This invention relates to natural deep-water ports located offshore and methods for their construction and more particularly to modular construction of deep-water ports that contain a breakwater as an integral component of the port.
The increasing globalization of the world economy has led to increased demands for international shipping. As a result of this increased demand, more and more cargo companies are placing orders for “jumbo” container ships with capacities of over 14,800 TEU (1 TEU or “Twenty-Foot Equivalent Unit”=1445 ft3=the volume equal to that occupied by a 20′×8½′×8½′ container) (J. Svendsen and J. Tiedemann, “The Big Ships Are Coming,” web site article dated Jul. 17, 2007: http://containerinfo.co.ohost.de). While these large ships can improve the efficiency by which goods are transported, only some 20 ports worldwide can handle them, leading to additional transportation costs and loss of time due to the ensuing necessity of transshipment from a “hub port” to the cargo's ultimate destination.
Several obstacles hinder the development of additional ports capable of handling tomorrow's jumbo cargo ships. One is the lack of available coastal land for ports. Not only is the amount of coastal land suitable for port development inherently limited, but coastal land in general is valuable and desirable for development for other purposes (e.g. residential). A second obstacle is the lack of sufficiently deep water near the coast and the massive expense that additional dredging and construction of retaining walls entails. For example, between 2000 and 2005, the Kill van Kull channel (New York/New Jersey) was deepened from 35 feet to 45 feet at a cost of $360 million, and the project currently underway to dredge the channel to the 50 foot depth required for 7000-8000 TEU capacity ships will add more than $900 million to the overall cost.
There is a further fundamental obstacle to the development of new deep-water ports accessible to jumbo container ships, namely, the way in which ports are normally engineered. The basic design of seaports has remained essentially unchanged since the time of the Roman Empire: a breakwater is constructed to provide a harbor (i.e. area of calm water), and the port constructed within that harbor. While this design has been useful for literally two millennia, it suffers from three weaknesses that limit its usefulness to contemporary port design: (1) construction of the breakwater adds significantly to the cost of the. seaport (one-third of the total)—and the cost of the breakwater increases as the square of its depth; (2) the need for constant dredging on the landward side of the breakwater adds additional expense to the maintenance of the port; (3) the wide slope of the breakwater prevents mooring of ships in close proximity to it, wasting the deepest and hence most useful part of the harbor.
In the face of these obstacles, it is of vital importance that new ways of thinking about seaport design be found. Such new approaches are still lacking, however. In U.S. Pat. Nos. 5,803,659 and 6,017,167, Chattey disclosed a method of using modular caissons for seaport construction or expansion. While this invention has the cost advantages brought about by the modularity and portability of the caissons used, the port itself remains tied to land, and hence does not remove the need for the expensive dredging operations described above in cases where the water is not sufficiently deep.
Others have disclosed various means of constructing modular underwater breakwaters (e.g. the inventions disclosed in U.S. Pat Nos. 1,816,095; 3,844,125; 4,502,816; 4,978,247; and 5,393,169), but these breakwaters are generally designed for prevention of beach erosion rather than for use in a port. Even those modular units intended for use in construction of harbor breakwaters (e.g. those disclosed in U.S. Pat. Nos. 3,614,866; 4,347,017; and 5,620,280), while reducing costs of harbor construction; envision construction of a breakwater and the piers as separate entities.
U.S. Pat. No. 6,234,714 discloses a pier with a nominally integrated breakwater. As with the above-referenced patents, however, the breakwater and pier are in fact independent structures, in which the breakwater comprises a mound of sand, gravel, rocks, and/or rubble piled up against the seaward side of the pier, upon which a plurality of caisson-like structures are placed. Thus, this design also suffers from the problems that the breakwater cannot be constructed without extensive dredging operations and that the breakwater and the pier are not a single modular structure.
Thus, there remains a need for a new paradigm for deep-water port design and construction. In order to solve the problems discussed above, what is needed is a deep-water port in which the breakwater is integrated into the port itself, eliminating the costs of a dedicated breakwater construction and maintenance; in which the port itself can be constructed in deep water without the need for additional dredging; and in which the port can be built as an independent structure not needing any direct connection to dry land, eliminating the need for free coastal land as a prerequisite for port construction or expansion. The present invention is designed to meet these long-felt needs.
The present invention provides a solution to the problems described, above and an answer to the need for a new way of thinking about port design. It is one object of the present invention to provide an offshore deepwater port in which the pier deck and breakwater are integrated into a single structure, with the former forming an upper deck and the latter a constructive truss beneath, in which the port structure is built in deep water as an independent unit. It is a further object of this invention to provide such an integrated port constructed of a plurality of prefabricated perforated modular marine structure units capable of interconnection to create a firm super-structure. It is a further object of this invention to provide such a deep water port with a means for natural deep water mooring. A further object of this invention is to provide embodiments in which at least one of (a) a habitat for undersea flora and fauna; (b) an artificial reef; is incorporated into the integrated port structure. An additional object of this invention is to provide embodiments in which the integrated deepwater port is connected to structures on dry land via at least one of a bridge, a tunnel, or a pipeline. An additional object of this invention is to provide a method for construction of an integrated deepwater offshore port, in which an upper pier deck is constructed in conjunction with and under-deck breakwater. A further object of this invention is to provide a method for construction of an integrated deep-water port in which the structure comprises a plurality of interconnected prefabricated perforated modular marine structure units.
It is also in the scope of the invention wherein the integrated port is as defined in any of the above, wherein the said breakwater lower portion is in a shape constituting a rectangular parallelepiped 12 defined by six planar faces with lower base vertices ABCD (see
It is still in the scope of the invention wherein the integrated port is as defined in any of the above, and comprises at least one constructed platform, having a pier deck upper portion 1 and an breakwater lower portion 2, said breakwater lower portion is in a shape constituting a rectangular parallelepiped 12 defined by a plurality of N planar faces (N as defined hereinafter is an integer, and equals e.g., 4, 6, 9 etc), with lower N±first constant base vertices and N±second constant upper base vertices (first and second constants as defined hereinafter are an integer); wherein said port sits in deep water as a structure independent of dry land or any structure thereon.
It is further in the scope of the invention a method of erecting a deepwater offshore integrated port is disclosed. The method comprises steps of constructing an under-deck breakwater and a pier deck in conjunction with said under-deck breakwater; and (b), providing said breakwater lower portion to in a shape constituting a rectangular parallelepiped 12 defined by a plurality of N planar faces with lower N±first constant base vertices and N±second constant upper base vertices.
It will be apparent to one skilled in the art that there are several embodiments of the invention that differ in details of construction, without affecting the essential nature thereof, and therefore the invention is not limited by that which is illustrated in the figures and described in the specification, but only as indicated in the accompanying claims, with the proper scope determined only by the broadest interpretation of said claims.
We define the following terms to describe the invention:
Breakwater: a barrier designed to protect a harbor or shore from the impact of waves.
Perforated modular marine structure unit: a structural module for underwater construction, which has cut-outs or passages such that when immersed in a body of water, the water may pass through it.
With reference to
In the particular embodiment shown in
With reference to
With reference to
With reference to
The under-deck 2 is constructed from a plurality of perforated modular marine structure units 10. The perforated modular marine structure units are prefabricated and designed such that they are capable of interconnection, and are constructed from material that is compatible with long-term immersion in salt water. One embodiment of said perforated modular marine structure unit is presented in
The under-deck sits directly on the natural sea floor and is constructed from prefabricated modular marine units 10 which are constructed on-shore, and the upper deck sits atop the mega-structure. The elements are interconnected (cf.
Because the under-deck is constructed from perforated units, it acts naturally as an efficient breakwater, providing still water on its landward side, and thus enabling the upper deck to act as a pier or wharf for cargo ships without the need for construction of a separate dedicated breakwater. The perforated units additionally can serve as a habitat for underwater flora and fauna, and hence, the under-deck as constructed can also serve as the basis of a man-made reef.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2010/000036 | 1/14/2010 | WO | 00 | 11/15/2011 |
Number | Date | Country | |
---|---|---|---|
61144745 | Jan 2009 | US |