The present invention relates generally to the field of access and security for doors and, more particularly, to lockdown devices used to delay or deny entry by an intruder into a room with a door.
Recent tragedies have led to a growing demand for increased safety measures in facilities such as office buildings and especially in schools. The nation was shocked by the 2012 massacre at Sandy Hook Elementary School in Newtown, Conn., where a young shooter killed 26 people—including 20 six- and seven-year-old children. More recently, on Feb. 14, 2018, a shooter entered a high school in Parkland, Fla. and began firing his assault rifle. Later, on May 18, 2018, ten people—eight students and two teachers—were fatally shot and thirteen others were wounded during a school shooting at Santa Fe High School in Santa Fe, Tex. In light of the current national concern over terrorism and mass shootings in schools and other institutional settings, a relatively standardized procedure for responding to a security threat in a school building has been developed: the “lockdown,” in which teachers essentially lock themselves and their students in their rooms to deter invaders and await help. Unfortunately, the state of societal conditions now dictates that extreme security measures are not only necessary, but that it will most likely soon be mandatory for these facilities to obtain some form of security device to lock down the facility in the event of an armed intruder.
The heightened danger and frequency of intruders with deadly intent has created an urgent and immediate need to quickly and easily lock down any given door of a facility in a dangerous or life-threatening situation. In a real scenario, panic can rapidly overwhelm even frequently practiced responses—especially if much thought of what needs to be done is required. Therefore, it is essential that, in an emergency, the order for lockdown procedures be accomplished immediately, with as few steps as possible and the minimum amount of thought required, to eliminate potential delays or mistakes caused by panic, and thereby save lives. Existing products have addressed this issue, but most are prohibitively expensive for a facility on a budget, require modifications to the facility, can easily be subject to catastrophic failure at the critical time if not diligently maintained, or address confronting an intruder rather than locking the intruder out.
Many companies have tried to address the need for additional protection in schools, office buildings, and other structures. For example, LC Enterprises of Perris, Calif. (see www.lcenterprises.com), sells versatile ballistic panels and partition systems of different sizes and materials. The partitions offer interior separators that form cubicles and give office workers privacy. The company also offers trucks on which the panels fit so that the panels can be both upright and moved.
Hardwire, LLC of Pocomoke City, Md., offers a number of products designed to increase school safety. See www.hardwirellc.com. In addition to protective whiteboards that act as teaching aids and can double as a bullet-resistant shield in the event of a school shooting, Hardwire makes armored clip boards, tablets, and notebooks. It also makes hardened inserts, the size of a notebook, that can be placed in a student's backpack. Hardwire has a patent portfolio directed to its products.
U.S. Pat. Nos. 9,316,467 and 8,991,118 assigned to Hardwire, LLC disclose an armored door panel. The panel has a planar device with a layered arrangement including a protection layer comprised of a ballistic material and an outer surface layer arranged on the outer side of the protection layer. The planar device is affixed to an existing door to prevent ballistic projectiles from penetrating the door.
U.S. Pat. No. 9,090,116 assigned to Hardwire, LLC discloses an armored whiteboard device having a strike face with a dry erase markable surface that can be written on and wiped clean, and a protection layer of ballistic material attached to the strike face. The strike face and the ballistic protection layer can be used as a defensive shield to protect against oncoming ballistic projectiles. Handles on one side allow the device to be held in one position for writing upon the markable surface and in another position for protection against penetration by a projectile.
U.S. Pat. No. 8,739,675 assigned to Hardwire, LLC discloses an armor panel system with a projectile-deflecting section having an outwardly facing surface. The projectile-deflecting section is formed of a material arranged in parallel layers, the layers arranged at a non-parallel angle to the outer surface. The non-parallel angles deflect or rotate an incoming projectile.
U.S. Pat. No. 4,486,491 assigned to Dotmar Inc. of Montreal, Canada, discloses a self-supporting, decorative, armor panel having a central armor core consisting of layers of fiberglass bonded together with resin and an outer, decorative, non-ricocheting laminate on each side of the armor core. Each laminate has an outer, decorative cover layer and a plurality of paper layers bonded together with resin. In a process of making the panel, the laminates are bonded to the armor core simultaneously with the bonding together of all the layers.
Manufactured by Waco Composites of Waco, Tex. (www.armorcore.com), ArmorCore® bullet-resistant fiberglass panels provide security against bullets and blast fragments. The ArmorCore composite laminate consists of fiberglass-reinforced thermoset resin designed to defeat a projectile. All ArmorCore fiberglass panels are made of multiple layers of woven roving ballistic-grade fiberglass cloth impregnated and reinforced with a thermoset polyester resin and compressed into flat rigid sheets. Waco Composites uses a production technique and materials that provide the controlled internal delamination necessary to permit the capture of a penetrating projectile.
With reference to Underwriters Laboratory (UL LLC, the global safety consulting and certification company headquartered in Northbrook, Ill.) UL 752 Bullet Resistant Materials Standards, Waco Composites advertises its Level 1 panels as most commonly used for protection against hand guns of medium power, such as the 9 mm, Super 38 Automatic, and the like, with muzzle energy of 380-460 foot-pounds (515-624 J). Level 2 panels are most commonly used for protection against hand guns of high power, such as the 0.357 Magnum, and the like, with muzzle energy of 548-663 foot-pounds (743-899 J). Level 3 panels are most commonly used for protection against hand guns of super power, such as the .44 Magnum, and the like, with muzzle energy of 971-1,175 foot-pounds (1,317-1,593 J). Level 4 panels are most commonly used for protection against high-power hunting and sporting rifles, such as the 30-06, and the like, with muzzle energy of 2,580-3,120 foot-pounds (3,498-4,929 J). Level 5 panels are most commonly used for protection against military ball full metal copper jacket ammunition fired from a hunting rifle, such as the 308 Winchester or a military rifle with muzzle energy of 2,519-3,048 foot-pounds (3,416-4,133 J). Level 6 panels are most commonly used for protection against multiple shots from a submachine-gun, such as a 9 mm Uzi, and the like, with muzzle energy of 540-653 foot-pounds (732-885 J). Level 7 panels are most commonly used for protection against multiple shots from a military assault rifle, such as the M-16, and the like, with muzzle energy of 1,158-1,402 foot-pounds (1,570-1,901 J). Level 8 panels are most commonly used for protection against multiple shots from a military assault rifle, such as an M-14, and the like, with muzzle energy of 2,519-3,048 foot pounds (3,416-4,133 J).
Armor panels such as bulletproof glass or metal plate are known. These known panels are costly, heavy, and difficult to maneuver. Many of the known armor panels also cause bullets fired at them to ricochet. The ricocheting bullets could rebound from the panels to injure people near them. Thus, the panels do not protect as well as they should. In addition, the known panels often have an unattractive appearance, no function other than as a defensive structure, or both.
Secure Lockdown Solutions of Runnemede, N.J. advertises, through a video posted in 2016 and available at www.vimeo.com/153622483, a school lockdown table. The device is useful in the classroom only as a table. To act a safety device, the table top pivots or lifts up into position against a door using two hydraulic lifts or hinges. The table top is made from steel, which causes bullets that contact the table to shatter and create shrapnel. Because the table lacks wheels, several people are required to move the table into position and to engage the table to a door. The table only accommodates an outward-opening door; a structural change would have to be made to use the table in connection with an inward-opening door having a handle or door knob.
Several companies offer whiteboards having ballistic resistant capabilities. For example, Egan Visual Inc. of Woodbridge, Ontario, Canada offers a “Dimension Mobile” product equipped with a ballistic core. Egan advertises the product as providing multi-strike capabilities and buying precious time in an active shooter event, and asserts that the product can be specified for environments where additional “shelter-in-place” options are desired. See www.egan.com. Similarly, a subsidiary of Clifton Steel Company of Maple Heights, Ohio called Safe Place Solution markets a mobile presentation unit under the trademark WonderBoard™ that it advertises as offering frontline ballistic protection for doors and openings against active shooter threats in any environment. See www.blockbullets.com. Such products are not designed, however, to barricade a door or provide multiple layers of protection against an intruder into a room—nor do they pivot to facilitate multiple functionalities.
To overcome the shortcomings of known door safety mechanisms and lockdown devices, a new defense mobile device is provided. An object of the present device is to be used in case of a shelter-in-place or lockdown situation. A related object is to turn a room (classroom, office, or the like) into a safe room protected against intruders such as active shooters, by barricading a door with multiple layers of protection, and allow individuals or multiple persons to shelter-in-place. Another object is to protect the occupants of a room by securing doorways in all places of education, places of worship, shopping malls, government buildings, private businesses, and other structures. Another object is to provide a device that accommodates a wide variety of doors, whether they open inward into a room or outward, whatever their size (e.g., single or double doors), and regardless of their related features (e.g., a door closer, a window, and the like).
It is still another object of the present device to be “user” friendly relative to other tactical protective devices, carts, panels, or products which only law enforcement officers, military personnel, or persons with proper tactical training and capabilities can implement.
Yet another object of the present device is to provide an improved, self-supporting device having a ballistic panel which is relatively inexpensive and which can be easily maneuvered so that the panel can be used in many different structural applications. It is a further object of the present device to provide an improved ballistic panel which minimizes, or eliminates, the danger of ricochets thereby providing enhanced protection. It is a still further object of the present device to provide an improved ballistic panel which is attractive in appearance and can be used for functions other than its primary defense function. A related object is to use the device in a classroom on a daily basis as a whiteboard or video monitor.
To achieve these and other objects, and in view of its purposes, provided is a defense mobile device for securing a door located in a door frame and having a door knob. The device includes a base configured to support the storage of items. A plurality of wheels are affixed to and support the base, allowing the device to be maneuvered by a user. When activated, one or more stops hold the device in a stationary position. A frame is attached to the base. At least one grip is attached to the frame and adapted to be grasped by a user to move and manipulate the device. A mechanical pivot is attached to the base. A panel has a rear face, an intermediate ballistic core, a front face, and an opening through the panel from the front face to the rear face. A cover is positioned over the opening on the rear face of the panel and configured to overlay and enclose the door knob when the door knob protrudes through the opening in the panel. The panel is connected to the base via the mechanical pivot and configured to pivot between a plurality of angled positions and an upright position flat against the door. A locking rod is rotatably connected at one of its ends to the base via a first hinge bolt and at its opposite end to the panel via a second hinge bolt, the locking rod pushing and pulling the panel between its angled positions and its upright position. One of a lever-locking mechanism or a twist-lock mechanism is configured to secure the device in place against or within the door frame and against the door. A portal defined by a ballistic door viewer or viewport is located in the panel and permits viewing or observing through the panel. A release system is configured to deactivate the stop and enable the device to move.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, but are not restrictive, of the invention.
The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:
The features and benefits of the disclosed structures, components, and devices are illustrated and described by reference to exemplary embodiments. The disclosure also includes the drawing, in which like reference numbers refer to like elements throughout the various figures that comprise the drawing. This description of exemplary embodiments is intended to be read in connection with the accompanying drawing, which is to be considered part of the entire written description. Accordingly, the disclosure expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combinations of features that may exist alone or in other combinations of features.
In the description of embodiments, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top,” and “bottom” as well as derivatives of those terms (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the figure under discussion. These relative terms are for convenience of description only and do not require that the apparatus be construed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar terms refer to a relationship in which structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both moveable or rigid attachments or relationships, unless expressly described otherwise.
Referring now to the drawing,
A Cartesian coordinate system (X, Y, Z) is a coordinate system that specifies each point uniquely in three-dimensional space by three Cartesian numerical coordinates, which are the signed distances to the point from three, fixed, mutually perpendicular directed lines, measured in the same unit of length. Each reference line is called a coordinate axis or just an axis of the system, and the point where they meet is its origin, usually at ordered triplet (0, 0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the three axes, expressed as signed distances from the origin.
A plurality of wheels 4 are affixed to the bottom surface of the base 2. Although four wheels 4 are illustrated in
Relatively large (e.g., 1 inch (2.5 cm) diameter and 1 inch (2.5 cm) wide) caster wheels will roll over almost anything in an office or classroom, including rugs and carpets, without skidding. Caster wheels have ball bearing swivels for 360° rotation, enhancing the maneuverability of the device 10. Therefore, relatively large caster wheels are suitable for the wheels 4 of the device 10. The specific set of wheels 4 affixed to the bottom surface of the base 2 may include different wheels: two fixed wheels 4 may be affixed to the front of the base 2, for example, while two caster (swivel) wheels 4 are affixed to the rear of the base 2.
Suitable materials for construction of the wheels 4 are plastic; rubber; steel, aluminum, or other metals; tire tread; and combinations of such materials. A preferred material for the wheels 4 is polyurethane, which is a polymer composed of organic units joined by carbamate (urethane) links. Polyurethane is a true elastomer capable of tremendous impact resistance even at very high durometers. More important, polyurethane retains it elasticity and strength over the complete range of hardness.
One or more pedal stops 6, stops 46, or both pedal stops 6 and stops 46 are provided on the device 10 to hold the device 10 in a stationary position, and prevent moving or maneuvering the device 10, when desired. The pedal stop 6 is activated when a user presses downward on the pedal stop 6, typically using a foot, and released when the user again presses downward on the pedal stop 6 to toggle the pedal stop 6 into its released position. As shown in
The base 2 supports a vertical frame 8. The frame 8 may be attached to the base 2, for example, by welding the frame 8 to the base 2. Alternatively, the frame 8 may be integral with the base 2. By “integral” is meant a single piece or a single unitary part that is complete by itself without additional pieces, i.e., the part is of one monolithic piece formed as a unit with another part. In the embodiment shown in
In another embodiment, shown in
Other embodiments of the frame 8 are also envisioned. For example, the frame 8 might include one side formed of the A-shaped strut shown in
A steel plate or upright 80 (see
Velcro® is the brand name of the first commercially marketed fabric hook-and-loop fastener sold by Velcro USA, Inc. of Manchester, N.H. The fastener was invented by George de Mestral. See U.S. Pat. No. 3,009,235. Hook-and-loop fasteners consist of two components: typically, two lineal fabric strips or tapes (alternately round dots or squares) which are attached (e.g., sewn, adhered, etc.) to the opposing surfaces to be fastened. The first component features tiny hooks (e.g., the hook tape); the second features even smaller and “hairier” loops (e.g., the loop tape). When the two surfaces are pressed together, the hooks catch in the loops—and the two pieces fasten or bind temporarily. When separated, by pulling or peeling the two surfaces apart, the Velcro® strips make a distinctive “ripping” sound.
The upright 80 also provides the opportunity to include printed information 84 on the frame 8. As shown in
One or a pair of grips 12 are provided on one or both sides of the frame 8. The grips 12 are adapted to be grasped by a user and enable the user to maneuver, control, drive, steer, push, operate, and manipulate easily the device 10. The grips 12 are typically affixed to the frame 8, for example, by welding.
A locking rod 14 is rotatably connected at one of its ends to the base 2 of the device 10 via a first hinge bolt 16. The first hinge bolt 16 is typically affixed to the base 2, for example, by welding. A handle 18 of the locking rod 14 may be located at an elbow 38 (
Although ergonomic designs for the grips 12 and the handle 18 are preferred, the grips 12 and the handle 18 may have a variety of configurations. The figures illustrate just some of the possible configurations.
Typically, although not necessarily, one or more of the grips 12 and the handle 18 have handholds 12a and 18a, respectively, to facilitate engagement by the user. The handholds 12a and 18a are made of a material comfortable to grasping by users, such as rubber, plastic, or foam or a combination of such materials. The handholds 12a and 18a may be, for example, from 1 inch (2.5 cm) in length to 20 inches (50 cm) in length.
A tray 86 can be affixed to the frame 8 to store a wide variety of accessories 88. The tray 86 can be affixed to any suitable location on the frame 8, including inside the frame 8 (see
The device 10 also has a ballistic panel 20 with a rear face 22, a side edge 23, and a front face 24. The end of the locking rod 14 opposite the base 2 is rotatably connected to the panel 20 via a second hinge bolt 36. In some embodiments, for example the embodiment illustrated in
A set of instructions 26 are affixed (e.g., adhered) to the rear face 22, advising the user about correct operation of the device 10. The front face 24 of the panel 20 forms a writing surface such as an acrylic surface, a chalkboard, a whiteboard, or the like on which a user can write a message 28. A whiteboard (also known by the terms marker board, dry-erase board, wipe board, dry-wipe board, pen-board, and grease board) is a flat surface having a high smoothness or glossiness that can be written upon or otherwise marked using a non-permanent marker and then wiped clean. Whiteboards are commonly made of six types of materials: (1) melamine is a resin-infused paper that is typically used over a substrate that can range from particle board to medium density fiberboard; (2) painted steel or aluminum; (3) hard-coat laminate; (4) porcelain or enamel-on-steel; (5) tempered glass; and (6) polypropylene film. Whiteboards have become ubiquitous in classrooms, offices, and other institutions and, therefore, are preferred as the front face 24 of the panel 20.
The whiteboard may be integral with the front face 24 of the panel 20. Alternatively, the whiteboard may be a separate component that is placed over the front face 24. (Alternatively, other components such as cork boards, tack boards, and the like could be placed over the front face 24 if desired for a particular application.) A separate whiteboard 78 is illustrated in
The configuration illustrated in
Other components useful for the normal operation of a classroom or workplace can also be combined with the device 10. Some of those components are illustrated in
A controller is a hardware device or a software program that manages or directs the flow of data (i.e., facilitates communication 64, perhaps through a transceiver 68) between two components. The device 10 can include a controller 66. The controller 66 provides the ability to obtain data from, for example, the display 62, the grips 12, the handle 18, the locking rod 14, the lever-locking mechanism, the wheels 4, the pedal stop 6, and the panel 20, and to use that data to control the other components of the device 10. The controller 66 has programmed in it, in a manner well-known to those skilled in the art, a preset control program or routine to assure efficiently the operation of the various components of the device 10. More specifically, the controller 66 can, for example, define the information that appears on the display 62, identify when the grips 12 of the handle 18 are touched, cause the wheels 4 to move, activate the pedal stop 6, and position the panel 20. A hand-held joystick (not shown) could interact through the controller 66 to fully control and steer the device 10 to a doorway and into place against a door or doorway for sheltering-in-place without human physical interaction. This concept would keep an occupant of the room in which the device 10 is located away from the largest threat in the room, which is the doorway and its related door. The controller 66 helps to assure a robust and reproducible automated operation of the device 10. The controller 66 and transceiver 68 can be positioned on any suitable surface, such as a table 70.
As shown in
As discussed above, the device 10 provides the practical features of an angled whiteboard, the storage of items, and interactive communications in addition to its main functions of defense and safety. The device 10 can be used daily as a whiteboard with erasable markers. When not used for its main purpose of securing a doorway, the device 10 provides a front face 24 that rests back on an angle to function as a typical whiteboard for use in classrooms and offices. This function advantageously avoids both a “fortress” look that risks making some individuals uncomfortable and occupation of limited space in the classroom or office with a defense and safety device that, hopefully, would never be needed.
The main structure of the panel 20, however, is a ballistic core. A suitable core for the panel 20 is available from Waco Composites of Waco, Tex. See www.armorcore.com. Another suitable core for the panel 20 is available from ArmorCo of Ashtabula, Ohio. See www.armorco.com. ArmorCo is one of the leading suppliers of Kevlar bullet-resistant fabrics and fiberglass bullet-resistant panels in the United States. (Kevlar is a registered trademark of E.I. duPont de Nemours & Co., Inc. of Wilmington, Del. used in connection with a synthetic fiber.) A suitable ArmorCo core for the panel 20 is made utilizing multiple layers of specially woven fiberglass with a proprietary resin system. The core may be considered fiberglass opaque armor. The core for the panel 20 stops bullets by capturing the ballistic projectiles in an innovative process called ply-delamination, and also defeats the projectiles without the danger of ricocheting or spalling. Bullets and other projectiles are not deflected by the panel 20. Thus, the panel 20 catches the bullet or projectile and prevents a threat to other individuals or innocent bystanders. The panel 20 preferably has a UL 752 rating of Level 7 or higher. The panel 20 may have a different UL 752 rating, however, such as Level 5, Level 8, or other Levels, depending upon the application.
Ballistic resistance tests were performed on the panel 20 having the ArmorCo core by H.P. White Laboratory, Inc. of Maryland. All testing was conducted on an indoor range at ambient conditions, in accordance with modified provisions of UL-752. Testing was conducted using caliber 5.56×45 mm, 55 gr.; 12 ga, SLUG; and 9 mm, 124 gr., full metal jacket (FMJ) ammunition. The test samples were positioned 15 feet (4.5 m) from the muzzle of the barrel to produce zero degree obliquity impacts. Photoelectric infrared screens were located at 5 feet (1.5 m) and 10 feet (3 m) which, in conjunction with electronic chronographs, were used to compute bullet velocities at 7.5 feet (2.3 m) forward of the muzzle. Penetrations were determined by visual examination of the ⅛ inch (0.32 cm) thick corrugated cardboard witness plate, placed 15 inches (38 cm) behind and parallel to the test samples.
Tests were conducted both with a classroom door closed and the panel 20 in position behind the door and with the door open (so that bullets hit the panel 20 directly). Bullets were directed at various components of the device 10, including the cover 50 (see below) and the locking rod 14. In all cases where the door was closed, the bullets penetrated through the door. In none of the tests, whether the door was open or closed and regardless of where the bullets were directed, did the bullets penetrate through the panel 20. Tests were also done using a battering ram to try to disengage the panel 20 from its position against the door or door frame; in none of those tests was the panel 20 breached.
At least two other alternatives are envisioned for the ballistic core of the panel 20. The first alternative is illustrated in
Ballistic rubber is often used to prevent escapes and ricochets of bullets and bullet fragments in gun-training ranges. Although ballistic rubber can stop some rounds, depending on the thickness of the ballistic rubber, bullets can usually penetrate the ballistic rubber. The ballistic rubber typically allows the bullets to pass through it and then strike a hard surface such as the steel plate 102. Upon contact with the steel plate 102, the bullets lose both energy and their original shape and safely either come to rest between the ballistic rubber and the steel plate 102 or become embedded in the ballistic rubber. Thus, the rubber blocks 104 contain bullets and fragments and prevent shrapnel from ricocheting. Several companies manufacture and sell products suitable as the ballistic rubber blocks 104. Range Systems, Inc. of New Hope, Minn. offers ballistic rubber products under the trademarks Dura-Bloc™ and DuraPanel™. See U.S. Pat. No. 5,316,708, incorporated in this application by reference. Cumberland Rubber Supply of Nashville, Tenn., and Black Iron Rubber Company of Babbitt, Minn., also offer suitable ballistic control rubber products.
The second alternative is illustrated in
AR500 steel sheet having a thickness of ⅜ inches (0.95 cm) weighs approximately 15.3 pounds per square foot. To accommodate the weight of the steel sheet 110, several components can be added to the device 10. A counterweight 112, typically also made of steel, can be added to (placed on) the rear face 22 of the panel 20 to achieve proper weight distribution. The weight of counterweight 112 will depend, of course, on the application but a weight of 90 pounds (40.8 kg) has been found suitable in some applications. One or more (two are illustrated) arms 114 can be added to connect and support the steel sheet 110. The arms 114 can be made of flat steel attached to the base 2 using pin hinges 116 and to the rear face 22 using brackets 118. A band 120 can be added at or near the bottom of the rear face 22 for increased support of the steel sheet 110. The band 120 can be a flat piece attached only to the rear face 22 or the band 120 can be an “L”-shaped piece attached to both the rear face 22 and the bottom of the panel 20.
Regardless of the alternative used to form the ballistic core of the panel 20, the whiteboard 78 may be attached to it. Also regardless of the alternative used to form the ballistic core of the panel 20, a standard size for the panel 20 is 4 feet (122 cm) in width, 8 feet (244 cm) in height, and 1 inch (2.5 cm) in thickness. Other sizes of panel 20 can be made if needed, however, to accommodate the doors of existing buildings. The device 10 is designed (e.g., sized) so that once it is assembled inside of a classroom or office, the device 10 cannot be wheeled outside of the classroom or office through a standard-size doorway; therefore, such a design helps to prevent theft of the device 10 and removal of the device 10 from the room for nefarious purposes.
Some doorways have a glass light window adjacent the door. To accommodate such doorways, the panel 20 could be made wider than just the size of the door to encompass the glass light window. For example, the panel 20 might be 5 feet (152 cm) wide. In addition, some doors have a window in them. As shown in
Rather than the ballistic door viewer 192, the device 10 can have a ballistic viewport 194 as illustrated in
With reference to the UL 752 Bullet Resistant Materials Standards outlined above, the ballistic level for the ballistic glass or fiberglass insert 198 is rated from Level 1 through Level 8. The ballistic level of the ballistic glass or fiberglass insert 198 will be predetermined for a particular application. The ballistic level should be adequate, however, to stop all handgun rounds, shotgun rounds, and rifle rounds, to include AR-15 style rifles, 0.223/5.56 caliber, and AK-47 caliber bullets of 7.62.
The border 196 is typically made of metal, preferably steel. The various embodiments of the ballistic viewport 194 can be attached to the panel 20, over or in an opening through the panel 20 from the front face 24 to the rear face 22, using fasteners, adhesives, or other attachment mechanisms. The border 196 extends beyond the area defined by the internal opening in the panel 20, which is covered by the glass or fiberglass insert 198, and is preferably disposed flat against the panel 20 when the ballistic viewport 194 is in position against the panel 20. If they are used, fasteners can extend through the panel 20 and through holes in the border 196. Suitable fasteners have an acorn cap or nut. The ends of the fasteners opposite the cap or nut are flush or slightly recessed, of course, with the front face 24 of the panel 20 so as not to interfere with the function of the writing surface.
This addition of the ballistic viewport 194 makes the device 10 more versatile in its use. The ballistic viewport 194 advantageously permits people who are sheltering in place within a room protected by the device 10 to see directly through the device 10 while constantly being behind cover and protection. With the addition of the ballistic viewport 194, the device 10 is even more suitable for use in such applications as security entrances to any facility for protection (lobbies, office reception areas, etc.) and security checkpoints for law enforcement or security forces such as the military.
The device 10 can also be modified to accommodate doors of different sizes.
Typically, the entire structure of the device 10 (except in some applications, of course, the whiteboard 78 or other components on the front face 24 of the panel 20) will be powder coated. Of course, selective components of the device 10 can be powder coated rather than the entire device 10. Powder coating is a type of coating that is applied as a free-flowing, dry powder. The main difference between a conventional liquid paint and a powder coating is that the powder coating does not require a solvent to keep the binder and filler parts in a liquid suspension form. The coating is typically applied electrostatically and is then cured under heat to allow it to flow and form a “skin.” The powder may be a thermoplastic or a thermoset polymer. The powder coating creates a hard finish that is tougher than conventional paint. The powder coating process was invented around 1945 by Daniel Gustin, who was awarded U.S. Pat. No. 2,538,562. The powder coating can give the device 10 any color desired. The powder coating also provides functional advantages, such as toughness and rust resistance.
The panel 20, with or without the whiteboard 78, can be encased in a protective casing 130. The casing 130 is depicted in
One or more of the components of the device 10 can be encased in a wrap 140, typically made of plastic such as vinyl. An embodiment of the device 10 illustrating the wrap 140 as applied to the panel 20 is shown in
Typically, the first level of protection against an intruder having access to a room is a locked door 90. As shown in
The design and intent of the ballistic panel 20 is to be placed against the existing, already-locked door 90. The panel 20 is positioned, as shown in
The panel 20 pivots mechanically so that it can transition from its secondary function as a whiteboard, typically although not necessarily angled as shown in
Optionally provided is one stay 32 or a pair of stays 32, each stay 32 having one end connected to the frame 8 and its opposite end connected to the panel 20. See
Also optionally provided are one or more hydraulic lifts 150 to assist in moving the panel 20 from its normal resting position to a 90-degree position fully engaged against a door 90 or door frame 98. Two hydraulic lifts 150 are shown for purposes of example only in
The device 10 adds a third layer of protection against an intruder by providing a lever-locking mechanism to secure the device 10 in place against or within the existing door frame 98. The lever locking mechanism includes, for example, one or more bolts 40 (preferably steel) slidably located on the panel 20 of the device 10 and a corresponding one or more receivers (or sleeves) 42 (also preferably steel) located on the existing door frame 98. Two bolts 40 and receivers 42 are illustrated in
After the user positions the panel 20 upright against the door 90, the one or more bolts 40 can be slid along the panel 20 into engagement with the corresponding one or more receivers 42. One pair of a bolt 40 and a receiver 42 suffices; two or more pairs of bolts 40 and receivers 42 provide enhanced security. Regardless of the number of pairs of bolts 40 and receivers 42, the lever-locking mechanism provides a third layer of protection in case the existing door 90 is breached by an intruder: the intruder faces the panel 20 locked into position against or within the existing door frame 98 even with the door 90 damaged, opened, or removed.
A problem with many lockdown procedures is that fire safety codes typically mandate the use of outward-opening doors 90, and the use of locks that are key-locked from outside the room and released by simply turning the door knob 92 from inside the room. These fire safety measures interfere with the speed and security of the lockdown procedure. The teacher must open the classroom door, step outside, and key the lock, exposing the teacher and the classroom to danger. Further, a panicked student can easily unlock the door 90 from inside the classroom. Still further, if the door 90 has the typical glass window, an intruder can break the glass, reach inside, and unlock the door 90 by turning the inside door knob 92.
The device 10 is designed to engage door frames 98 whether the corresponding door 90 opens into the room or outward away from the room. The lever-locking mechanism (one or more bolts 40 and receivers 42) can be shaped to engage both protruding and recessed door frames 98. In either case, the receivers 42 are affixed to the door frame 98. The corresponding bolts 40 will be substantially straight to accommodate outward-opening doors 90 (in a recessed door frame 98) and will have a substantially “Z” or “S” shape to accommodate inward-opening doors 90 (in a protruding door frame 98).
One or more magnets 160 can be affixed to each side edge 23 of the panel 20, as shown in
As discussed above, modifications to the device 10 may be made to accommodate certain applications. Another such modification is to add to the device 10, and specifically to the panel 20, a top step 48 preferably made of steel. The top step 48 is illustrated in many of the figures including, for example,
The device 10 effectively barricades even outward-opening, doorknob-operated doors 90 from inside a room without having to open or lock the door 90. Externally locked, internally unlocked door knobs 92 do not compromise the security of the device 10, even if the door knob 92 is left unlocked during the lockdown procedure.
The lever-locking mechanism (bolts 40 and receivers 42) of the device 10 can be manually operated by the user or can be designed to engage automatically and to be released by remote signal from the controller 66. A manually operated embodiment of the lever-locking mechanism is illustrated in
In order to further prevent the possibility of the door 90 being unlocked from inside the room, or by someone reaching through a broken window and unlocking the door 90, and to increase the speed of the deployment of the lever-locking mechanism, an alternate, automatically engaged lever-locking mechanism forms an alternative embodiment. The automatic lever-locking mechanism includes a bolt 40 mounted to move in a bore under the action of a spring. The bolt 40 is retracted into the bore and out of engagement with the receiver 42 against the force of the spring by a retention element. When it is desired that the spring push the bolt 40 out of the bore and into engagement with the receiver 42 located on the door frame 98, the retention element is released. Such release automatically pushes the bolt into engagement with the receiver 42.
The bolt 40 and its corresponding spring are part of a remote-controlled, solenoid-retracted lever-locking mechanism. The automatic lever-locking mechanism is similar, for example, to the mechanism used in remote-controlled automobile door lock mechanisms. Transmitting one signal to the lever-locking mechanism causes the solenoid to retract the bolt 40 out of engagement with the receiver 42, against the force of the spring, allowing the panel 20 and the device 10 to be removed from the door 90 and door frame 98. A wireless unlatching signal can come from a handheld remote control in the possession of a teacher, or from security personnel clearing the building, or can be a building-wide signal transmitted from a central office. The signal can be part of the communications 64 from the transceiver 68 prompted by user interface with the controller 66.
Another alternative is to include a twist-lock mechanism 170 as part of the device 10.
The twist-lock mechanism 170 has an enclosure 172 with a top flange 174, a bottom flange 176, and side flanges 178. Each of the side flanges 178 has a slot 180. At the approximate center of the rear of the enclosure 172 a disc 182 is located having a twist-lock handle 184. Through an axel, bushings, and hole (not shown) in the enclosure 172, the disc 182 engages a twist-lock plate 186 located inside the enclosure 172. The twist-lock plate 186 has pivotably connected to it a pair of twist-lock arms 188 that each extend, respectively, through one of the slots 180 when the twist-lock mechanism 170 is actuated and that retract completely inside the enclosure 172 when the twist-lock mechanism 170 is not actuated. The top flange 174 and the bottom flange 176 can attach the twist-lock mechanism 170 to the rear face 22 of the panel 20 using a variety of fasteners 190 such as screws, bolts, tacks, rivets, and the like, as would be appreciated by an artisan.
The ends of the twist-lock arms 188 opposite the twist-lock plate 186 are configured to engage corresponding notches on the door frame 98 when the twist-lock mechanism 170 is actuated. Such engagement further enhances the barricade created by the device 10. Actuation is achieved when the twist-lock handle 184 is rotated in a first direction, which causes the disc 182 and in turn the twist-lock plate 186 to rotate in that same first direction. Such rotation causes the twist-lock arms 188 to move outward, through the slots 180, and into engagement with the notches. Actuation can be accomplished manually or automatically. When the user wants to remove the device 10 from its position in the door frame 98, the twist-lock handle 184 is rotated in a second direction opposite to the first direction, which causes the disc 182 and in turn the twist-lock plate 186 to rotate in that second direction. Such rotation causes the twist-lock arms 188 to move inward, through the slots 180, and into the interior of the enclosure 172 as shown in
The device 10 adds a fourth layer of protection against an intruder by providing a cover 50 on the panel 20. (As illustrated in
In one embodiment, the cover 50 is formed in the shape of a metal (preferably steel) box. The opening 52 in the panel 20 may be round, square, rectangular, U-shaped, or may have any other shape suitable to accommodate a door knob 92. The cover 50 may have a shape corresponding to the shape of the opening 52. An example cover 50 is a rectangular box formed of half-inch (1.25 cm) thick steel which is about 5 inches (12.5 cm) deep, 10 inches (25 cm) tall, and 8 inches (20 cm) wide. Other dimensions are suitable, however, for the cover 50 (e.g., ⅜ inch or 1 cm thick). When in position enclosing the door knob 92, the cover 50 prevents inadvertent unlocking or opening of the door 90 and protects against an intruder who might shoot out the door knob 92.
As shown in
Optionally provided on the rear face 22 of the panel 20 is a belt 34. The belt 34 is preferably metal and still more preferably steel. The belt 34 reinforces the panel 20 and facilitates engagement between the panel 20 and one or more of the hinge bolt 36 (and, therefore, the locking rod 14), the stays 32 (if present), and the cover 50. Such engagement is illustrated, for example, in
The device 10 can be modified to permit certain people (i.e., authorized entrants) located outside a room to gain access to the room without assistance from occupants in the room. Such authorized entrants might be offering help (e.g., first responders, police, security, firefighters, or emergency personnel) or might be stranded outside the room and need to get inside the room for sheltering in place. Access to the room can be gained by moving the device 10 away from the door after releasing the mechanism that otherwise prevents the device 10 from moving. As described above, that mechanism can be one or both of pedal stops 6 and stops 46. The pedal stops 6 and stops 46 are provided on the device 10 to hold the device 10 in a stationary position and prevent moving the device 10. Release or deactivation of the pedal stops 6, the stops 46, or both can be achieved using a release system 200. Thus, although the release system 200 will be described and is illustrated in
In one embodiment, as illustrated in
As illustrated in
The release system 200 further includes a hollow tube 210 and a hollow box 220. Both the tube 210 and the box 220 are preferably made of metal and, even more preferably, of steel. The tube 210 can have any suitable shape in cross section, such as square, rectangular, or round. The tube 210 can have a smooth interior surface or a threaded interior surface. One end of the tube 210 is attached (e.g., welded) to the base 2 of the device 10 proximate to the stop 46. The opposite end of the tube 210 is attached (e.g., welded) to the box 220. The tube 210 can be disposed substantially parallel to the floor 100 (i.e., flat) between the stop 46 and the box 220 if the box 220 is located near the bottom of the panel 20. Alternatively, as illustrated in
The cable 202 is threaded, runs through, or otherwise traverses inside of the tube 210 from the stop 46 to the inside of the box 220. The cable 202 can enter the inside of the tube 210 through an orifice 211 in the tube 210. The first loop 204 of the cable 202 engages the stop 46, as described above, and the second loop 206 of the cable 202 resides inside the box 220 proximate the rear face 22 of the panel 20.
As illustrated in
The shape of the box 220 may be round, square, rectangular, U-shaped, or may have any other shape suitable to accommodate the second loop 206 of the cable 202. Of course, the opening in the panel 20 covered by the box 220 will have a corresponding shape. An example box 220 is a rectangular box formed of half-inch (1.25 cm) thick steel which is about 5 inches (12.5 cm) deep, 10 inches (25 cm) tall, and 8 inches (20 cm) wide. Other dimensions are suitable, however, for the box 220 (e.g., ⅜ inch or 1 cm thick). When in position enclosing the second loop 206 of the cable 202, with its hatch 222 locked closed, the box 220 prevents undesired access to the cable 202 and, therefore, deactivation of the stop 46. Thus, the box 220 protects against an intruder who might access the cable 202.
An embodiment of the key 230 is illustrated in
In an alternative embodiment, the key 230 may be a conventional key having the unlocking tip 236 only. This embodiment of the key 230 need not be T-shaped, nor need it have the hook 238. The function of this embodiment of the key 230 is simply to open the hatch 222. Once the authorized entrant opens the hatch 222 and has access to the second loop 206 of the cable 202, the authorized entrant can grab the second loop 206 directly using one or more fingers. Also possible is that a separate T-shaped hook 238 either is permanently attached to the second loop 206 or resides in the box 220 (along with the cable 202). In either case, after the authorized entrant has opened the hatch 222 using the key 230, the authorized entrant can use the separate T-shaped hook 238 to pull the cable 202.
Upon implementation, the device 10 secures, protects, and defends when a shelter-in-place or lockdown situation occurs. The device 10 turns a room (classroom, office, and the like) into a room safe from intruders, especially active shooters, and allows individuals or multiple persons to shelter-in-place. The device 10 adds three layers of security to the first layer of security of an already-existing closed and (perhaps) locked door 90. Thus, the device 10 provides four levels of protection: a locked door 90, a ballistic panel 20, a “secondary” door created by the lever-locking mechanism or the twist-lock mechanism 170 securing the panel 20 against or within the door frame 98, and a cover 50 over the door knob 92 to secure the door 90 and corresponding doorway.
The device 10 is designed to be user friendly. The wheels 4 render the device 10 mobile and allow the user to place the device anywhere in a room, quickly and easily, especially when the device 10 must be placed against a door 90 to perform its safety function. The grips 12 allow the user to easily maneuver the device 10. Once the device 10 is placed in position at a doorway, the user follows the instructions 26 adhered to the device 10 to assure correct use of the device 10. Of course, it would be preferable for the user to have already read the instructions 26 and practiced use of the device 10 before an emergency situation arises. The device 10 provides an uncomplicated, high-quality, physics-based lockdown solution at an affordable price, even for facilities on a limited budget. The device 10 is designed for use in schools, offices, places of worship, and other public facilities where multiple types of doorways are used and overall cost is a major factor.
Although illustrated and described above with reference to certain specific embodiments, the present invention is nevertheless not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the spirit of the invention.
This application claims the benefit of priority as a continuation-in-part of U.S. patent application Ser. No. 16/377,397, filed on Apr. 8, 2019, which in turn claims priority to U.S. Provisional Patent Application No. 62/654,920, filed on Apr. 9, 2018, and the contents of both prior applications are incorporated in this application by reference.
Number | Name | Date | Kind |
---|---|---|---|
8015910 | Fuqua | Sep 2011 | B1 |
9347748 | Crisp | May 2016 | B1 |
10295311 | Trubacek | May 2019 | B1 |
11136813 | Rush | Oct 2021 | B2 |
20120137866 | Gonard | Jun 2012 | A1 |
20200025525 | Spransy | Jan 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20220018170 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
62654920 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16377397 | Apr 2019 | US |
Child | 17489579 | US |