Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The invention relates to floating offshore vessels. More specifically, the invention relates to floating offshore vessels designed for at least the storage of hydrocarbon products.
2. Description of Related Art
A Floating Production, Storage and Offloading vessel (FPSO; also called a “unit” and a “system”) is a type of floating tank system used by the offshore oil and gas industry and designed to take all of the oil or gas from nearby oil and gas wells, process it, and store it until the oil or gas can be offloaded onto waiting tankers, or sent through a pipeline. The temporary storage allows production from subsea operations to accumulate until a sufficient quantity is available to offload to a tanker for transportation to the mainland.
A number of different designs with various advantages and disadvantages populate the industry. Some FPSO structures are decommissioned tankers that are suitable for large fixed storage. Some FPSO structures are designed to be submerged partially below the water surface as a semi-submersible structure. One advantage of semi-submersible units for oil storage is lowering the pitch and roll from wave action by having more structure below the surface. For such structures, it is generally known to support a working deck above the water surface when the semi-submersible is at its lowest normal submersion level. Such FPSOs traditionally have at least partially submerged the storage tanks for oil and built columnar supports from the tanks upward to support the deck above the water surface.
However, recent efforts in the oil and gas industry have focused on liquefied natural gas (LNG) with particular requirements. LNG is natural gas that has been converted to liquid form for ease of storage or transport. The liquefaction process involves removal of certain components (such as dust, helium, or impurities that could cause difficulty downstream, e.g. water, and heavy hydrocarbons) and then condensed into a liquid at close to atmospheric pressure by cooling it to cryogenic temperatures. LNG is transported in specially designed cryogenic sea vessels and stored in specially designed tanks. LNG is about 1/614th the volume of natural gas at standard temperature and pressure (STP), making it much more cost-efficient to transport over long distances where pipelines do not exist. Currently, common tank types are membrane (TGZ Mark III and GT96) and Moss Rosenberg (spheres) or Self-Supporting Prismatic Type. Among them, membrane-type LNG tanks are most widely used because of its lower material and fabrication cost. However, it is a general consensus that membrane-type LNG tanks may not sustain sloshing impact load at partial filling condition unless roll motions of the carrier are very small, i.e. less than 5 degrees. LNG FPSOs are needed to operate at all filling levels. Ship-type FPSOs have significant roll motion response in waves and are ill-suited to fulfill the requirement for small roll motion in most of the potential installation sites for LNG FPSOs.
In addition to the sloshing issue, there is a stricter requirement on motion response of LNG FPSO regarding LNG liquefaction plant to be placed on the topsides of the FPSO. Most of the well-proven high efficiency LNG liquefaction technology requires heel angle of the hull as small as 2 degrees during the FPSO operation. The existing designs of ship-type and semi-submersible FPSOs can hardly meet these criteria.
FPSO hulls for LNG applications, especially for membrane-type LNG tanks, also can have higher structural requirements as compared to oil-storage application. The structural integrity of insulation system structures and connections between insulation systems and hulls is sensitive to the local deflection and vibration of the tank hull. It is highly desirable that possible major structural loads, such as vertical shear force and bending moment due to topside weight and wave load, are not directly transferred to the tank wall structures.
Although less critical than the requirements on hull motion and structural integrity, capability of float-over installation for topsides will be another desirable aspect of LNG FPSO hull. In case of a ship-type FPSO, the high freeboard of FPSO limits use of float-over installation of topsides, which results in longer construction periods in dry dock and quayside. In case of semi-submersible types, spacing between columns needs to be wide enough for installation vessels to pass through. Further, enough ballasting capacity is needed to lower the freeboard to the required level during the installation.
To provide safer storage of LNG cargo and more flexible options for construction, installation and operation of LNG facilities, a new hull design is needed that can provide smaller motion response in waves and smaller footprints on and above the mean water level. It is also desirable for the new design that the hull shape and arrangement should be able to provide sufficient structural integrity to support loads above the storage area without interfering with LNG tank structures.
The present disclosure provides a method, apparatus, and system of a deep-draft semi-submersible hydrocarbon, such as for liquefied natural gas (LNG), floating storage vessel that includes a pontoon containing hydrocarbon tanks, a fixed ballast at the bottom in a double-bottom portion, and segregated ballasted tanks with variable ballasts located generally above the fixed ballast portion that assist in keeping the pontoon submerged during various storage levels. Multiple vertical columnar supports penetrate the pontoon from top to bottom and extend above the water surface to support a deck, including various topside structures. An intermediate double-deck on the top of the pontoon can provide access to the tanks, for example, through the vertical columnar supports. The double bottom structure, deck, and vertical columnar supports can provide overall structural integrity.
The disclosure provides a semi-submersible floating storage vessel, comprising: a fixed ballast portion disposed at a first elevation; a liquefied natural gas storage tank disposed at a second elevation above the first elevation and coupled to the fixed ballast portion; a columnar support vertically coupled to the fixed ballast portion and disposed between the first elevation and a third elevation above the second elevation; a variable ballast portion disposed above the first elevation and coupled to the storage tank; and a deck coupled to the columnar support and disposed above the third elevation.
The disclosure provides design changes and improvements from the conventional ship-type FPSO and semi-submersibles to minimize motion response and maximize the structural integrity for LNG application. With the deep draft, small water plane area, low center of gravity and large radius of gyration, the new LNG FPSO offers very low motions on the topsides and in the LNG cargo tanks. This provides more options and flexibilities in the selection of LNG liquefaction units, LNG containment systems, construction sites, installation methods, mooring systems (i.e. no needs for weathervaning), and less down time compared with conventional ship-type FPSO hulls.
While the concepts provided herein are susceptible to various modifications and alternative forms, only a few specific embodiments have been shown by way of example in the drawings and are described in detail below. The figures and detailed descriptions of these specific embodiments are not intended to limit the breadth or scope of the concepts or the appended claims in any manner. Rather, the figures and detailed written descriptions are provided to illustrate the concepts to a person of ordinary skill in the art as required by 35 U.S.C. §112.
One or more illustrative embodiments of the concepts disclosed herein are presented below. Not all features of an actual implementation are described or shown in this application for the sake of clarity. It is understood that the development of an actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's goals, such as compliance with system-related, business-related and other constraints, which vary by implementation and from time to time. While a developer's efforts might be complex and time-consuming, such efforts would be, nevertheless, a routine undertaking for those of ordinary skill in the art having benefit of this disclosure.
One or more columnar supports 8 can be disposed around the periphery of the tanks 6. In the exemplary embodiment, eight columnar supports are illustrated, although the number can be fewer or greater. For instance, the columnar supports can include columnar supports 8a-8h (collectively “supports 8”) disposed between three central tanks 6a, 6b, and 6c, and two end tanks 6d and 6e (collectively “tanks 6”).
In elevation, as shown in
Above the first elevation 22, the storage tanks 6 can be disposed at a second elevation 24, which can be sub-sea or above the sea surface, in whole or in part. The storage tanks can be supported by or otherwise coupled to the fixed ballast portion 12. Further, the columnar supports 8 can be coupled to the fixed ballast portion 12 and extend above the second elevation 24 to a third elevation 26, for example above the sea surface or water level. The vessel 2 can further include at least one variable ballast portion 14. For example, a variable ballast portion 14a can be disposed around the end tank 6e, and another variable ballast portion 14b can be disposed around the tank 6c. Other variable ballast portions can be disposed throughout the vessel above the fixed ballast 12 at the first elevation 22. Advantageously, it is believed that a variable ballast portion 14 net volume capacity should be about one-half of the hydrocarbon storage capacity by volume.
Advantageously, the vessel 2 can have a low center of gravity due to a large amount of fixed ballast 12 and can have a smaller water plane area than conventional LNG vessels, for example due to most of the structure being submerged with the relatively small cross-sectional area of the columnar supports 8 being the primary structure exposed to the surface water. The heavy weight and smaller water plane area can provide the vessel 2 with a lower overall roll and better pitch response. Thus, the motion, including sloshing of the stored hydrocarbons, can be less than conventional floating-type LNG vessels.
The columnar loads from the columnar supports 8 can be directed toward the fixed ballast portion 12 and not the storage tanks 6, for example. Thus, the storage tanks 6 between each columnar support 8 can be surrounded by a free space that can be used, for example, as variable ballast portions 14, which can at the same time protect the storage tanks 6. Offshore structures, such as the tanks 6, can be made from, for example, layers of insulation sandwiched between thin layers of stainless steel and can be fragile. Accordingly, it can be advantageous to surround at least some portion of a tank 6 with a variable ballast portion 14 to help protect the tank 6 against punctures or other threats to the integrity of the tank wall or hull.
When the volume of hydrocarbons in one or more storage tanks 6 changes, the variable ballast tanks 14 can be ballasted with, for example, water, in order to keep a desired draft. That is, water, for example, can be added to or removed from one or more ballast tanks 14, which can influence the depth of at least a portion of the vessel 2, such as the depth of the fixed ballast 12, below the water line or sea surface. For example, when the storage tanks 6 are not completely full, the variable ballast tanks 14 can be ballasted by increasing the volume of water therein to achieve a first desired draft. As another example, when the storage tanks 6 are full, the variable ballast portions 14 can be ballasted by decreasing the volume of liquid therein, such as to achieve a second desired draft, which can be the same or different from the first draft. Any change in volume of a tank 6 or ballast tank 14 can occur at any time, singularly or in combination, and can occur in any order, including simultaneously.
The storage tanks can be disposed between an intermediate deck 16a and the fixed ballast portion 12. The intermediate deck 16a can be, for example, a double-deck structure having a top plate and bottom plate with a space disposed therebetween. The space can be used as a work space or maintenance space of sufficient height and strength to allow access by personnel and equipment to the storage tanks 6 disposed at the second elevation 24. Thus, access can be gained from the top deck 16, shown in
The variable ballast portions 14a, 14b are shown at the second elevation 24 above the fixed ballast portion 12 at the first elevation 22. The variable ballast portions 14 can at least partially surround the tanks 6, such as to protect the tanks 6. Thus, by comparing
The various methods and embodiments of the invention can be included in combination with each other to produce variations of the disclosed methods and embodiments, as would be understood by those with ordinary skill in the art, given the understanding provided herein. Also, various aspects of the embodiments could be used in conjunction with each other to accomplish the understood goals of the invention. Also, the directions such as “top,” “bottom,” “left,” “right,” “upper,” “lower,” and other directions and orientations are described herein for clarity in reference to the figures and are not to be limiting of the actual device or system or use of the device or system. The terms “couple,” “coupled,” “coupling,” “coupler,” and like terms are used broadly herein and can include any method or device for securing, binding, bonding, fastening, attaching, joining, inserting therein, forming thereon or therein, communicating, or otherwise associating, for example, mechanically, magnetically, electrically, chemically, directly or indirectly with intermediate elements, one or more pieces of members together and can further include without limitation integrally forming one functional member with another in a unity fashion. The coupling can occur in any direction, including rotationally. Unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, should be understood to imply the inclusion of at least the stated element or step or group of elements or steps or equivalents thereof, and not the exclusion of a greater numerical quantity or any other element or step or group of elements or steps or equivalents thereof The device or system can be used in a number of directions and orientations. Further, the order of steps can occur in a variety of sequences unless otherwise specifically limited. The various steps described herein can be combined with other steps, interlineated with the stated steps, and/or split into multiple steps. Additionally, the headings herein are for the convenience of the reader and are not intended to limit the scope of the invention.
The invention has been described in the context of various embodiments and not every embodiment of the invention has been described. Apparent modifications and alterations to the described embodiments are available to those of ordinary skill in the art. The disclosed and undisclosed embodiments are not intended to limit or restrict the scope or applicability of the invention conceived of by the Applicants, but rather, in conformity with the patent laws, Applicants intend to protect all such modifications and improvements to the full extent that such falls within the scope or range of equivalent of the following claims.
Further, any references mentioned in the application for this patent as well as all references listed in the information disclosure originally filed with the application are hereby incorporated by reference in their entirety to the extent such may be deemed essential to support the enabling of the invention. However, to the extent statements might be considered inconsistent with the patenting of the invention, such statements are expressly not meant to be considered as made by the Applicants.
Number | Name | Date | Kind |
---|---|---|---|
4059065 | Clark et al. | Nov 1977 | A |
4170954 | Rinaldi | Oct 1979 | A |
4498412 | Liden | Feb 1985 | A |
5833397 | Horton, III | Nov 1998 | A |
6206614 | Blevins et al. | Mar 2001 | B1 |
7140317 | Wybro et al. | Nov 2006 | B2 |
Number | Date | Country |
---|---|---|
0335928 | Oct 1989 | EP |
2003798 | Mar 1979 | GB |
2118904 | Nov 1983 | GB |
Number | Date | Country | |
---|---|---|---|
20090158986 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
61015776 | Dec 2007 | US |