1. Field of the Invention
Embodiments of the present invention generally relate to a valve for use in a wellbore. More particularly, this invention pertains to a deepset wireline retrievable safety valve for controlling fluid flow through a production tubing string.
2. Description of the Related Art
Deep set safety valves are commonly used to shut in oil and gas wells. Such safety valves are typically fitted into production tubing in a hydrocarbon producing well, and operate to block the flow of formation fluid upwardly through the production tubing should a failure or hazardous condition occur.
Deep set safety valves may be configured as rigidly connected to the production tubing (tubing retrievable), or may be installed and retrieved by wireline, without disturbing the production tubing (wireline retrievable). A problem arises when the valve is positioned deep within the wellbore (>6000 feet) because the components in the valve are unable operate due to hydrostatic pressure of the fluid in a control line connected to the valve and the wellbore pressure. There is a need therefore for a deep set safety valve that can withstand the effects of wellbore pressure.
The present invention generally relates to a deepset wireline retrievable safety valve for controlling fluid flow through a production tubing string. In one aspect, a valve for use in a wellbore is provided. The valve includes a housing having a bore. The valve further includes an actuator sleeve movable within the housing between a retracted position and an extended position. The actuator sleeve in the retracted position allows a flapper member to obstruct the bore in the housing. Additionally, the valve includes a first piston member attached to a first side of the actuator sleeve and a second piston member attached to a second side of the actuator sleeve, wherein wellbore fluid pressure acts on the first piston member which results in a first force and acts on the second piston which results in a second force. The first force and the second force are applied to the actuator sleeve in an opposite direction.
In another aspect, a valve for use in a wellbore is provided. The valve includes a housing having a bore. The valve further includes an actuator sleeve movable within the housing between a retracted position and an extended position. The actuator sleeve in the retracted position allows a flapper member to obstruct the bore in the housing. The valve also includes a first piston member attached to a first side of the actuator sleeve. The first piston member is in fluid communication with a control line. The valve also includes a second piston member attached to a second side of the actuator sleeve. The second piston member is in fluid communication with a cavity in the housing. Additionally, the valve includes a biasing member configured to bias the actuator sleeve in the retracted position.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The present invention generally relates to a deep set safety valve for use in a wellbore. To better understand the novelty of the deep set safety valve of the present invention and the methods of use thereof, reference is hereafter made to the accompanying drawings.
The valve 100 includes a first piston member 150 and a second piston member 175. The first piston member 150 is connected to the actuation sleeve 105 via a first piston rod 155, and the second piston member 175 is connected to the actuation sleeve 105 via a second piston rod 180. An end of each piston rod 155, 180 is connected to the actuation sleeve 105 at a hook area 115. The end of the first piston rod 155 is connected at the hook area 115 at a location that is offset from the connection location of the end of the second piston rod 180.
The first piston member 150 is movable within a chamber 160, the first piston member 150 having a first end and a second end. The fluid from the control line 112 enters into the chamber 160 at port 210. The fluid in the chamber 160 acts on the first end of the piston member 150, which results in a force in the direction of direction arrow 20 (
The second piston member 175 is movable within a chamber 145, the second piston member 175 having a first end and a second end. The chamber 145 is in fluid communication with a cavity 135 via a port 140. The fluid in the cavity 135 acts on the first end of the piston member 175, which results in a force on the second piston member 175 in the direction of direction arrow 90 (
As shown in
As shown in
The biasing member 120 is designed and selected to overcome hydrostatic pressure of the fluid in the control line 112. As known in the art, hydrostatic pressure is a pressure exerted by a fluid at equilibrium due to the force of gravity. The control line 112 extends from the surface to the valve 100. Thus, when the valve 100 is positioned deep within the wellbore (>6000 feet) the control line 112 is long. As such, the hydrostatic pressure of the fluid in the long control line 112 that acts on the first piston member 150 may result in a large force being applied to the actuation sleeve 105. The biasing member 120 is designed to generate a force on the actuation sleeve 105 in the direction of direction arrow 50 that is greater than the force applied to the actuation sleeve 105 in the direction of direction arrow 60 as a result of the hydrostatic pressure of the fluid in the control line 112. In one embodiment, more force is required to move the actuation sleeve 105 to the retracted position as compared to the force required to move the actuation sleeve 105 to the extended position due to the hydrostatic pressure of the fluid in the control line 112. Additionally, since the valve 100 is a non-well sensing valve, as set forth herein, the design and selection of the biasing member 120 does not need to take into account the forces applied to the actuation sleeve 105 due to wellbore fluid pressure acting on the piston members 150, 175.
In one embodiment, a valve for use in a wellbore is provided. The valve includes a housing having a bore. The valve further includes an actuator sleeve movable within the housing between a retracted position and an extended position. The actuator sleeve in the retracted position allows a flapper member to obstruct the bore in the housing. Additionally, the valve includes a first piston member attached to a first side of the actuator sleeve and a second piston member attached to a second side of the actuator sleeve, wherein wellbore fluid pressure acts on the first piston member, which results in a first force, and acts on the second piston, which results in a second force, and the first force and the second force are applied to the actuator sleeve in an opposite direction.
In one or more embodiments, the first piston member is in fluid communication with a control line.
In one or more embodiments, the fluid from the control line acts on a first end of the first piston member, and the wellbore fluid pressure acts on a second end of the first piston member.
In one or more embodiments, the second piston member is in fluid communication with a cavity in the housing.
In one or more embodiments, the fluid from the cavity acts on a first end of the second piston member, and the wellbore fluid pressure acts on a second end of the second piston member.
In one or more embodiments, a spring is attached to the actuator sleeve, the spring being configured to bias the actuator sleeve in the retracted position.
In one or more embodiments, the spring is configured to apply a force on the actuator sleeve that is greater than a force that results from hydrostatic pressure acting on the first piston member.
In another aspect, a valve for use in a wellbore is provided. The valve includes a housing having a bore. The valve further includes an actuator sleeve movable within the housing between a retracted position and an extended position. The actuator sleeve in the retracted position allows a flapper member to obstruct the bore in the housing. The valve also includes a first piston member attached to a first side of the actuator sleeve. The first piston member is in fluid communication with a control line. The valve also includes a second piston member attached to a second side of the actuator sleeve. The second piston member is in fluid communication with a cavity in the housing. Additionally, the valve includes a biasing member configured to bias the actuator sleeve in the retracted position.
In one or more embodiments, the actuator sleeve is movable from the retracted position to the extended position in response to fluid pressure acting on the first piston member.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/800,002, filed Mar. 15, 2013, which is herein incorporated by its entirety.
Number | Date | Country | |
---|---|---|---|
61800002 | Mar 2013 | US |