The invention is directed toward electronic filters and methods of their use. Specifically, the invention is directed toward reflectionless electronic filters and methods of their use.
Virtually all electronic systems use some kind of filtering to reject unwanted frequency components. In most conventional filters, the rejected signals are bounced back to the source, eventually dissipating in the generator itself, or in the interconnecting wires/transmission lines, or being radiated into the instrument housing. This manner of rejecting unwanted signals can sometimes lead to harmful interactions with other components in the system, either by spurious mixing in non-linear devices, unintentional re-biasing of sensitive active components, or cross-talk between various signal paths. A solution was sought for a filter that would absorb these unwanted signals before they could compromise performance. This led to a novel absorptive filter topology which was patented in 2013 (U.S. Pat. No. 8,392,495), improved and expanded with additional patents in 2017 and 2018 (U.S. Pat. Nos. 9,705,467 and 9,923,540), and additional non-provisional applications (U.S. App. Pub. Nos. 2017/0126195, 2017/0331446, and 2018/0083601) the entirety of which are incorporated by reference herein.
Despite these benefits, however, the more sophisticated versions of the reflectionless filter topologies which could realize classically optimal filter responses such as Chebyshev type I and type II were limited in the ripple factor that could be achieved, for ripple factors below a certain threshold in these topologies required elements with negative values, which are non-passive. One solution was to synthesize these negative elements using active feedback circuits (as taught in U.S. App. Pub. No. 2018/0083601). It is desirable to remove the limitation on ripple factor to allow more classical filter responses to be achieved (such as Butterworth), without having to introduce active elements, all while maintaining the benefits of the original reflectionless filter topology.
The present invention addresses several of the problems and disadvantages associated with conventional filters, and with the prior art of reflectionless filters, thereby providing a new resource for band selection and definition in electronic systems. An alternative topology which uses transformers in concert with other passive elements to manifest the same behavior as groups of elements in the original topology that contained the negative elements has been surprisingly discovered.
The elements in
and if an inductor is labelled “x”, then its non-normalized value would be given by
where Z0 is the system characteristic impedance, Y0=1/Z0 is the system characteristic admittance, and ωc is the filter's angular cutoff frequency in radians per second. Finally, resistors labeled with the normalized value “x” would have non-normalized value
R=xZ0
As
The prototype parameter values (gk, for k=1 to N, where N is the filter order) of the given topologies in
The present invention removes this limitation by recognizing that the negative elements always appear in groups with other, positive elements that render them passive as a whole, and thus can be replaced with equivalent circuits that incorporate no negative elements while having the same behavior. Three examples are shown in
Note that the transformer on the output port of
It is important to note that while the equivalent tee- or pi-networks shown in
The use of critical subcircuits in the present invention is best illustrated by applying them to the topology in
If we further assume that g1<g2 (which need not always be the case) then we still have a negative capacitor in the top-middle of the topology, labeled “2/(g1−g2).” This negative element takes a bit more effort to remove, since it is not directly connected to any elements which easily passify it. The topology may be altered to do so, however, by recognizing that entirety of the filter below these capacitors has no connection to ground. Thus, the currents flowing through the capacitors 1/g2 have nowhere to sink except through the negative capacitor between them, as illustrated in
At this point, the filter may be considered a complete example of the present invention where two element groups with negative elements have been removed in favor of critical subcircuits that mimic them. However, there are some variations that are useful in some embodiments. In
One may also recognize that the grouping of three transformers near the top of the circuits in
The transformer in a critical subcircuit may have leakage inductance or other parasitics which can be absorbed into the adjacent elements of the filter. This could potentially allow the use of coupled coils having finite coil inductance instead of real transformers, or transformer implementations (such as planar) which have relatively low coupling factor. In fact, the term “transformer” shall be understood to include both transformers and coupled coils in this document.
As many critical subcircuits as are needed to realize the filter without any negative elements may be included. A Butterworth low-pass filter of seventh-order is shown in
This invention does not limit the user to a particular filter response, but is capable of realizing many canonical responses (e.g. Butterworth, Chebyshev, Zolotarev, or Legendre) of both even- and odd-order, depending on the selection of the normalized element values, gk. (in the even-order case, the final normalized element value, gN, may approach either zero or infinity). These responses in turn have some free parameters, such as the amplitude of the ripples, known as ripple factor. It is known that certain ripple factors, say for Chebyshev filters, yield element values such that adjacent differences, e.g. 1/(gk−gk±1), are identically zero or infinity. In these instances, one or more elements may be eliminated from the filter entirely, simplifying the filter. For a seventh-order Chebyshev filter, for example, this occurs for ripple factors of 0.2187, 0.01891, and so on.
The invention is described in greater detail by way of example only and with reference to the attached drawings, in which:
As embodied and broadly described herein, the disclosures herein provide detailed embodiments of the invention. However, the disclosed embodiments are merely exemplary of the invention that can be embodied in various and alternative forms. Therefore, there is no intent that specific structural and functional details should be limiting, but rather the intention is that they provide a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention.
A problem in the art capable of being solved by the embodiments of the present invention is a circuit topology and design technique for electronic filters that are well-matched at all frequencies. It has been surprisingly discovered that such filters have a number of unexpected advantages, including minimal reflections on their input and output ports, either in their pass bands or stop bands, or the transition bands. The return loss for these filters is substantially infinite (in decibels) at all frequencies. In conventional filters, on the other hand, stop band rejection is achieved by reflecting the unwanted portion of the spectrum back toward the signal source rather than absorbing it. The instant filters are comprised of lumped element resistors, inductors, capacitors, and transformers, and can be implemented in whatever form is suited to the application (e.g. wire-leaded, surface-mount, monolithically-integrated, or with active, synthetic equivalent circuits).
In a preferred embodiment, the reactive elements (inductors, capacitors, and transformers) are substantially lossless. Other elements (the resistors) are substantially lossy. In some preferred embodiments, the substantially lossy elements take the form of impedance-matched internal subnetworks. In some embodiments, the substantially lossy elements have equivalent resistance equal to the characteristic impedance, while in other embodiments they do not.
The embodiment in
In some preferred embodiments, such as those shown in
In some embodiments, the transformers in the critical subcircuits or those that couple them to the remainder of the circuit have unity turns ratio. In other embodiments, the transformers may have turns ratios other than unity. In some preferred embodiments, the parasitics of a real transformer or coupled coils may be absorbed by the adjacent elements in the filter.
In some preferred embodiments, one or more critical subcircuits may comprise a transformer which is wired to reverse the direction of current flow in one coil with respect to the other. Also in some embodiments, the current-reversing transformer is combined with a lumped element or compound immittance in series, and equates to a pi-network of lumped-elements or immittances of the same type where the central immittance is negatively valued, as illustrated for a series inductor in
In some preferred embodiments, the element values and critical subcircuits are selected to realize a transmission response that is one of Chebyshev type I, Chebyshev type II (also called inverse Chebyshev), Zolotarev (also called Achieser-Zolotarev) type I or type II (or inverse), Legendre (also called optimal-L), Butterworth (also called maximally flat), Gaussian, or Bessel (also called Bessel-Thomson). In embodiments wherein the response is a Chebyshev type, the critical subcircuits may be selected such that the ripple factor (a free parameter in the Chebyshev response) is less than or equal to 0.1925 for third-order filters, less than or equal to 0.2164 for fifth-order filters, less than or equal to 0.2187 or 0.01891 for seventh-order filters, less than or equal to 0.2192 or 0.02688 for ninth-order filters, less than or equal to 0.2194 or 0.02875 for eleventh-order filters, less than or equal to 0.2194 or 0.2940 for thirteenth-order filters, and less than 0.2195 for filters higher than thirteenth-order.
In some embodiments, the transmission response of the filter is low-pass. In other embodiments, it may be high-pass, band-pass, band-stop, or even multi-band. In some embodiments, the filter is odd-order, in others it is even-order, as shown in
This application is a Continuation-In-Part of U.S. Non-Provisional application Ser. No. 15/811,850, filed Nov. 15, 2017, entitled “Optimal Response Reflectionless Filters,” which is a Continuation-In-Part of U.S. Non-Provisional application Ser. No. 15/298,459, filed Oct. 20, 2016, entitled “Optimal Response Reflectionless Filters,” which claims priority to U.S. Provisional Application Nos. 62/248,768, filed Oct. 30, 2015, 62/290,270, filed Feb. 2, 2016, and 62/372,974, filed Aug. 10, 2016, all entitled “Optimal Response Reflectionless Filters.” This application also claims priority to US Provisional Application Nos. 62/652,731, filed Apr. 4, 2018, and 62/775,512, filed Dec. 5, 2018, both entitled “Deep Rejection Reflectionless Filters,” All are hereby specifically and entirely incorporated by reference.
This invention was made with government support under Cooperative Agreement AST-0223851, between the National Science Foundation and Associated Universities, Inc., and, accordingly, the United States government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3514722 | Cappucci et al. | May 1970 | A |
3605044 | Seidel et al. | Sep 1971 | A |
3748601 | Seidel | Jul 1973 | A |
3869585 | Snyder | Mar 1975 | A |
4123732 | Daniel | Oct 1978 | A |
4287391 | Queen | Sep 1981 | A |
5319329 | Shiau et al. | Jun 1994 | A |
5345375 | Mohan | Sep 1994 | A |
5982142 | Sullivan et al. | Nov 1999 | A |
6122533 | Zhang et al. | Sep 2000 | A |
7232955 | Shadel et al. | Jun 2007 | B1 |
20020024392 | Maruyama et al. | Feb 2002 | A1 |
20070152750 | Andersen et al. | Jul 2007 | A1 |
20080297284 | Ishii et al. | Dec 2008 | A1 |
20100205233 | Morgan | Aug 2010 | A1 |
20120023059 | Morgan et al. | Jan 2012 | A1 |
20130257561 | Gorostegui | Oct 2013 | A1 |
20160126606 | Morgan | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2629035 | Sep 2009 | CA |
Entry |
---|
Taiwanese Office Action dated Mar. 9, 2018. |
Morgan, M. et al. Reflectionless Filter Structures. Jul. 29, 2014. |
Morgan, M. Enhancement of Reflectionless Filters Using Stop-Band Sub-Networks. Jul. 2014. |
PCT Search Report and Written Opinion for PCT/US16/057829 dated Feb. 23, 2017. |
Number | Date | Country | |
---|---|---|---|
20190229696 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62248768 | Oct 2015 | US | |
62290270 | Feb 2016 | US | |
62372974 | Aug 2016 | US | |
62652731 | Apr 2018 | US | |
62775512 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15811850 | Nov 2017 | US |
Child | 16372626 | US | |
Parent | 15298459 | Oct 2016 | US |
Child | 15811850 | US |