
6687538 Hrdlicka et al. Feb 2004 B1
6690973 Hill et al. Feb 2004 B2
6708064 Rezai Mar 2004 B2
6718208 Hill et al. Apr 2004 B2
6718211 Smits Apr 2004 B2
6741893 Smits May 2004 B2
6745079 King Jun 2004 B2
6757970 Kuzma et al. Jul 2004 B1
6795737 Gielen et al. Sep 2004 B2
6804552 Thompson et al. Oct 2004 B2
6818396 Bloch et al. Nov 2004 B1
6829498 Kipke et al. Dec 2004 B2
6850802 Holsheimer Feb 2005 B2
6871098 Nuttin et al. Mar 2005 B2
6882881 Lesser et al. Apr 2005 B1
6892097 Holsheimer May 2005 B2
6892438 Hill et al. May 2005 B1
6904306 Wu et al. Jun 2005 B1
6909920 Lokhoff et al. Jun 2005 B2
6920359 Meadows et al. Jul 2005 B2
6928320 King Aug 2005 B2
6950706 Rodriguez et al. Sep 2005 B2
6950709 Baudino Sep 2005 B2
6978171 Goetz et al. Dec 2005 B2
6978178 Sommer et al. Dec 2005 B2
6999819 Swoyer et al. Feb 2006 B2
7006859 Osorio et al. Feb 2006 B1
7010351 Firlik et al. Mar 2006 B2
7010356 Jog et al. Mar 2006 B2
7024246 Acosta et al. Apr 2006 B2
7035690 Goetz Apr 2006 B2
7047082 Schrom et al. May 2006 B1
7047084 Erickson et al. May 2006 B2
7050856 Stypulkowski May 2006 B2
7051419 Schrom et al. May 2006 B2
7061240 Ham et al. Jun 2006 B2
7063767 Tyson et al. Jun 2006 B1
7076292 Forsberg Jul 2006 B2
7077822 Howard, III Jul 2006 B1
7107104 Keravel et al. Sep 2006 B2
7133718 Bakken et al. Nov 2006 B2
7146222 Boling Dec 2006 B2
7151961 Whitehurst et al. Dec 2006 B1
7174219 Wahlstrand et al. Feb 2007 B2
7177701 Pianca Feb 2007 B1
7181288 Rezai et al. Feb 2007 B1
7184829 Hill et al. Feb 2007 B2
7187978 Malek et al. Mar 2007 B2
7191016 Marshall et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7198626 Lee et al. Apr 2007 B2
7200439 Zdeblick et al. Apr 2007 B2
7203548 Whitehurst et al. Apr 2007 B2
7204798 Zdeblick et al. Apr 2007 B2
7204833 Osorio et al. Apr 2007 B1
7209787 Dilorenzo Apr 2007 B2
7212851 Donoghue et al. May 2007 B2
7212867 Van Venrooij et al. May 2007 B2
7214189 Zdeblick May 2007 B2
7216000 Sieracki et al. May 2007 B2
7216001 Hacker et al. May 2007 B2
7231256 Wahlstrand et al. Jun 2007 B2
7236822 Dobak, III Jun 2007 B2
7242984 Dilorenzo Jul 2007 B2
7276061 Schaer et al. Oct 2007 B2
7280867 Frei et al. Oct 2007 B2
7282030 Frei et al. Oct 2007 B2
7282050 Starkebaum et al. Oct 2007 B2
7286878 Stypulkowski Oct 2007 B2
7286882 Cole Oct 2007 B2
7288066 Drew Oct 2007 B2
7289851 Gunderson et al. Oct 2007 B2
7289852 Helfinstine et al. Oct 2007 B2
7295880 Gielen Nov 2007 B2
7298143 Jaermann et al. Nov 2007 B2
7307223 Tyson et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7313440 Miesel Dec 2007 B2
7315759 Markowitz et al. Jan 2008 B2
7317947 Wahlstrand et al. Jan 2008 B2
7317948 King et al. Jan 2008 B1
7319899 Keizer Jan 2008 B2
7319904 Cross et al. Jan 2008 B2
7321798 Muhlenberg et al. Jan 2008 B2
7321837 Osorio et al. Jan 2008 B2
7322832 Kronich et al. Jan 2008 B2
7328057 Freas et al. Feb 2008 B2
7328068 Spinelli et al. Feb 2008 B2
7328069 Gerber Feb 2008 B2
7330760 Heruth et al. Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7343206 Sage et al. Mar 2008 B2
7346395 Lozano et al. Mar 2008 B2
7356369 Phillips et al. Apr 2008 B2
7359837 Drew Apr 2008 B2
7366572 Heruth et al. Apr 2008 B2
7367956 King May 2008 B2
7369891 Augustijn et al. May 2008 B2
7369893 Gunderson May 2008 B2
7369894 Gerber May 2008 B2
7385443 Denison Jun 2008 B1
7388378 Gray et al. Jun 2008 B2
7389147 Wahlstrand et al. Jun 2008 B2
7390311 Hildebrand et al. Jun 2008 B2
7391257 Denison et al. Jun 2008 B1
7392089 Wahlstrand et al. Jun 2008 B2
7395113 Heruth et al. Jul 2008 B2
7400927 Litvin Jul 2008 B1
7403820 Dilorenzo Jul 2008 B2
7406351 Wesselink Jul 2008 B2
7418292 Shafer Aug 2008 B2
7421297 Giftakis et al. Sep 2008 B2
7427280 Gerber Sep 2008 B2
7429938 Corndorf Sep 2008 B1
7433734 King Oct 2008 B2
7442183 Baudino et al. Oct 2008 B2
7447545 Heruth et al. Nov 2008 B2
7450996 MacDonald et al. Nov 2008 B2
7463917 Martinez Dec 2008 B2
7463928 Lee et al. Dec 2008 B2
7474247 Heinks et al. Jan 2009 B1
7479910 Heinks et al. Jan 2009 B1
7483748 Torgerson et al. Jan 2009 B2
7489966 Leinders et al. Feb 2009 B2
7489970 Lee et al. Feb 2009 B2
7491181 Heruth et al. Feb 2009 B2
7497844 Spear et al. Mar 2009 B2
7497863 Solar et al. Mar 2009 B2
7502217 Zhao et al. Mar 2009 B2
7505815 Lee et al. Mar 2009 B2
7505869 Hartlaub Mar 2009 B2
7515961 Germanson et al. Apr 2009 B2
7519431 Goetz et al. Apr 2009 B2
7519432 Bolea et al. Apr 2009 B2
7520890 Phillips Apr 2009 B2
7526339 Lahti et al. Apr 2009 B2
7526340 Drew Apr 2009 B2
7526341 Goetz et al. Apr 2009 B2
7529582 DiLorenzo May 2009 B1
7529586 Wahlstrand et al. May 2009 B2
7542803 Heruth et al. Jun 2009 B2
7546164 King Jun 2009 B2
7546166 Michels et al. Jun 2009 B2
7548775 Kipke et al. Jun 2009 B2
7548786 Lee et al. Jun 2009 B2
7551951 Osorio et al. Jun 2009 B1
7551960 Forsberg et al. Jun 2009 B2
7555345 Wahlstrand et al. Jun 2009 B2
7561921 Phillips et al. Jul 2009 B2
7563141 Alexander et al. Jul 2009 B2
7563541 Howard et al. Jul 2009 B2
7578819 Bleich et al. Aug 2009 B2
7580756 Schulte et al. Aug 2009 B2
7582387 Howard et al. Sep 2009 B2
7590451 Tronnes et al. Sep 2009 B2
7590453 Heruth et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7591970 Olson Sep 2009 B2
7594828 Alexander et al. Sep 2009 B2
7594889 St. Ores et al. Sep 2009 B2
7596399 Singhal et al. Sep 2009 B2
7596408 Singhal et al. Sep 2009 B2
7596415 Brabec et al. Sep 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603161 Wurmfeld et al. Oct 2009 B2
7603177 Sieracki et al. Oct 2009 B2
7604629 Gerber et al. Oct 2009 B2
7604644 Schulte et al. Oct 2009 B2
7608458 Soykan et al. Oct 2009 B2
7610083 Drew et al. Oct 2009 B2
7611483 Gerber et al. Nov 2009 B2
7614743 Geiger Nov 2009 B2
7615015 Coleman Nov 2009 B2
7616998 Nuttin et al. Nov 2009 B2
7617002 Goetz Nov 2009 B2
7620454 Dinsmoor et al. Nov 2009 B2
7622303 Soykan et al. Nov 2009 B2
7622988 Denison et al. Nov 2009 B2
7623053 Terry et al. Nov 2009 B2
7623918 Goetz Nov 2009 B2
7623919 Goetz et al. Nov 2009 B2
7623923 Gerber et al. Nov 2009 B2
7623930 Zeijlemaker et al. Nov 2009 B2
7624293 Osorio et al. Nov 2009 B2
7628780 Bonner et al. Dec 2009 B2
7631415 Phillips et al. Dec 2009 B2
7632225 Stypulkowski Dec 2009 B2
7635541 Scott et al. Dec 2009 B2
7637867 Zdeblick Dec 2009 B2
7640059 Forsberg et al. Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7641992 Howard et al. Jan 2010 B2
7642013 Howard et al. Jan 2010 B2
7647111 Ries et al. Jan 2010 B2
7647116 Bauhahn Jan 2010 B2
7647117 Bauhahn Jan 2010 B2
7647121 Wahlstrand et al. Jan 2010 B2
7650291 Rosenfeld et al. Jan 2010 B2
7653433 Lozano et al. Jan 2010 B2
7657318 King et al. Feb 2010 B2
7657319 Goetz et al. Feb 2010 B2
7660620 Zeijlemaker et al. Feb 2010 B2
7660630 Dudding et al. Feb 2010 B2
7662140 Heruth et al. Feb 2010 B2
7662509 Howard et al. Feb 2010 B2
7663066 Tyson et al. Feb 2010 B2
7664551 Cigaina Feb 2010 B2
7664552 Wahlstrand et al. Feb 2010 B2
7668601 Hegland et al. Feb 2010 B2
7671594 Gray Mar 2010 B2
7676271 Wahlstrand et al. Mar 2010 B2
7676273 Goetz et al. Mar 2010 B2
7676274 Hung et al. Mar 2010 B2
7680540 Jensen et al. Mar 2010 B2
7682355 Gerber et al. Mar 2010 B2
7682745 Howard et al. Mar 2010 B2
7684860 Wahlstrand et al. Mar 2010 B2
7684866 Fowler et al. Mar 2010 B2
7684873 Gerber Mar 2010 B2
7689289 King Mar 2010 B2
7697972 Verard et al. Apr 2010 B2
7697995 Cross et al. Apr 2010 B2
7706124 Zhao et al. Apr 2010 B2
7706889 Gerber et al. Apr 2010 B2
7711421 Shafer et al. May 2010 B2
7711428 Janzig et al. May 2010 B2
7711436 Stone May 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7720548 King May 2010 B2
7729768 White et al. Jun 2010 B2
7729780 Vardiman Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7742823 King et al. Jun 2010 B2
7756588 Jog et al. Jul 2010 B2
7765012 Gerber Jul 2010 B2
7769472 Gerber Aug 2010 B2
7797029 Gibson et al. Sep 2010 B2
7822482 Gerber Oct 2010 B2
7822483 Stone et al. Oct 2010 B2
7853303 Nikumb et al. Dec 2010 B2
7877149 Zdeblick Jan 2011 B2
7899539 Whitehurst et al. Mar 2011 B2
7925329 Zdeblick et al. Apr 2011 B2
7930035 Dilorenzo Apr 2011 B2
7935056 Zdeblick May 2011 B2
7941202 Hetke et al. May 2011 B2
7945329 Bedenbaugh May 2011 B2
7945336 Sauter-Starace et al. May 2011 B2
7969161 Behzadi et al. Jun 2011 B2
7974705 Zdeblick et al. Jul 2011 B2
7978064 Zdeblick et al. Jul 2011 B2
7979105 Kipke et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
7991481 Benabid et al. Aug 2011 B2
8000794 Lozano Aug 2011 B2
8000808 Hegland et al. Aug 2011 B2
8010202 Shah et al. Aug 2011 B2
8024022 Schulman et al. Sep 2011 B2
8032224 Miesel et al. Oct 2011 B2
8036737 Goetz et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8055334 Savage et al. Nov 2011 B2
8055353 Kreidler et al. Nov 2011 B2
8090450 Swoyer et al. Jan 2012 B2
8099170 Jensen et al. Jan 2012 B2
8108049 King Jan 2012 B2
8114021 Robertson et al. Feb 2012 B2
8115618 Robertson et al. Feb 2012 B2
8121687 Jensen et al. Feb 2012 B2
8121702 King Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8170676 Greenberg et al. May 2012 B2
8171621 Swanson et al. May 2012 B2
8172762 Robertson May 2012 B2
8187161 Li et al. May 2012 B2
8195308 Frank et al. Jun 2012 B2
8204586 Zdeblick Jun 2012 B2
8224417 Vetter Jul 2012 B2
8224462 Westlund et al. Jul 2012 B2
8244377 Pianca et al. Aug 2012 B1
8258962 Robertson et al. Sep 2012 B2
8261428 Fang et al. Sep 2012 B2
8271094 Moffitt et al. Sep 2012 B1
8280514 Lozano et al. Oct 2012 B2
8295943 Eggen et al. Oct 2012 B2
8315686 Llinas et al. Nov 2012 B2
8321025 Bedenbaugh Nov 2012 B2
8332020 Zdeblick Dec 2012 B2
8332046 Anderson et al. Dec 2012 B2
8355768 Masmanidis et al. Jan 2013 B2
8374703 Imran Feb 2013 B2
8412347 Zdeblick Apr 2013 B2
8463353 Seymour Jun 2013 B2
8463398 Jackson et al. Jun 2013 B2
8467877 Imran Jun 2013 B2
8473061 Moffitt et al. Jun 2013 B2
8473069 Bi et al. Jun 2013 B2
8489203 Ortmann Jul 2013 B2
8509872 Lee et al. Aug 2013 B2
8509876 Karmarkar Aug 2013 B2
8509920 Wahlstrand et al. Aug 2013 B2
8560085 Moffitt et al. Oct 2013 B2
8565894 Vetter et al. Oct 2013 B2
8571665 Moffitt et al. Oct 2013 B2
8583253 Shi et al. Nov 2013 B1
8620452 King et al. Dec 2013 B2
8626312 King et al. Jan 2014 B2
8634934 Kokones et al. Jan 2014 B2
8644903 Osa et al. Feb 2014 B1
8649879 Digiore et al. Feb 2014 B2
8666509 Howard et al. Mar 2014 B2
8694105 Martens et al. Apr 2014 B2
8694123 Wahlstrand et al. Apr 2014 B2
8694127 Pianca et al. Apr 2014 B2
8731673 Vetter et al. May 2014 B2
8738154 Zdeblick et al. May 2014 B2
8744596 Howard Jun 2014 B2
8755906 Moffitt et al. Jun 2014 B2
8762065 Dilorenzo Jun 2014 B2
8774891 Osa et al. Jul 2014 B1
8788056 King et al. Jul 2014 B2
8788063 Chen Jul 2014 B2
8788064 Mercanzini et al. Jul 2014 B2
8792993 Pianca et al. Jul 2014 B2
8800140 Hetke et al. Aug 2014 B2
8825175 King Sep 2014 B2
8831739 Mccreery et al. Sep 2014 B2
8831742 Pianca et al. Sep 2014 B2
8849369 Cogan et al. Sep 2014 B2
8849415 Bedenbaugh Sep 2014 B2
8862242 Pianca Oct 2014 B2
8874232 Chen Oct 2014 B2
8875391 Pianca et al. Nov 2014 B2
8897891 Romero Nov 2014 B2
8923982 Howard Dec 2014 B2
8934965 Rogers et al. Jan 2015 B2
8934980 Pless et al. Jan 2015 B2
8938300 Rosero Jan 2015 B2
8938308 Meadows Jan 2015 B2
8958862 Hetke et al. Feb 2015 B2
8968331 Sochor Mar 2015 B1
8977335 Putz Mar 2015 B2
8977367 Elahi et al. Mar 2015 B2
8989864 Funderburk et al. Mar 2015 B2
9008747 Seymour et al. Apr 2015 B2
9014796 Kipke et al. Apr 2015 B2
9044590 Greenberg et al. Jun 2015 B2
9061134 Askin et al. Jun 2015 B2
9079013 Digiore et al. Jul 2015 B2
9089689 Govea Jul 2015 B2
9089690 Greenberg et al. Jul 2015 B2
9095267 Halpern et al. Aug 2015 B2
9149630 Howard et al. Oct 2015 B2
9211401 Frewin et al. Dec 2015 B2
9211402 Moffitt et al. Dec 2015 B2
9220897 Perryman et al. Dec 2015 B2
9227050 Romero Jan 2016 B2
9248272 Romero Feb 2016 B2
9248275 Digiore et al. Feb 2016 B2
9265465 Najafi et al. Feb 2016 B2
9265928 Pellinen et al. Feb 2016 B2
9283375 Moffitt et al. Mar 2016 B2
9289151 Kipke et al. Mar 2016 B2
9289596 Leven Mar 2016 B2
9295830 Pianca Mar 2016 B2
9314614 Bedenbaugh Apr 2016 B2
9358398 Moffitt et al. Jun 2016 B2
9364659 Rao Jun 2016 B1
9381347 Howard et al. Jul 2016 B2
9381348 Romero et al. Jul 2016 B2
9381356 Parker et al. Jul 2016 B2
9399128 Tooker et al. Jul 2016 B2
9403011 Mercanzini Aug 2016 B2
9427567 Romero Aug 2016 B2
9440082 Mercanzini et al. Sep 2016 B2
9474894 Mercanzini et al. Oct 2016 B2
9474895 Digiore et al. Oct 2016 B2
9498620 Romero et al. Nov 2016 B2
9517020 Shacham-Diamand et al. Dec 2016 B2
9592377 Greenberg et al. Mar 2017 B2
9604051 Vetter et al. Mar 2017 B2
9662494 Young May 2017 B2
9700715 Dou Jul 2017 B2
9743878 Drew Aug 2017 B2
9775983 Digiore et al. Oct 2017 B2
9775988 Govea et al. Oct 2017 B2
9827413 Barker et al. Nov 2017 B2
9833611 Govea et al. Dec 2017 B2
9855428 Henry et al. Jan 2018 B2
9861288 Ma et al. Jan 2018 B2
9925368 Ryu et al. Mar 2018 B2
10046165 Frewin et al. Aug 2018 B2
10441779 Mercanzini Oct 2019 B2
20010051802 Woloszko et al. Dec 2001 A1
20010051819 Fischell et al. Dec 2001 A1
20020062143 Baudino et al. May 2002 A1
20020116042 Boling Aug 2002 A1
20030004553 Grill et al. Jan 2003 A1
20030023282 Barrett et al. Jan 2003 A1
20030036780 Barrett et al. Feb 2003 A1
20030060822 Schaer et al. Mar 2003 A1
20030083724 Jog et al. May 2003 A1
20030100823 Kipke et al. May 2003 A1
20030135253 Kokones et al. Jul 2003 A1
20030176892 Shalev Sep 2003 A1
20040002635 Hargrove et al. Jan 2004 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040039434 Schrom et al. Feb 2004 A1
20040098074 Erickson et al. May 2004 A1
20040102828 Lowry et al. May 2004 A1
20040122335 Sackellares et al. Jun 2004 A1
20040133390 Osorio et al. Jul 2004 A1
20040138517 Osorio et al. Jul 2004 A1
20040138536 Frei et al. Jul 2004 A1
20040138720 Naisberg et al. Jul 2004 A1
20040138722 Carroll et al. Jul 2004 A1
20040152958 Frei et al. Aug 2004 A1
20040172089 Whitehurst et al. Sep 2004 A1
20040193021 Zdeblick et al. Sep 2004 A1
20040215288 Lee et al. Oct 2004 A1
20040220637 Zdeblick et al. Nov 2004 A1
20040225335 Whitehurst et al. Nov 2004 A1
20040243011 Plaza Dec 2004 A1
20040249417 Ransbury et al. Dec 2004 A1
20040254483 Zdeblick et al. Dec 2004 A1
20050004627 Gibson et al. Jan 2005 A1
20050008660 Kipke et al. Jan 2005 A1
20050010261 Luders et al. Jan 2005 A1
20050021103 Dilorenzo Jan 2005 A1
20050027284 Lozano et al. Feb 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050038489 Grill Feb 2005 A1
20050049655 Boveja et al. Mar 2005 A1
20050070971 Fowler et al. Mar 2005 A1
20050070972 Wahlstrand et al. Mar 2005 A1
20050075681 Rezai et al. Apr 2005 A1
20050113882 Cameron et al. May 2005 A1
20050137647 Wallace et al. Jun 2005 A1
20050143790 Kipke et al. Jun 2005 A1
20050154425 Boveja et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20050182455 Thrope et al. Aug 2005 A1
20050209511 Heruth et al. Sep 2005 A1
20050209513 Heruth et al. Sep 2005 A1
20050209643 Heruth et al. Sep 2005 A1
20050222642 Przybyszewski et al. Oct 2005 A1
20050240242 Dilorenzo Oct 2005 A1
20050245988 Miesel Nov 2005 A1
20060004422 De Ridder Jan 2006 A1
20060015153 Gliner et al. Jan 2006 A1
20060030897 Gilmer et al. Feb 2006 A1
20060041295 Osypka Feb 2006 A1
20060049957 Surgenor et al. Mar 2006 A1
20060058588 Zdeblick Mar 2006 A1
20060058727 Bernabei Mar 2006 A1
20060058855 Gill Mar 2006 A1
20060084965 Young Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060095105 Jog et al. May 2006 A1
20060116581 Zdeblick et al. Jun 2006 A1
20060129203 Garabedian et al. Jun 2006 A1
20060135877 Giftakis et al. Jun 2006 A1
20060149336 Meadows Jul 2006 A1
20060149337 John Jul 2006 A1
20060149340 Karunasiri Jul 2006 A1
20060167497 Armstrong et al. Jul 2006 A1
20060173263 He et al. Aug 2006 A1
20060173510 Besio et al. Aug 2006 A1
20060178709 Foster et al. Aug 2006 A1
20060184060 Belalcazar et al. Aug 2006 A1
20060195154 Jaax et al. Aug 2006 A1
20060200206 Firlik et al. Sep 2006 A1
20060212090 Lozano et al. Sep 2006 A1
20060241717 Whitehurst et al. Oct 2006 A1
20060258951 Bleich et al. Nov 2006 A1
20060264777 Drew Nov 2006 A1
20060265022 Neuropace Nov 2006 A1
20060276866 Mccreery Dec 2006 A1
20060282014 Kipke et al. Dec 2006 A1
20060293720 Dilorenzo Dec 2006 A1
20060293721 Tarver et al. Dec 2006 A1
20070027498 Maschino et al. Feb 2007 A1
20070027500 Maschino et al. Feb 2007 A1
20070027514 Gerber Feb 2007 A1
20070043268 Russell Feb 2007 A1
20070060974 Lozano Mar 2007 A1
20070067002 Lozano Mar 2007 A1
20070067003 Sanchez et al. Mar 2007 A1
20070088403 Wyler et al. Apr 2007 A1
20070088404 Wyler et al. Apr 2007 A1
20070093870 Maschino Apr 2007 A1
20070100389 Jaax et al. May 2007 A1
20070100392 Maschino et al. May 2007 A1
20070100393 Whitehurst et al. May 2007 A1
20070100398 Sloan May 2007 A1
20070106143 Flaherty May 2007 A1
20070123765 Hetke et al. May 2007 A1
20070123944 Zdeblick May 2007 A1
20070135721 Zdeblick Jun 2007 A1
20070142872 Mickle et al. Jun 2007 A1
20070150024 Leyde et al. Jun 2007 A1
20070173890 Armstrong Jul 2007 A1
20070173896 Zdeblick Jul 2007 A1
20070173897 Zdeblick Jul 2007 A1
20070173901 Reeve Jul 2007 A1
20070173908 Begnaud Jul 2007 A1
20070179558 Gliner et al. Aug 2007 A1
20070179569 Zdeblick Aug 2007 A1
20070185537 Zdeblick Aug 2007 A1
20070185544 Dawant et al. Aug 2007 A1
20070185548 Zdeblick Aug 2007 A1
20070185549 Zdeblick Aug 2007 A1
20070197892 Shen et al. Aug 2007 A1
20070203537 Goetz et al. Aug 2007 A1
20070203546 Stone et al. Aug 2007 A1
20070208394 King et al. Sep 2007 A1
20070213784 Pless Sep 2007 A1
20070213785 Osorio et al. Sep 2007 A1
20070213786 Sackellares et al. Sep 2007 A1
20070219591 Zdeblick et al. Sep 2007 A1
20070225674 Molnar et al. Sep 2007 A1
20070225773 Shen et al. Sep 2007 A1
20070225774 Eskandar et al. Sep 2007 A1
20070233192 Craig Oct 2007 A1
20070249953 Frei et al. Oct 2007 A1
20070249954 Virag et al. Oct 2007 A1
20070250133 Carlson et al. Oct 2007 A1
20070255323 Werder et al. Nov 2007 A1
20070255338 Wahlstrand Nov 2007 A1
20070255374 Kolafa et al. Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070265683 Ehrlich Nov 2007 A1
20070282389 Moxon et al. Dec 2007 A1
20070293908 Cowan et al. Dec 2007 A1
20080021514 Pless Jan 2008 A1
20080021517 Dietrich Jan 2008 A1
20080027289 Zdeblick Jan 2008 A1
20080027487 Patel et al. Jan 2008 A1
20080027503 Marrosu et al. Jan 2008 A1
20080027504 Bedenbaugh Jan 2008 A1
20080027514 Demulling et al. Jan 2008 A1
20080027540 Cumming Jan 2008 A1
20080039895 Fowler et al. Feb 2008 A1
20080046012 Covalin et al. Feb 2008 A1
20080046013 Lozano Feb 2008 A1
20080058630 Robertson Mar 2008 A1
20080077186 Thompson et al. Mar 2008 A1
20080077191 Morrell Mar 2008 A1
20080103547 Okun et al. May 2008 A1
20080103548 Fowler et al. May 2008 A1
20080103578 Gerber May 2008 A1
20080114417 Leyde May 2008 A1
20080119900 Dilorenzo May 2008 A1
20080139870 Gliner et al. Jun 2008 A1
20080140152 Imran et al. Jun 2008 A1
20080154328 Thompson et al. Jun 2008 A1
20080154331 John et al. Jun 2008 A1
20080154340 Goetz et al. Jun 2008 A1
20080161881 Firlik et al. Jul 2008 A1
20080161896 Sauter-Starace et al. Jul 2008 A1
20080172103 Kao et al. Jul 2008 A1
20080177196 Burdick et al. Jul 2008 A1
20080188905 Swartz Aug 2008 A1
20080195166 Sun et al. Aug 2008 A1
20080195227 Boling et al. Aug 2008 A1
20080208283 Vetter et al. Aug 2008 A1
20080208287 Palermo et al. Aug 2008 A1
20080215125 Farah et al. Sep 2008 A1
20080221642 Humayun et al. Sep 2008 A1
20080242976 Robertson et al. Oct 2008 A1
20080255439 Tang et al. Oct 2008 A1
20080255629 Jenson et al. Oct 2008 A1
20080255647 Jensen et al. Oct 2008 A1
20080269835 Carlson et al. Oct 2008 A1
20080269842 Giftakis et al. Oct 2008 A1
20080269854 Hegland et al. Oct 2008 A1
20080275526 Lozano Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080294218 Savage et al. Nov 2008 A1
20080300652 Lim et al. Dec 2008 A1
20080306394 Zdeblick et al. Dec 2008 A1
20080312726 Frank et al. Dec 2008 A1
20080316020 Robertson et al. Dec 2008 A1
20090027504 Lim et al. Jan 2009 A1
20090062879 Li et al. Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090105784 Massoud-Ansari et al. Apr 2009 A1
20090118806 Vetter et al. May 2009 A1
20090132042 Hetke et al. May 2009 A1
20090171416 Firlik et al. Jul 2009 A1
20090177144 Masmanidis et al. Jul 2009 A1
20090187196 Vetter Jul 2009 A1
20090204183 Kreidler et al. Aug 2009 A1
20090240314 Kong et al. Sep 2009 A1
20090248122 Pianca Oct 2009 A1
20090253977 Kipke et al. Oct 2009 A1
20090256702 Robertson et al. Oct 2009 A1
20090292325 Cederna et al. Nov 2009 A1
20090299174 Wright et al. Dec 2009 A1
20090306728 Wright et al. Dec 2009 A1
20090306729 Doerr Dec 2009 A1
20090312770 Kozai et al. Dec 2009 A1
20090318824 Nishida et al. Dec 2009 A1
20090325424 Aarts et al. Dec 2009 A1
20100014541 Harriman Jan 2010 A1
20100015274 Fill Jan 2010 A1
20100030298 Martens et al. Feb 2010 A1
20100036468 Decre et al. Feb 2010 A1
20100047376 Imbeau et al. Feb 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100076536 Merz et al. Mar 2010 A1
20100087853 Kipke et al. Apr 2010 A1
20100100152 Martens et al. Apr 2010 A1
20100106178 Obermiller et al. Apr 2010 A1
20100114193 Lozano et al. May 2010 A1
20100114234 Zdeblick May 2010 A1
20100114250 Zdeblick May 2010 A1
20100130844 Williams et al. May 2010 A1
20100145216 He et al. Jun 2010 A1
20100145414 Decre et al. Jun 2010 A1
20100152747 Padiy et al. Jun 2010 A1
20100198315 Martens et al. Aug 2010 A1
20100249883 Zdeblick Sep 2010 A1
20100274305 Gliner et al. Oct 2010 A1
20100292602 Worrell et al. Nov 2010 A1
20100298908 Vardiman Nov 2010 A1
20100298917 Vardiman Nov 2010 A1
20100298918 Vardiman Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312228 Zdeblick et al. Dec 2010 A1
20100318163 Zdeblick Dec 2010 A1
20100331807 Whitehurst et al. Dec 2010 A1
20110001488 Behzadi et al. Jan 2011 A1
20110022124 Zdeblick et al. Jan 2011 A1
20110034964 Bi et al. Feb 2011 A1
20110034970 Barker Feb 2011 A1
20110040203 Savage et al. Feb 2011 A1
20110071766 Dolan et al. Mar 2011 A1
20110130809 Zdeblick Jun 2011 A1
20110152988 Whitehurst et al. Jun 2011 A1
20110154655 Hetke et al. Jun 2011 A1
20110184495 Wang et al. Jul 2011 A1
20110190860 Harberts et al. Aug 2011 A1
20110196454 Strand et al. Aug 2011 A1
20110208225 Martens et al. Aug 2011 A1
20110213382 Decre et al. Sep 2011 A1
20110218417 Boogaard et al. Sep 2011 A1
20110224757 Zdeblick et al. Sep 2011 A1
20110224765 Harberts et al. Sep 2011 A1
20110224766 Tol et al. Sep 2011 A1
20110282179 Zdeblick Nov 2011 A1
20110301665 Mercanzini et al. Dec 2011 A1
20120004520 Whitworth et al. Jan 2012 A1
20120004527 Thompson et al. Jan 2012 A1
20120004716 Langhammer et al. Jan 2012 A1
20120007734 Berkman et al. Jan 2012 A1
20120022341 Zdeblick Jan 2012 A1
20120035684 Thompson et al. Feb 2012 A1
20120053344 Lagos Gonzalez Mar 2012 A1
20120059444 Pardoel et al. Mar 2012 A1
20120062379 Hafezi et al. Mar 2012 A1
20120095355 Zdeblick Apr 2012 A1
20120109262 Martens May 2012 A1
20120109599 Martens May 2012 A1
20120116188 Frank et al. May 2012 A1
20120136420 Pardoel et al. May 2012 A1
20120150256 Martens Jun 2012 A1
20120184837 Martens et al. Jul 2012 A1
20120253442 Gliner et al. Oct 2012 A1
20120277821 Martens et al. Nov 2012 A1
20120296444 Greenberg et al. Nov 2012 A1
20120302912 Moffitt et al. Nov 2012 A1
20120303088 Van Kaam et al. Nov 2012 A1
20120303089 Martens et al. Nov 2012 A1
20120303107 Decre et al. Nov 2012 A1
20120316630 Firlik et al. Dec 2012 A1
20130009691 Blanken et al. Jan 2013 A1
20130030366 Robertson et al. Jan 2013 A1
20130046356 Jensen et al. Feb 2013 A1
20130060102 Zdeblick Mar 2013 A1
20130085361 Mercanzini et al. Apr 2013 A1
20130131754 Sarvazyan May 2013 A1
20130144132 Hafezi et al. Jun 2013 A1
20130172716 Lozano et al. Jul 2013 A1
20130193950 Hafezi et al. Aug 2013 A1
20130204318 Young Aug 2013 A1
20130223028 Arne et al. Aug 2013 A1
20130231188 Berberich et al. Sep 2013 A1
20130282090 Decre et al. Oct 2013 A1
20130345780 Tabada et al. Dec 2013 A1
20130345789 Havel et al. Dec 2013 A1
20140039578 Whitehurst et al. Feb 2014 A1
20140066999 Carcieri et al. Mar 2014 A1
20140200633 Moffitt Jul 2014 A1
20140277284 Chen et al. Sep 2014 A1
20150051678 Reed et al. Feb 2015 A1
20150105774 Lindquist et al. Apr 2015 A1
20150142090 Duijsens et al. May 2015 A1
20150151111 Pianca et al. Jun 2015 A1
20150209578 Kast et al. Jul 2015 A1
20150246233 Kaemmerer Sep 2015 A1
20150290452 Kokones et al. Oct 2015 A1
20150335258 Masmanidis Nov 2015 A1
20150355413 Bhagavatula et al. Dec 2015 A1
20150360023 Howard et al. Dec 2015 A1
20160008592 Romero et al. Jan 2016 A1
20160023003 Perryman et al. Jan 2016 A1
20160074651 Moffitt et al. Mar 2016 A1
20160144186 Kaemmerer et al. May 2016 A1
20160228706 Hershey et al. Aug 2016 A1
20160331953 Reed et al. Nov 2016 A1
20160331975 Henry et al. Nov 2016 A1
20160361535 Perryman et al. Dec 2016 A1
20170007813 Negi et al. Jan 2017 A1
20170049345 Single Feb 2017 A1
20170136238 Hartig et al. May 2017 A1
20170143982 Mercanzini May 2017 A1
20170189700 Moffitt et al. Jul 2017 A1
20170197086 Howard et al. Jul 2017 A1
20170266432 Seeley et al. Sep 2017 A1
20170296808 Greenberg et al. Oct 2017 A1
20170361101 Single Dec 2017 A1
20180154156 Clark et al. Jun 2018 A1
20180185656 Shepard et al. Jul 2018 A1
Foreign Referenced Citations (103)
Number Date Country
101027085 Aug 2007 CN
101600470 Dec 2009 CN
201871104 Jun 2011 CN
102274074 Dec 2011 CN
102341036 Feb 2012 CN
0 586 664 Mar 1994 EP
0 677 743 Oct 1995 EP
0 743 839 Nov 1996 EP
0 892 654 Jan 1999 EP
0 895 483 Feb 1999 EP
0 959 942 Dec 1999 EP
1 048 319 Nov 2000 EP
1 062 973 Dec 2000 EP
1 102 607 May 2001 EP
1 257 320 Nov 2002 EP
1 446 189 Aug 2004 EP
1 514 576 Mar 2005 EP
1 750 798 Feb 2007 EP
1 890 764 Feb 2008 EP
1 931 419 Jun 2008 EP
1 985 579 Oct 2008 EP
1 993 665 Nov 2008 EP
2 046 441 Apr 2009 EP
2 066 396 Jun 2009 EP
2 069 003 Jun 2009 EP
2 131 916 Dec 2009 EP
2 144 665 Jan 2010 EP
2 167 188 Mar 2010 EP
2 320 221 May 2011 EP
2 341 979 Jul 2011 EP
2 389 975 Nov 2011 EP
2 456 513 May 2012 EP
2 476 453 Jul 2012 EP
2 542 303 Jan 2013 EP
2 559 454 Feb 2013 EP
2 604 313 Jun 2013 EP
2 604 313 Jun 2013 EP
2 618 889 Jul 2013 EP
2 620 179 Jul 2013 EP
2 623 154 Aug 2013 EP
2 626 108 Aug 2013 EP
2 626 109 Aug 2013 EP
2 626 110 Aug 2013 EP
2 626 111 Aug 2013 EP
2 656 875 Oct 2013 EP
2 656 876 Oct 2013 EP
2 664 354 Nov 2013 EP
2 674 193 Dec 2013 EP
2 862 595 Apr 2015 EP
3 111 835 Jan 2017 EP
3 231 476 Oct 2017 EP
2005-052647 Mar 2005 JP
2012-179333 Sep 2012 JP
2017-525546 Sep 2017 JP
WO-9810010 Mar 1998 WO
WO-02068042 Sep 2002 WO
WO-03022354 Mar 2003 WO
WO-03028521 Apr 2003 WO
WO-03066152 Aug 2003 WO
WO-03066153 Aug 2003 WO
WO-03066157 Aug 2003 WO
WO-2004043536 May 2004 WO
WO-2018068013 May 2004 WO
WO-2004045707 Jun 2004 WO
WO-2005002467 Jan 2005 WO
WO-2005067792 Jul 2005 WO
WO-2005112216 Nov 2005 WO
WO-2006029257 Mar 2006 WO
WO-2006047265 May 2006 WO
WO-2006104432 Oct 2006 WO
WO-2007002144 Jan 2007 WO
WO-2007009070 Jan 2007 WO
WO-2007011611 Jan 2007 WO
WO-2007025356 Mar 2007 WO
WO-2007028003 Mar 2007 WO
WO-2007042999 Apr 2007 WO
WO-2007092330 Aug 2007 WO
WO-2007100428 Sep 2007 WO
WO-2007108718 Sep 2007 WO
WO-2008003318 Jan 2008 WO
WO-2008005478 Jan 2008 WO
WO-2008016881 Feb 2008 WO
WO-2008035285 Mar 2008 WO
WO-2008035344 Mar 2008 WO
WO-2008051463 May 2008 WO
WO-2008064269 May 2008 WO
WO-2008068759 Jun 2008 WO
WO-2008075294 Jun 2008 WO
WO-2008077440 Jul 2008 WO
WO-2008088897 Jul 2008 WO
WO-2008089726 Jul 2008 WO
WO-2008107822 Sep 2008 WO
WO-2008109298 Sep 2008 WO
WO-2008133616 Nov 2008 WO
WO-2008133683 Nov 2008 WO
WO-2008138305 Nov 2008 WO
WO-2010014686 Feb 2010 WO
WO-2010055421 May 2010 WO
WO-2011000791 Jan 2011 WO
WO-2011115999 Sep 2011 WO
WO-2013014206 Jan 2013 WO
WO-2013014206 Jan 2013 WO
WO-2016030823 Mar 2016 WO
Non-Patent Literature Citations (160)
Entry
US 8,388,533 B2, 03/2013, Hafezi et al. (withdrawn)
US 8,469,885 B2, 06/2013, Hafezi et al. (withdrawn)
Extended European Search Report for EP 19174013.3 dated Oct. 8, 2019 (7 pages).
Chinese Office Action on CN 201580019701.2 dated Aug. 17, 2020 (9 pages).
International Preliminary Report on Patentability on PCT/IB2019/051635 dated Sep. 17, 2020 (7 pages).
Non-Final Office Action for U.S. Appl. No. 15/311,082 dated Jan. 10, 2020 (14 pages).
Non-Final Office Action for U.S. Appl. No. 15/910,278 dated Nov. 26, 2019 (7 pages).
Non-Final Office Action on U.S. Appl. No. 15/962,632 dated Mar. 30, 2020 (10 pages).
Non-Final Office Action on U.S. Appl. No. 16/236,716 dated Apr. 29, 2020 (9 pages).
Notice of Allowance for U.S. Appl. No. 15/369,766 dated Oct. 17, 2019 (12 pages).
Notice of Allowance on U.S. Appl. No. 15/369,766 dated Mar. 5, 2020 (8 pages).
Notice of Allowance on U.S. Appl. No. 15/910,278 dated Mar. 9, 2020 (8 pages).
Office Action for CA 3026948 dated Jan. 15, 2020 (4 pages).
First Office Action for CN 201580019701.2 dated Nov. 15, 2019 (18 pages).
Final Office Action on U.S. Appl. No. 15/962,632 dated Oct. 6, 2020 (13 pages).
Foreign Action other than Search Report on JP 2020-036370 dated Jan. 25, 2021.
International Preliminary Report on Patentability on PCT/IB2019/053275 dated Nov. 5, 2020 (8 pages).
Office Action issued in Canadian Application No. 3,026,948 dated Jan. 7, 2021.
AU Examination Report on AU 2011234422 dated Feb. 11, 2014 (3 pages).
Benabid et al., “Combined (Thalamotomy and Stimulation) Stereotactic Surgery of the VIM Thalamic Nucleus for Bilateral Parkinson Disease”, Proceedings of the Meeting of the American Society for Stereotactic and Functional Neurosurgery, vol. 50, Montreal 1987 Appl. Neurophysiol., pp. 344-346 (3 pages).
Bucher et al., “Low-impedance thin-film polycrystalline silicon microelectrodes for extracellular stimulation and recording”, Biosensors & Bioelectronics, vol. 14, 1999, pp. 639-649 (11 pages).
Cogan et al., “Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating”, Journal of Biomedical Materials Research Part A 67.3, 2003, pp. 856-867 (12 pages).
Communication from the European Patent Office on EP 09795810.2 dated Sep. 14, 2011 (2 pages).
Corrected Notice of Allowability on U.S. Appl. No. 14/470,356 dated May 18, 2016 (6 pages).
Decision of Rejection and Decision for Dismissal of Amendment on JP 2011-543841 dated May 15, 2014 (6 pages).
Decision of Rejection for JP 2012-541491 dated Oct. 26, 2015 (7 pages).
EIC Biomedical, “Thin-film Encapsulation for Neural Recording and Stimulation Electrodes”, Silicon carbide and oxycarbide, Apr. 2008, pp. 1-2 (2 pages).
EPO Communication and Search Report EP 09795810.2 dated Sep. 25, 2013 (5 pages).
EPO Communication dated May 22, 2013 with Extended Search Reporton EP 12198290.4-1652 dated May 13, 2013 (6 pages).
European Search Report on EP 09803534.8 dated Jul. 21, 2011 (5 pages).
European Search Report on EP 13169272.5 dated Aug. 30, 2013 (5 pages).
European Search Report on EP 16190439 dated Jul. 19, 2017 (2 pages).
Examination Report for EP 09795810.2 dated May 8, 2014 (4 pages).
Examination Report on AU 2009276603 dated Mar. 3, 2014 (3 pages).
Examination Report on EP 09795810.2 dated Jun. 22, 2012 (5 pages).
Examination Report on EP 11711884.4 dated Mar. 28, 2014 (4 pages).
Extended European Search Reporton EP 14172592 dated Aug. 28, 2014 (8 pages).
Extended European Search Reporton EP 16190439.6 dated Jul. 27, 2017 (7 pages).
Extended European Search Reporton EP 16199868.7 dated Apr. 28, 2017 (7 pages).
Extended European Search Report on EP 18208814.6 dated Mar. 28, 2019 (6 pages).
Extended European Search Reporton EP 19165102.5 dated Jul. 8, 2019 (7 pages).
Fierce Medical Devices, “Medtronic Announces First U.S. Implant of World's Smallest, Minimally Invasive Cardiac Pacemaker”, Feb. 20, 2014, pp. 1-3 (3 pages).
Final Office Action on U.S. Appl. No. 13/056,261 dated Jan. 9, 2014 (9 pages).
Final Office Action on U.S. Appl. No. 13/128,821 dated Dec. 14, 2012 (17 pages).
Final Office Action on U.S. Appl. No. 13/638,435 dated Jun. 30, 2015 (12 pages).
Final Office Action on U.S. Appl. No. 14/309,491 dated Mar. 3, 2016 (12 pages).
Final Office Action on U.S. Appl. No. 14/731,296 dated Apr. 6, 2017 (8 pages).
Final Office Action on U.S. Appl. No. 15/281,468 dated Jun. 14, 2017 (6 pages).
Final Office Action on U.S. Appl. No. 15/369,766 dated Feb. 23, 2018 (13 pages).
Final Office Action on U.S. Appl. No. 15/369,766 dated Feb. 7, 2019 (9 pages).
Final Office Action on U.S. Appl. No. 16/015,625 dated Dec. 28, 2018 (13 pages).
Gibney, Michael, “St. Jude places its Nanostim leadless pacemaker in a U.K. patient”, Fierce Medical Devices, Jan. 27, 2014, pp. 1-3 (3 pages).
Hosp et al., “Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat”, Journal of Neuroscience Methods, vol. 172, 2008, pp. 255-262 (8 pages).
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority on PCT/IB2017/050551 dated Aug. 16, 2018 (8 pages).
International Preliminary Report on Patentability for PCT/EP2010/068658 dated Jun. 5, 2012 (11 pages).
International Preliminary Reporton Patentability on PCT/IB2009/007715 dated May 17, 2011 (9 pages).
International Preliminary Reporton Patentability on PCT/IB2015/053610 dated Dec. 1, 2016 (8 pages).
International Preliminary Report on Patentability on PCT/IB2015/056437 dated Mar. 9, 2017 (7 pages).
International Preliminary Report on Patentability on PCT/IB2015/056438 dated Mar. 9, 2017 (7 pages).
International Preliminary Report on Patentability on PCT/US2009/052077 dated Feb. 1, 2011 (6 pages).
International Search Report and Written Opinion of the International Searching Authority on PCT/IB2019/051635 dated Jun. 3, 2019 (13 pages).
International Search Report and Written Opinion of the International Searching Authority on PCT/IB2019/053275 dated Jul. 4, 2019 (12 pages).
International Search Report and Written Opinion on PCT/EP2010/068658 dated Mar. 21, 2011 (18 pages).
International Search Report and Written Opinion on PCT/EP2011/055045 dated Jul. 18, 2011 (14 pages).
International Search Report and Written Opinion on PCT/IB2015/053610 dated Jul. 20, 2015 (12 pages).
International Search Report and Written Opinion on PCT/IB2015/056437 dated Nov. 5, 2015 (11 pages).
International Search Report and Written Opinion on PCT/IB2015/056438 dated Nov. 5, 2015 (11 pages).
International Search Report and Written Opinion on PCT/IB2017/050551 dated Mar. 29, 2017 (17 pages).
International Search Report and Written Opinion on PCT/US09/52077 dated Sep. 25, 2009 (8 pages).
International Search Reporton PCT/IB2009/007715 dated Apr. 22, 2010 (6 pages).
Janders et al., “Novel Thin Film Titanium Nitride Micro-Electrodes With Excellent Charge Transfer Capability for Cell Stimulation and Sensing Applications”, 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1996, Amsterdam (3 pages).
Moxon et al., “Nanostructured Surface Modification of Ceramic-Based Microelectrodes to Enhance Biocompatibility for a Direct Brain-Machine Interface”, IEEE Transactions on Biomedical Engineering, vol. 51, No. 6, Jun. 2004, pp. 881-889 (9 pages).
Non-Final Office Action on U.S. Appl. No. 13/056,261 dated Aug. 7, 2013 (8 pages).
Non-Final Office Action on U.S. Appl. No. 13/128,821 dated Nov. 14, 2013 (8 pages).
Non-Final Office Action on U.S. Appl. No. 13/128,821 dated Apr. 24, 2012 (10 pages).
Non-Final Office Action on U.S. Appl. No. 13/512,936 dated Aug. 14, 2013 (11 pages).
Non-Final Office Action on U.S. Appl. No. 13/638,435 dated Feb. 10, 2016 (12 pages).
Non-Final Office Action on U.S. Appl. No. 13/638,435 dated Mar. 12, 2015 (15 pages).
Non-Final Office Action on U.S. Appl. No. 14/287,917 dated Sep. 26, 2014 (21 pages).
Non-Final Office Action on U.S. Appl. No. 14/309,491 dated Jul. 28, 2015 (13 pages).
Non-Final Office Action on U.S. Appl. No. 14/316,154 dated Dec. 18, 2014 (8 pages).
Non-Final Office Action on U.S. Appl. No. 14/470,423 dated Jan. 21, 2016 (12 pages).
Non-Final Office Action on U.S. Appl. No. 14/731,296 dated Nov. 22, 2017 (9 pages).
Non-Final Office Action on U.S. Appl. No. 14/731,296 dated Oct. 5, 2016 (9 pages).
Non-Final Office Action on U.S. Appl. No. 14/945,952 dated Jul. 26, 2016 (8 pages).
Non-Final Office Action on U.S. Appl. No. 15/185,709 dated Jul. 3, 2018 (17 pages).
Non-Final Office Action on U.S. Appl. No. 15/194,033 dated Aug. 22, 2016 (5 pages).
Non-Final Office Action on U.S. Appl. No. 15/281,468 dated Dec. 7, 2016 (8 pages).
Non-Final Office Action on U.S. Appl. No. 15/369,766 dated Apr. 20, 2017 (12 pages).
Non-Final Office Action on U.S. Appl. No. 15/369,766 dated Jun. 29, 2018 (9 pages).
Non-Final Office Action on U.S. Appl. No. 15/369,766 dated May 31, 2019 (10 pages).
Non-Final Office Action on U.S. Appl. No. 15/426,816 dated Mar. 21, 2017 (8 pages).
Non-Final Office Action on U.S. Appl. No. 15/878,066 dated Mar. 19, 2018 (8 pages).
Non-Final Office Action on U.S. Appl. No. 16/015,625 dated Aug. 9, 2018 (14 pages).
Notice of Allowance on U.S. Appl. No. 13/056,261 dated May 8, 2014 (8 pages).
Notice of Allowance on U.S. Appl. No. 13/128,821 dated Dec. 24, 2013 (6 pages).
Notice of Allowance on U.S. Appl. No. 13/128,821 dated Mar. 25, 2014 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/512,936 dated Feb. 20, 2014 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/512,936 dated Nov. 25, 2013 (7 pages).
Notice of Allowance on U.S. Appl. No. 13/638,435 dated Sep. 16, 2016 (13 pages).
Notice of Allowance on U.S. Appl. No. 14/287,917 dated Apr. 15, 2015 (5 pages).
Notice of Allowance on U.S. Appl. No. 14/287,917 dated Jul. 20, 2015 (5 pages).
Notice of Allowance on U.S. Appl. No. 14/309,491 dated May 11, 2016 (10 pages).
Notice of Allowance on U.S. Appl. No. 14/316,154 dated Apr. 20, 2015 (12 pages).
Notice of Allowance on U.S. Appl. No. 14/470,356 dated Apr. 13, 2016 (9 pages).
Notice of Allowance on U.S. Appl. No. 14/470,356 dated Mar. 18, 2016 (8 pages).
Notice of Allowance on U.S. Appl. No. 14/470,423 dated Jun. 15, 2016 (5 pages).
Notice of Allowance on U.S. Appl. No. 14/731,296 dated Aug. 15, 2018 (7 pages).
Notice of Allowance on U.S. Appl. No. 14/731,296 dated May 7, 2018 (5 pages).
Notice of Allowance on U.S. Appl. No. 14/945,952 dated Dec. 7, 2016 (5 pages).
Notice of Allowance on U.S. Appl. No. 15/185,709 dated Jun. 10, 2019 (2 pages).
Notice of Allowance on U.S. Appl. No. 15/185,709 dated Apr. 26, 2019 (5 pages).
Notice of Allowance on U.S. Appl. No. 15/185,709 dated Nov. 9, 2018 (7 pages).
Notice of Allowance on U.S. Appl. No. 15/194,033 dated Oct. 27, 2016 (7 pages).
Notice of Allowance on U.S. Appl. No. 15/281,468 dated Jun. 1, 2018 (2 pages).
Notice of Allowance on U.S. Appl. No. 15/281,468 dated Feb. 13, 2018 (5 pages).
Notice of Allowance on U.S. Appl. No. 15/281,468 dated Nov. 15, 2017 (8 pages).
Notice of Allowance on U.S. Appl. No. 15/281,468 dated Jul. 27, 2018 (2 pages).
Notice of Allowance on U.S. Appl. No. 15/422,393 dated Jul. 11, 2017 (7 pages).
Notice of Allowance on U.S. Appl. No. 15/422,393 dated Aug. 14, 2017 (5 pages).
Notice of Allowance on U.S. Appl. No. 15/422,393 dated Oct. 25, 2017 (5 pages).
Notice of Allowance on U.S. Appl. No. 15/426,816 dated Oct. 12, 2017 (7 pages).
Notice of Allowance on U.S. Appl. No. 15/878,066 dated Oct. 3, 2018 (7 pages).
Notice of Allowance on U.S. Appl. No. 15/878,066 dated Dec. 5, 2018 (2 pages).
Notice of Allowance on U.S. Appl. No. 16/015,625 dated Mar. 28, 2019 (8 pages).
Notice of Allowance on U.S. Appl. No. 16/015,625 dated May 8, 2019 (8 pages).
Notice of Reasons for Rejection on JP 2011-521276 dated Mar. 3, 2014 (6 pages).
Notice of Reasons for Rejection on JP 2011-521276 dated May 30, 2013 (4 pages).
Notice of Reasons for Rejection on JP 2011-543841 dated Oct. 21, 2013 (6 pages).
Notice of Reasons for Rejection on JP 2011-543841 dated May 30, 2013 (4 pages).
Notice of Reasons for Rejection on JP 2017-530450 dated Jul. 11, 2019 (4 pages).
Notice of Reasons for Rejections on JP 2012-541491 dated Aug. 28, 2014 (15 pages).
Office Action for EP 10787404.2 dated Mar. 26, 2013 (7 pages).
Office Action on CA 2732309 dated Dec. 7, 2015 (3 pages).
Office Action on CA 2732309 dated Nov. 8, 2016 (4 pages).
Office Action on CA 2743575 dated Jun. 11, 2015 (5 pages).
Office Action on CA 2743575 dated Sep. 14, 2015 (4 pages).
Office Action on CA 2743575 dated Jan. 21, 2015 (4 pages).
Office Action on CA 2743575 dated Sep. 25, 2014 (3 pages).
Office Action on CA 2782710 dated Aug. 14, 2017 (5 pages).
Office Action on CA 2782710 dated Oct. 19, 2016 (4 pages).
Office Action on CA 2795159 dated Dec. 18, 2018 (3 pages).
Office Action on CA 2795159 dated Jan. 27, 2017 (4 pages).
Office Action on CN 201580016170.1 dated Jan. 28, 2019 (5 pages).
Office Action on EP 10787404.2 dated May 6, 2015 (6 pages).
Office Action on EP 14172592.9 dated Aug. 20, 2015 (5 pages).
Office Action on JP 2013-501857 dated Jun. 1, 2015 (8 pages).
Office Action on JP 2013-501857 dated Sep. 17, 2014 (8 pages).
Patent Examination Report No. 1 on AU 2009315316 dated Jan. 31, 2014 (3 pages).
Patent Examination Report No. 1 on AU 2010326613 dated Jan. 30, 2014 (2 pages).
Pollak et al. “Effets de la Stimulation du Noyau Sous-Thalamique Dans La Maladie De Parkinson”, Rev. Neurol Paris, vol. 149, No. 3, pp. 175-176, Masson, Paris, 1993 (2 pages).
Rousche et al., “Flexible polyimide-based intracortical electrode arrays with bioactive capability,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 3, Mar. 2001, pp. 361-371 (10 pages).
Second Notice of Reasons for Rejection on JP 2012-541491 dated Apr. 8, 2015 (10 pages).
Sepulveda et al., “Finite Element Analysis of Current Pathways with Implanted Electrodes”, J. Biomed. Eng., Jan. 1983, vol. 5, pp. 41-48 (8 pages).
Written Opinion of the International Search Authority on PCT/IB2009/07715 dated May 12, 2011 (8 pages).
Written Opinion on HU 201103393-3 dated May 2, 2012 (10 pages).
Written Opinion on PCT/EP2010/068658 dated Jun. 1, 2012 (10 pages).
Ziaie et al., “A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation”, IEEE Transactions on Biomedical Engineering, vol. 44, No. 10, Oct. 1997, pp. 909-920 (12 pages).
Non-Final Office Action on U.S. Appl. No. 15/962,632 dated May 12, 2021.
Notice of Allowance on U.S. Appl. No. 16/531,701 dated May 25, 2021.
Related Publications (1)
Number Date Country
20200009372 A1 Jan 2020 US
Continuations (3)
Number Date Country
Parent 16015625 Jun 2018 US
Child 16551390 US
Parent 15281468 Sep 2016 US
Child 16015625 US
Parent 14470423 Aug 2014 US
Child 15281468 US