1. Field of the Invention
This application is directed to a subsurface safety valve system for use in drilling oil or gas wells. Such valves are commonly used to prevent flow of oil or gas from the well to the surface when certain conditions occur.
2. Description of Related Art
Currently such safety valves are held in an open position by virtue of pressure in a control line from the surface acting on a piston in the valve which is operatively connected to a flow sleeve which moves axially to open a valve member. Movement of the sleeve also compresses a spring surrounding the flow sleeve.
Upon the occurrence of an unfavorable event, the pressure is relieved via the control line so that the spring will move the flow sleeve upwardly so as to allow the valve, which may be a flapper valve as shown in
Some control lines in deep water subsea wells may be up to two miles or more in length and may extend a vertical distance of more than a mile.
Consequently the pressure head and resistance to flow is quite high which can delay the response time for the valve and may in some cases result in failure.
The above mentioned design defects are overcome by the current invention. A recockable actuator is located within the valve body that is not subject to the pressure head or flow line resistance to move the flow sleeve to open the valve. When the flow sleeve is moved to a position which opens the valve, a latching mechanism engages the flow sleeve to hold it in place and the actuator is disengaged from the flow sleeve. To close the valve, the latch mechanism is disengaged and the flow sleeve will move upwardly by virtue of the compressed spring without having to overcome the pressure head or fictional forces.
A safety valve 12 is typically located in the production 12 tubing 16 between the well head 8 and the producing zone 20. A control line 10 extends from the surface vessel to valve 12.
In order to open the valve, fluid under pressure is conveyed by control line 10 to the pressure chamber 35 above piston 30 which moves downwardly and engages shoulder 29 of flow sleeve 28. Flow sleeve in turn moves downwardly while compressing spring 32 and the lower end 33 of the flow sleeve will open valve 34 as shown in
To close the valve, pressure within control line 10 is relieved and spring 32 will force flow sleeve 28 in an upward direction thus allowing the valve member to close. While moving upward, the flow sleeve 28 must overcome the pressure head and flow resistance associated with control line 10.
An embodiment according to the invention is shown in
The latching mechanism may be a semi-circular split ring 47 as shown in
In order to close the valve, the SMA split ring is de-energized so that it no longer partially occupies the groove 61 in the outer surface of the flow sleeve. At this point compressed spring 48 will move flow sleeve 44 in an upward direction past valve 50 so that the spring biased valve 50 will now move to the closed position as shown in
Latch mechanisms may take various forms, for example it could be a piston member that is radially actuated to engage a slot on the outer surface of the flow sleeve. Other well-known latching mechanism may also be utilized.
Other embodiments include:
1) All hydraulic solution: a fit for purpose all-hydraulic Surface Controlled Subsurface Safety Valve, designed with no gas charge, adapted to close more rapidly than currently available products.
2) Hydraulic-Electric solution: A fit for purpose Hydraulic Electric solution for a Surface Controlled Subsurface Safety Valve, having a (low voltage/amperage) electrically activated and deactivated latching and unlatching device, and adapted to close virtually instantaneously upon loss of current. Further, the valve would contain a separate hydraulic recocking mechanism, to open and rearm the valve. The valve would have a much longer design life, higher cyclic integrity and therefore higher reliability than known products.
3) All Electric Solution: A fit for purpose Hydraulic Electric solution for a Surface Controlled Subsurface Safety Valve, designed with (low voltage/amperage) electrically activated and deactivated latching and unlatching device, and adapted to close virtually instantaneously upon loss of current. Further, the valve would contain a separate electrically energized recocking mechanism, to open and rearm the valve. The valve would have a much longer design life, higher cyclic integrity and therefore high reliability than known products.
4) All Electric-Hydraulic redundant Solution: A fit for purpose Hydraulic Electric solution for a Surface Controlled Subsurface Safety Valve, designed with (low voltage/amperage) electrically activated and deactivated latching and unlatching device, and adapted to close virtually instantaneously upon loss of current. The valve would contain a separate electrically energized recocking mechanism. Further, the valve would contain a separate and redundant hydraulically energized recocking mechanism to open and rearm the valve. Both the hydraulic and electric recocking mechanism would be independent and redundant. The valve would have a much longer design life, higher cyclic integrity and therefore higher reliability than known products.
Although the present invention has been described with respect to specific details, it is not intended that such details should be regarded as limitations on the scope of the invention, except to the extent that they are included in the accompanying claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/593,927 with a filing date of Feb. 2, 2012.
Number | Name | Date | Kind |
---|---|---|---|
6237693 | Deaton | May 2001 | B1 |
6619388 | Dietz et al. | Sep 2003 | B2 |
7640989 | Williamson et al. | Jan 2010 | B2 |
7971652 | Tanju | Jul 2011 | B2 |
20090250206 | Lake et al. | Oct 2009 | A1 |
20100108324 | Tanju | May 2010 | A1 |
20110186303 | Scott et al. | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130199791 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61593927 | Feb 2012 | US |