The present technology pertains to computer system security and more specifically to user authentication.
The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Data communications networks can be used for a distributed application structure that divides tasks between the providers of a resource or service, called servers, and service requesters, called clients. A server host runs one or more server programs, which share their resources with clients. A client does not necessarily share any of its resources, but requests a server's content or service function. Clients initiate communication sessions with servers which await incoming requests.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The present disclosure is related to various systems and methods for starting a node without a default password. Specifically, a method for starting a node without a default password may comprise creating a node responsive to indicia received from a user; checking for an existing keystore in the node; when no existing keystore is in the node: generating a seed password for a predefined user of the node; non-persistently providing the seed password to the user; creating an encrypted keystore in the node; and storing the seed password in the encrypted keystore. Some embodiments may further include: allowing access to the node using the built-in user and seed password.
Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
In various embodiments, a cluster (e.g., cluster 130A) is a collection of one or more nodes (servers) (e.g., one or more nodes 1201-120x) that together store data and provides federated indexing and search capabilities across all nodes. A cluster can be identified by a unique name, such that a node can be part of a cluster when the node is set up to join the cluster by its name. A cluster may have only one node in it.
In some embodiments, a node (e.g., one or more nodes 1201-120x) is a single server that is part of a cluster (e.g., cluster 130A), stores data, and participates in the cluster's indexing and search capabilities. A node can be identified by a name which by default is a random Universally Unique IDentifier (UUID) that is assigned to the node at startup (described further in relation to
An index (not depicted in
In some embodiments, one or more application programming interfaces (API) can be used to communicate with a cluster (e.g., cluster 130A). An API can include a set of subroutine definitions and protocols. For example, a node client and/or a transport client can be used be used to communicate with nodes (e.g., one or more nodes 1201-120x) in a cluster. A node client joins a local cluster as a non-data node, which doesn't hold any data itself, but knows what data lives on which node in the cluster, and can forward requests directly to the correct node. The transport client can be used to send requests to a remote cluster. It doesn't join the cluster itself, but simply forwards requests to a node in the cluster. Other APIs, such as the RESTful API, can be used. Various languages (e.g., Groovy, JavaScript, .NET, PHP, Perl, Python, Ruby, and the like) can be used to communicate with a cluster using the RESTful API
In some embodiments, nodes (e.g., one or more nodes 1201-120x) can communicate using an application protocol (e.g., Hypertext Transfer Protocol (HTTP), transport layer protocol (e.g., Transmission Control Protocol (TCP)), and the like. Nodes can know about all the other nodes in the cluster (e.g., cluster 130A) and can forward client (e.g., client application 110A) requests to the appropriate node. Each node can serve one or more purposes, master node and data node.
A master node can perform such cluster-wide actions as creating and/or deleting an index, tracking which nodes (e.g., one or more nodes 1201-120x) are part of the cluster (e.g., cluster 130A), and deciding which shards to allocate to which nodes. Data nodes can hold shards that contain documents that have been indexed. Data nodes can handle data related operations such as create, read, update, and delete (operations that are used to administer persistent data storage; also referred to as CRUD), search, and aggregations. Ingest nodes can apply an ingest pipeline (e.g., a definition of a series of processors) to a document in order to transform and enrich the document before indexing. A tribe node can connect to multiple clusters and perform search and other operations across all connected clusters.
Each of client application 110A and one or more nodes 1201-120x can be a physical computing system, virtual machine, container, and the like. Generally, client application 110A can run on the same or different physical computing system, virtual machine, container, and the like as each of one or more nodes 1201-120x. Each of one or more nodes 1201-120x can run on the same or different physical computing system, virtual machine, container, and the like as the others of one or more nodes 1201-120x. A physical computing system is described further in relation to the exemplary computer system 600 of
In some embodiments, virtual machines provide a substitute for a physical computing system and the functionality needed to execute entire operating systems. Virtual machines are created and run by a hypervisor which uses native execution to share and manage hardware, allowing for multiple environments which are isolated from one another, yet can exist on the same physical computing system.
In various embodiments, containers are an operating system-level virtualization method for deploying and running distributed applications without launching an entire virtual machine for each application. Containers can look like real computers from the point of view of programs running in them. Generally, a computer program running on an operating system can see all resources (e.g., connected devices, files and folders, network shares, CPU power, etc.) of that computer. However, programs running inside a container can only see the container's contents and devices assigned to the container. Containers can be arranged, coordinated, and managed by container orchestration (e.g., Kubernetes, Amazon Elastic Container Service, Docker Swarm, and the like). In contrast to hypervisor-based virtualization, containers may be an abstraction performed at the operating system (OS) level, whereas virtual machines are an abstraction of physical hardware.
When client application 110A runs on a different physical server from a node (e.g., of one or more nodes 1201-120x), connections 140 can be a data communications network (e.g., various combinations and permutations of wired and wireless networks such as the Internet, local area networks (LAN), metropolitan area networks (MAN), wide area networks (WAN), and the like using Ethernet, Wi-Fi, cellular networks, and the like). When a node (of one or more nodes 1201-120x) runs on a different physical computing system from another node (of one or more nodes 1201-120x), connections 140 can be a data communications network.
According to various embodiments, connections 240-270 can each include the same or different data communications network (e.g., various combinations and permutations of wired and wireless networks such as the Internet, local area networks (LAN), metropolitan area networks (MAN), wide area networks (WAN), and the like using Ethernet, Wi-Fi, cellular networks, and the like). For example, client application 110B can send an indexing and/or search request to node client(s) 210, and receive an indexing and/or search response from node client(s) 210 via connections 240. By way of further non-limiting example, node client(s) 210 can coordinate cluster state and metadata with master node(s) 220 via connections 250. By way of additional non-limiting example, node client(s) 210 can forward indexing and/or search requests to data node(s) 230, and receive an indexing and/or search response from data node(s) 230 via connections 260. By way of further non-limiting example, master node(s) 220 can coordinate cluster state and metadata with data node(s) 230 via connections 270.
As shown in
Additionally or alternatively, some (pre-determined) built-in accounts may be provided without (pre-determined) default passwords, according to some embodiments. For example, for some built-in accounts (e.g., administrator account) a seed password is (randomly) generated when node 3201 is created and provided to the user who created node 3201 (e.g., displayed in terminal window 310). The user who created node 3201 can then change the password. In this way, bad actors cannot use a (known) default password—and would have to guess the (random) seed password—to gain unauthorized high-level access to the node. Additionally, since the seed password may not be as easily remembered as a default password, the user who created node 3201 (or other authorized user) has an incentive to change the seed password to a password more easily remembered and still more secure than a (known) default password. In various embodiments, the seed password(s) created for node 3201 are independent from the passwords already set at the other nodes (e.g., nodes 3202-320Y in their respective keystores) and do not work (are invalid for user authentication) there.
Passwords can be stored in a keystore (not depicted in
At step 420, the created node can be configured. For example, node 3201 can have a (descriptive) name assigned to it; be setup to see other nodes 3202-320Y on the data communications network of connections 330; for high availability be setup to prevent a shard and its replica from being on the same physical machine; and the like. Various aspects of configuring the created node can be performed before or after steps 440-480 of method 400.
At step 430, the node (e.g., node 3201) is checked for an existing keystore. When a keystore already exists, method 400 can skip steps 440-480. For example, a user may want to create his or her own (bootstrap) password for the built-in user account and bypass seed password generation by manually creating a keystore. When a keystore does not already exist, method 400 can proceed to step 440.
At step 440, a seed password can be created for the built-in user account. In some embodiments, the seed password is random. A random number generator in the operating system (e.g., reading the UNIX/Linux shell variable RANDOM, and the like), a random number generator program, and the like can be used. In some embodiments, the seed password is generated by a cryptographically secure pseudo-random number generator (e.g., having a higher quality from more entropy), which can satisfy the next-bit test, withstand “state compromise extensions,” and the like. For example, random bytes can be read and translated to characters to form a random password (e.g., using character encoding, such as ASCII, Unicode UTF-8, and the like).
At step 450, the seed password can be stored in an encrypted keystore, such as described above in relation to
At step 480, the new password can be stored in the encrypted keystore.
The components shown in
Mass data storage 630, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit(s) 610. Mass data storage 630 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 620.
Portable storage device 640 operates in conjunction with a portable non-volatile storage medium, such as a flash drive, floppy disk, compact disk, digital video disc, or Universal Serial Bus (USB) storage device, to input and output data and code to and from the computer system 600 in
User input devices 660 can provide a portion of a user interface. User input devices 660 may include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 660 can also include a touchscreen. Additionally, the computer system 600 as shown in
Graphics display system 670 include a liquid crystal display (LCD) or other suitable display device. Graphics display system 670 is configurable to receive textual and graphical information and processes the information for output to the display device.
Peripheral device(s) 680 may include any type of computer support device to add additional functionality to the computer system.
Some of the components provided in the computer system 600 in
Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.
In some embodiments, the computing system 600 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computing system 600 may itself include a cloud-based computing environment, where the functionalities of the computing system 600 are executed in a distributed fashion. Thus, the computing system 600, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud is formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computing system 600, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. The terms “computer-readable storage medium” and “computer-readable storage media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical, magnetic, and solid-state disks, such as a fixed disk. Volatile media include dynamic memory, such as system random-access memory (RAM). Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a Flash memory, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.
Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.
Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as JAVA, SMALLTALK, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Aspects of the present technology are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present technology. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation of U.S. patent application Ser. No. 16/047,959, filed Jul. 27, 2018, entitled “Default Password Removal,” which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
7130839 | Boreham et al. | Oct 2006 | B2 |
7324953 | Murphy | Jan 2008 | B1 |
7333943 | Charuk | Feb 2008 | B1 |
7644432 | Patrick | Jan 2010 | B2 |
7650505 | Masurkar | Jan 2010 | B1 |
7685430 | Masurkar | Mar 2010 | B1 |
7730523 | Masurkar | Jun 2010 | B1 |
7801967 | Bedell et al. | Sep 2010 | B1 |
7970791 | Liao et al. | Jun 2011 | B2 |
7975292 | Corella | Jul 2011 | B2 |
7996392 | Liao et al. | Aug 2011 | B2 |
8005816 | Krishnaprasad et al. | Aug 2011 | B2 |
8027982 | Ture et al. | Sep 2011 | B2 |
8166310 | Harrison | Apr 2012 | B2 |
8214394 | Krishnaprasad et al. | Jul 2012 | B2 |
8239414 | Liao et al. | Aug 2012 | B2 |
8332430 | Koide et al. | Dec 2012 | B2 |
8352475 | Bhatkar et al. | Jan 2013 | B2 |
8412717 | Liao et al. | Apr 2013 | B2 |
8433712 | Koide et al. | Apr 2013 | B2 |
8548997 | Wu | Oct 2013 | B1 |
8595255 | Krishnaprasad et al. | Nov 2013 | B2 |
8601028 | Liao et al. | Dec 2013 | B2 |
8626794 | Liao et al. | Jan 2014 | B2 |
8707451 | Ture et al. | Apr 2014 | B2 |
8725770 | Koide et al. | May 2014 | B2 |
8793489 | Polunin et al. | Jul 2014 | B2 |
8838961 | Zarfoss, III | Sep 2014 | B2 |
8875249 | Ture et al. | Oct 2014 | B2 |
9015858 | Stamos | Apr 2015 | B2 |
9069979 | Srinivasan et al. | Jun 2015 | B2 |
9071606 | Braun | Jun 2015 | B2 |
9081816 | Krishnaprasad et al. | Jul 2015 | B2 |
9081950 | Jain et al. | Jul 2015 | B2 |
9130920 | Pelykh | Sep 2015 | B2 |
9177124 | Krishnaprasad et al. | Nov 2015 | B2 |
9251364 | Ture et al. | Feb 2016 | B2 |
9288042 | Madhukar | Mar 2016 | B1 |
9355233 | Chen | May 2016 | B1 |
9407433 | Sohi | Aug 2016 | B1 |
9436968 | Kobets | Sep 2016 | B1 |
9467437 | Krishnaprasad et al. | Oct 2016 | B2 |
9479494 | Krishnaprasad et al. | Oct 2016 | B2 |
9552431 | Nassar | Jan 2017 | B2 |
9594922 | McGuire | Mar 2017 | B1 |
9734309 | Alien | Aug 2017 | B1 |
9742779 | Ngo | Aug 2017 | B2 |
9769154 | Yang | Sep 2017 | B2 |
9774586 | Roche et al. | Sep 2017 | B1 |
9781102 | Knjazihhin | Oct 2017 | B1 |
9824208 | Cavanagh | Nov 2017 | B2 |
9858195 | Bhogal | Jan 2018 | B2 |
9930033 | Chhabra | Mar 2018 | B2 |
9992186 | Drozd et al. | Jun 2018 | B1 |
10044723 | Fischer et al. | Aug 2018 | B1 |
10057246 | Drozd et al. | Aug 2018 | B1 |
10083247 | Brown et al. | Sep 2018 | B2 |
10114964 | Ramesh et al. | Oct 2018 | B2 |
10277618 | Wu | Apr 2019 | B1 |
10382421 | Krishnaprasad et al. | Aug 2019 | B2 |
10505982 | Motukuru | Dec 2019 | B2 |
10659307 | Sinn | May 2020 | B2 |
11023598 | Grand | Jun 2021 | B2 |
11025425 | Modi | Jun 2021 | B2 |
11196554 | Willnauer | Dec 2021 | B2 |
11223626 | Gormley | Jan 2022 | B2 |
20030037234 | Fu et al. | Feb 2003 | A1 |
20030105742 | Boreham et al. | Jun 2003 | A1 |
20030130928 | Chozick | Jul 2003 | A1 |
20040019820 | Whitlow | Jan 2004 | A1 |
20040210767 | Sinclair | Oct 2004 | A1 |
20050055232 | Yates | Mar 2005 | A1 |
20050289354 | Borthakur et al. | Dec 2005 | A1 |
20060059359 | Reasor | Mar 2006 | A1 |
20070208714 | Ture et al. | Sep 2007 | A1 |
20070233688 | Smolen | Oct 2007 | A1 |
20080205655 | Wilkins | Aug 2008 | A1 |
20080313712 | Ellison et al. | Dec 2008 | A1 |
20090046862 | Ito | Feb 2009 | A1 |
20090106271 | Chieu et al. | Apr 2009 | A1 |
20090204590 | Yaskin et al. | Aug 2009 | A1 |
20090254642 | Geist | Oct 2009 | A1 |
20090271624 | Cao | Oct 2009 | A1 |
20100022306 | Campion | Jan 2010 | A1 |
20100146611 | Kuzin | Jun 2010 | A1 |
20100198804 | Yaskin et al. | Aug 2010 | A1 |
20110265160 | Nettleton | Oct 2011 | A1 |
20120060207 | Mardikar et al. | Mar 2012 | A1 |
20120090037 | Levit | Apr 2012 | A1 |
20120131683 | Nassar | May 2012 | A1 |
20120151563 | Bolik | Jun 2012 | A1 |
20130080520 | Kiukkonen | Mar 2013 | A1 |
20130152191 | Bright | Jun 2013 | A1 |
20130212703 | Ramesh et al. | Aug 2013 | A1 |
20130232539 | Polunin et al. | Sep 2013 | A1 |
20130326588 | Jain et al. | Dec 2013 | A1 |
20140075501 | Srinivasan et al. | Mar 2014 | A1 |
20140164776 | Hook | Jun 2014 | A1 |
20140196115 | Pelykh | Jul 2014 | A1 |
20140208100 | Kendall | Jul 2014 | A1 |
20140337941 | Kominar | Nov 2014 | A1 |
20150012919 | Moss | Jan 2015 | A1 |
20150089575 | Vepa et al. | Mar 2015 | A1 |
20150106736 | Torman | Apr 2015 | A1 |
20150106893 | Hou | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150169875 | Ide | Jun 2015 | A1 |
20150349954 | Borda | Dec 2015 | A1 |
20150363607 | Yang | Dec 2015 | A1 |
20160103890 | Boe | Apr 2016 | A1 |
20160173475 | Srinivasan et al. | Jun 2016 | A1 |
20160182471 | Wilson et al. | Jun 2016 | A1 |
20170011214 | Cavanagh | Jan 2017 | A1 |
20170063931 | Seed | Mar 2017 | A1 |
20170083698 | Scott | Mar 2017 | A1 |
20170103470 | Raju | Apr 2017 | A1 |
20170134434 | Allen | May 2017 | A1 |
20170322985 | Boe | Nov 2017 | A1 |
20170353444 | Karangutkar et al. | Dec 2017 | A1 |
20180109421 | Laribi | Apr 2018 | A1 |
20180210901 | DePaoli et al. | Jul 2018 | A1 |
20180287800 | Chapman et al. | Oct 2018 | A1 |
20180300117 | Ackerman | Oct 2018 | A1 |
20180367528 | Schwarz | Dec 2018 | A1 |
20190018869 | Bhagwat et al. | Jan 2019 | A1 |
20190018870 | Bhagwat et al. | Jan 2019 | A1 |
20190052537 | Sinn | Feb 2019 | A1 |
20190080318 | Yuan | Mar 2019 | A1 |
20190116623 | Apte | Apr 2019 | A1 |
20190245763 | Wu | Aug 2019 | A1 |
20190394040 | Modi | Dec 2019 | A1 |
20200007549 | Gormley | Jan 2020 | A1 |
20200036522 | Willnauer | Jan 2020 | A1 |
20200036527 | Girdhar | Jan 2020 | A1 |
20200184090 | Grand | Jun 2020 | A1 |
20210168149 | Gormley | Jun 2021 | A1 |
20210216652 | Grand | Jul 2021 | A1 |
20210243024 | Modi | Aug 2021 | A1 |
20210248250 | Grand | Aug 2021 | A1 |
Entry |
---|
G. Kreitz, O. Bodriagov, B. Greschbach, G. Rodnguez-Cano and S. Buchegger, “Passwords in peer-to-peer,” 2012 IEEE 12th International Conference on Peer-to-Peer Computing (P2P), Tarragona, Spain, 2012, pp. 167-178. (Year: 2012). |
Sabine Houy, Philipp Schmid, and Alexandre Bartel. 2023. Security Aspects of Cryptocurrency Wallets—A Systematic Literature Review. ACM Comput. Surv. Just Accepted (May 2023) (Year: 2023). |
Garnica, Gustavo, and Gustavo Garnica. “Node Manager.” Oracle WebLogic Server 12c Administration I Exam 1ZO-133: A Comprehensive Certification Guide (2018): 43-60. (Year: 2018). |
“Search Query Report”, IP.com, performed Dec. 18, 2020, 4 pages. |
Gejibo, Samson et al., “Secure data storage for mobile data collection systems”, Proceedings of the International Conference on Management of Emergent Digital EcoSystems, Oct. 28-31, 2012, pp. 131-144. |
Kumbhar et al., “Hybrid Encryption for Securing Shared Preferences of Android Applications,” 2018 1st International Conference on Data Intelligence and Security (ICDIS), 2018, pp. 246-249. |
“Search Query Report”, IP.com, performed Sep. 28, 2021, 5 pages. |
Willnauer, Simon Daniel, “Default Password Removal,” U.S. Appl. No. 16/047,959, filed Jul. 27, 2018, Specification, Claims, Abstract, and Drawings, 37 pages. |
Willnauer, Simon Daniel, “Shard Splitting,” U.S. Appl. No. 16/176,956, filed Oct. 31, 2018, Specification, Claims, Abstract, and Drawings, 47 pages. |
Number | Date | Country | |
---|---|---|---|
20220038276 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16047959 | Jul 2018 | US |
Child | 17504326 | US |