This invention relates generally to computer networks and more specifically to deferred data storage in a networked device.
A method for deferred storage of data is disclosed. A packet comprising instructions and literal data for rebuilding packet data from a network device is received. The packet data is rebuilt according to the instructions and the literal data. The rebuilt packet data is rewritten to a temporary page in memory. A page utilization metric is calculated based on the contents of the temporary page, the contents comprising the rebuilt data packet. Whether the contents of the temporary page sufficiently match data in a database is determined. The contents of the temporary page may be discarded or stored in the database based on the determination.
The method may further comprise storing the contents of the temporary page at a location in the database based on the determination. The method may further comprise sending a proposed location to the network device based on the determination, receiving a preferred location from the network device, and/or transmitting an indication that the contents of the temporary page are stored at a location in the database. The page utilization metric may comprise a total match count. The database location may be sequential to previously stored data. The method may further comprise sending integrity check information based on contents of the temporary page to the network device.
A system comprises a processor and data storage. The processor is configured to receive a packet comprising instructions and literal data for rebuilding packet data from a network device, rebuild the packet data according to the instructions and the literal data, write the rebuilt packet data to a temporary page in memory, calculate a page utilization metric based on the contents of the temporary page, the contents comprising the rebuilt data packet, and determine if the contents of the temporary page sufficiently match data in a database. The database is configured to discard or store the contents of the temporary page based on the determination.
A computer readable medium having embodied thereon instructions executable by a processor for performing a method for deferred storing of data. In the method, a packet comprising instructions and literal data for rebuilding packet data from a network device is received. The packet data is rebuilt according to the instructions and the literal data. The rebuilt packet data is rewritten to a temporary page in memory. A page utilization metric is calculated based on the contents of the temporary page, the contents comprising the rebuilt data packet. Whether the contents of the temporary page sufficiently match data in a database is determined. The contents of the temporary page are discarded or stored in the database based on the determination.
A network memory system is often used to improve performance of one or more communication networks. A network memory system generally comprises a first appliance and a second appliance each operationally coupled to a communication network. The first appliance may receive data and determine whether at least a portion of the data is locally accessible to the second appliance. If at least some of the data is locally accessible to the second appliance, the first appliance may send only that data which is not locally accessible, thereby, in some embodiments, reducing data traffic across the communication network. The second appliance may then combine data received from the first appliance with that data that is locally accessible.
The second appliance may store the recently received data to make that data locally accessible thereby possibly reducing the time to retrieve that data when needed at a later time. In order to reduce the possibility that data is fragmented within storage, the first appliance and the second appliance may operate in a deferred data storage mode. In the deferred data storage mode, the recently received data combined with the data which was locally accessible may be temporarily stored in a temporary page in memory. A temporary page comprises data of which a decision to store or discard has not been made. When the temporary page is full, a determination is made as to whether the contents of the temporary page will be stored in persistent data storage (e.g., to make the combined data locally accessible to the second appliance) or be discarded. The determination may be based, in part, upon an analysis of possible fragmentation within storage. By deferring the decision to store the combined data, the effects of fragmentation may be reduced.
In the branch office 102, the computers 108 are linked to the branch appliance 110. The branch appliance 110 is linked to the router 112. The router 112 is coupled to the communication network 106. In the central office 104, the central servers 114 are linked to the central appliance 116. The central appliance 116 is linked to the router 118. The router 118 is coupled to the communication network 106.
The principles discussed herein are equally applicable to multiple branch offices (not shown) and to multiple central offices (not shown). For example, the network memory system 100 may include multiple branch offices and/or multiple central offices coupled to the communication network 106. Branch office/branch office communication and central office/central office communication, as well as multi-appliance and/or multi-node communication and bi-directional communication are further within the scope of the disclosure. However, for the sake of simplicity, the disclosure illustrates the network memory system 100 having the single branch office 102 and the single central office 104, and the respective branch office 102/central office 104 communication.
The communication network 106 comprises hardware and/or software elements that enable the exchange of information (e.g., voice and data) between the branch office 102 and the central office 104. Some examples of the communication network 106 are a private wide-area network (WAN), and the Internet. Typically connections from the branch office 102 to the communication network 106 (e.g., from the router 112 and the router 118) are ISDN, T1 lines (1.544 Mbps), and possibly broadband connections such as digital subscriber lines (DSL) and cable modems. Other examples are T3 lines (43.232 Mbps), OC3 (155 Mbps), and OC48 (2.5 Gbps), although more costly and more likely used for interconnection at the central office 104 or as the backbone of the communication network 106.
The branch appliance 110 comprises hardware and/or software elements configured to receive data (e.g., email, files, and databases transactions), determine whether a portion of the data is locally accessible to an appliance (e.g., the central appliance 116), generate an instruction based on the determination, and transfer the instruction to the appliance. The branch appliance 110 also comprises hardware and/or software elements configured to receive an instruction from an appliance (e.g., the central appliance 116), process the instruction to obtain data, and transfer the data to a computer (e.g., the computers 108). The data transferred to the computer is referred to as “response data.” One example of the branch appliance 110 is described below with respect to
Locally accessible data comprises any data transferable to the computer (e.g., the computers 108 and the central servers 114) by an appliance (e.g., the branch appliance 110 and the central appliance 116) without transferring the data over the communication network 106. In some examples, the locally accessible data is stored in random access memory (RAM) in the branch appliance 110, on a hard drive in the branch appliance 110, and a combination of data stored in RAM and on one or more hard drives in the branch appliance 110. In another example, the locally accessible data is accessible by the branch appliance 110 over a communication network (other than the communication network 106), such as data stored in a network attached storage (NAS) device that is internal or external to the branch office 102. In still another example, the locally accessible data is stored in a database. The database may be stored in RAM, on a hard disk, a combination of RAM and hard disks, in a NAS device, and/or in other optical and flash storage devices.
The instruction comprises any message or signal that indicates to an appliance (e.g., the branch appliance 110 and the central appliance 116) an action to perform with the data. Some examples of the instruction indicate to the appliance to store the data in a memory, to retrieve the data from data storage, and to forward the data to the computer (e.g., the central servers 114 and the computers 108). The instruction may be explicit and/or implicit based on instructions indicating to store or retrieve the data. In some embodiments, the instruction indicates an index within a database for storing and retrieving the data.
The central appliance 116 comprises hardware and/or software elements configured to receive data, determine whether a portion of the data is locally accessible to an appliance (e.g., the branch appliance 110) in the data storage, generate an instruction based on the determination, and transfer the instruction to the appliance. The central appliance 116 also comprises hardware and/or software elements configured to receive an instruction from an appliance (e.g., the branch appliance 110), process the instruction to obtain the response data, and transfer the response data to a computer (e.g., the central servers 114). One example of the central appliance 116 is described below with respect to
As illustrated, the branch appliance 110 is configured in-line (or serially) between the computers 108 and the router 112. The central appliance 116 is also configured serially between the central server 114 and the router 118. The branch appliance 110 and the central appliance 116 transparently intercept network traffic between the computers 108 and the central servers 114. For example, the central appliance 116 transparently intercepts data sent from the central servers 114 and addressed to the computers 108. The computers 108 and the central servers 114 advantageously require no additional configuration because the branch appliance 110 and the central appliance 11.6 operate transparently.
Alternatively, the branch appliance 110 and the central appliance 116 are configured as an additional router or gateway. As a router, for example, the branch appliance 110 appears to the computers 108 as an extra hop before the router 112. In some embodiments, the branch appliance 110 and the central appliance 116 provide redundant routing or peer routing with the router 112 and the router 118. Additionally, in the bridge and router configurations, the branch appliance 110 and the central appliance 116 provide failure mechanisms, such as, fail-to-open (e.g., no data access) or fail-to-wire (e.g., a direct connection to the router 112).
It will be understood that the branch appliance 110 and the central appliance 116 perform bi-directional communication. For example, data sent to the branch appliance 110 from the central appliance 116 may be stored in a location locally accessible to the central appliance 116 and in a location locally accessible to the branch appliance 110. If the data is to be transferred again from the central appliance 116 to the branch appliance 110, the central appliance 116 may determine that the data is locally accessible to the branch appliance 110 and generate an instruction to the branch appliance 110 to retrieve the data. The central appliance 116 transfers the instruction to the branch appliance 110 and the branch appliance 110 processes the instruction to obtain the data. If later, the branch appliance 110 is to transfer the entire data back to the central appliance 116, the branch appliance 110 may use the fact that the central appliance 116 has before transferred the data to the branch appliance 110. The branch appliance 110 therefore determines that the data is locally accessible to the central appliance 116 and generates an instruction to the central appliance 116 to retrieve the data. The branch appliance 110 transmits the instruction to the central appliance 116 and the central appliance 116 processes the instruction to obtain the data. Therefore, an appliance (e.g., the branch appliance 110 and the central appliance 116) in the network memory system 100 advantageously uses data transferred to and from the appliance to reduce network traffic with other appliances in the network memory system 100.
In exemplary embodiments, the network memory system 100 advantageously provides increased productivity, reduced IT costs, and enhanced data integrity and compliance. For example, the network memory system 100 achieves the simple administration of centralized server systems whereby the central servers 114 store the primary copy of the data. The network memory system 100 improves application performance and data access in the branch office 102 and central office 104 because not every response to a data request travels over the communication network 106 from the central servers 114. The branch appliance 110 and the central appliance 116 also store to and retrieve from a local copy of the data for subsequent exchanges of the data.
Additionally, the network memory system 100 may not cache the data in the traditional sense. The data may be retrieved locally even if the URL or filename for the data is different because the data may be identified by a pattern for the data itself and not by the URL or filename. Furthermore, unlike web caching, the network memory system 100 ensures that the data is coherent by forwarding messages (e.g., data requests and responses) between the computers 108 and the central servers 114. For example, web caching operates by locally intercepting messages for an authoritative source (e.g., a web server) and responding to the messages such that the web server potentially never sees the messages. In some cases, particularly with dynamic content, the locally cached copy may be stale or out-of-date. Advantageously, the network memory system 100 provides the data coherency and up-to-date data by the transparent operation of the network memory system 100 and the principle in which messages are transferred end-to-end (e.g., from the computer 108 to the central servers 114), even though the messages and/or the data may not traverse the communication network 106.
In various embodiments, the network memory system 100 may not have the higher cost of distributed server systems because the branch appliance 110 and the central appliance 116 provide benefits across all applications and displace several distributed devices and caches, particularly in multiple branch implementations. In some embodiments, the branch appliance 110 and the central appliance 116 provide internal storage for a secondary copy of the data. The network memory system 100 also reduces the hardware and license costs for the branch office 102 and the central office 104 by eliminating the need for the numerous distributed devices. Further, the network memory system 100 minimizes the security vulnerabilities and patching activities commonly associated with the distributed systems. Management of the branch appliance 110 and the central appliance 116 is simpler than the management of a remote distributed server. Unlike remote servers, there is no need to configure user accounts, permissions, and authentication schemes on the branch appliance 110 and the central appliance 116.
An appliance of the network memory system 100 (e.g., the branch appliance 110 and the central appliance 116) may calculate hashes at every byte boundary of a data flow (e.g., response data) to be sent across the communication network 106. In some embodiments, the data flow includes packets that are in the same Internet Protocol (IP) flow, as defined by the IP header five tuple of source address, source port, destination address, destination port, and protocol. The hashes may be influenced by preceding bytes in the data flow. For example, the hashes are influenced by approximately the “n” previous bytes, where “n” determines the fingerprint size. Some examples of calculating the hashes are cyclical redundancy checks (CRCs) and checksums over the previous “n” bytes of the data flow. In some embodiments, rolling implementations of CRCs and checksums are used where a new byte is added, and a byte from “n” bytes earlier is removed. To maximize the ability to determine whether a portion of the data flow exists in another appliance in the network memory system 100, the hash calculation may span across successive IP packets in the data flow. In other embodiments, the hash calculation ignores patterns that span one or more IP packet boundaries in the data flow, and the hashes are calculated within a single IP packet.
Each calculated hash is filtered by a fine filter 224 and a coarse filter 226. The appliance designates the locations in the data flow which meet the fine and coarse filter criteria as fine and coarse sync-points, respectively. The fine filter 224 and the coarse filter 226 have different filter criteria. Typically, the filter criteria for the coarse filter 226 are more restrictive and may be used to further filter those hashes which pass the fine filter. In other words, the fine filter produces a fine comb of sync-points and the coarse filter produces a coarse comb of sync-points. One example of the filter criteria is the null filter which allows results in sync-points at all locations. In another example, the filter criteria declares a fine sync-point when the top five bits of the hashes are all zeros and a coarse filter criteria which stores or compares hashes when the top ten bits of the hashes are all zeros. The hash at the fine sync-points index the fine SHT 202 and the hash at the coarse sync-points index the coarse SHT 210. For example, the index could be derived from the hash by using a number of low order bits from the hash. The filter criteria affect the sizing of the SHTs 202 and 210 and the probability of matching a hash in the SHTs 202 and 210. The more sync-points that are generated the easier repeated data is identified but, the larger the tables (i.e., the SHTs 202 and 210) need to be in order to index a given amount of information for the data flow. Having a coarse and fine table helps optimize this tradeoff Alternative implementations may use a single table or multiple tables.
The fine SHT 202 is populated with hashes as the data 222 (e.g., the response data) is stored and when the data 222 is recalled from disk or other locally accessible storage. The fine SHT 202 finely indexes the data 222. In some embodiments, the fine SHT 202 holds approximately one entry for every 100 bytes of the data 222. The coarse SHT 210 is populated as the data 222 is stored and is coarsely indexed. For example, the coarse SHT 210 may hold one entry for approximately every 4 kilobytes (KB) of the data 222. The fine SHT 202 and the coarse SHT 210 may be considered short term and long term memory index structures, respectively.
The appliance of the network memory system 100 stores all or part of the calculated hashes in or compares all or part of the hashes to the check field 204 in the SHTs 202 and 210. For example, the central appliance 116 verifies a “hit” in the fine SHT 202 by comparing the entire calculated hash or a number of residual bits of the calculated hash to the check field 204. If the central appliance 116 finds no matching hashes in the fine SHT 202 or in the coarse SHT 210, the central appliance 116 determines that the response data is not locally accessible to the branch appliance 110. Each calculated hash for the response data in the fine SHT 202 and the coarse SHT 210 is stored or compared depending on the filter criteria for the fine filter 224 and the coarse filter 226.
The appliance of the network memory system 100 indexes each entry in the fine SHT 202 and the coarse SHT 210 to a page (e.g., by setting the page field 206 and the page field 214 to address page N) and byte offset (e.g., by setting the byte field 208 and the byte field 216 to a byte offset of the data 222) in the FHPs 218. For example, the central appliance 116 stores the response data in the FHPs 218 at the page pointed to by the page field 206 and 214 at the byte offset indicated by the byte field 208 and 216. The byte field 208 of each hash in the fine SHT 202 for the response data points to the start of a fine sync-point. The byte field 216 of each hash in the coarse SHT 210 for the response data points to the start of a coarse sync-point.
In this example, the branch appliance 110 includes a fine SHT 202, a coarse SHT 210, and a FHP 218 data structure, and the central appliance 116 includes a fine SHT 202, a coarse SHT 210, and a FHP 218 data structure. Each appliance in the network memory system 100 maintains the separate data structures, which may include separate filter criteria for the fine filters 224 and the coarse filters 226. The page state information 220, in the FHP 218 of each appliance in the network memory system 100, includes page parameters, page ownership permissions, peer state, and a list of valid byte ranges for each appliance in the network memory system 100. The page state information 220 tracks the local state of the page (e.g., the FHP 218 in the branch appliance 110, and what parts of the page are used) and the remote state of the page at peers (e.g., the central appliance 116, and what part of the page in the branch appliance 110 is used by the central appliance 116).
The branch appliance 110 and the central appliance 116 each write the data 222 to an assigned page (e.g., the page N or the page N+1) and may reference a page assigned to another appliance in the network memory system 100. Appliances in the network memory system 100 may discover and reconcile the FHPs 218 assigned to other appliances.
The memory 304 may comprise volatile memory to temporarily store pages (such as FHPs 218) until a determination is made whether to store at least one of the FHPs in data storage 306. The memory 304 typically comprises random-access memory (RAM).
The data storage 306 comprises non-volatile memory to persistently store response data such that the response data stored in the data storage 306 can be retrieved later. The data storage 306 may comprise magnetic media such as a disk, EEPROM, and/or the like.
Further, a database may comprise hardware and/or software elements configured to store data in an organized format. The database may organize the data to enable the determination of whether a portion of the data is locally accessible to an appliance, and to enable quick retrieval of locally accessible data to the network device 300. In various embodiments, network memory comprises a database containing information in the network memory data structure of
The hardware and/or software elements of the database may include storage devices, such as RAM, hard drives, optical drives, flash memory, and magnetic tape. In one example, the database may be stored within the data storage 306 and/or memory 304. In another example, the database is shared among a plurality of appliances (e.g., within a plurality of data storages 306 and/or memories 304). In some embodiments, the network device 300 implements a virtual memory system (e.g., the network memory) with linear addresses, the locally accessible data, and the data structures discussed with respect to
Although the network device 300 comprises a WAN communication interface 308 and a LAN communication interface 310, it will be appreciated that both interfaces may be coupled to any kind of network. In one example, both the WAN communication interface 308 and the LAN communication interface 310 are coupled to a local area network. In another example, the WAN communication interface 308 is coupled to the Internet and the LAN communication interface 310 is coupled to a local or wide area network. Further, it will be appreciated by those skilled in the art that both the WAN communication interface 308 and the LAN communication interface 310 may be supported by a single physical communication interface (e.g., a network adapter that supports two or more connections between the network device 300 and two or more networks). In various embodiments, WAN communication and LAN communication may be supported by a single interface (e.g., data traffic is mixed). There may be any number of interfaces.
In sequence 404, the central servers 114 process the data request 402, and generate the response data 406 based on the data request 402. Some examples of the response data 406 are an email message and attachment, a file, a web page, and results retrieved or obtained from, the database query. In some embodiments, the central server 114 addresses the response data 406 to the computer 108, however, during transmission, the central appliance 116 transparently intercepts the response data 406. Alternatively, the central servers 114 may transmit the response data 406 to the central appliance 116.
In sequence 408, the central appliance 116 processes the response data 406 to determine whether a portion of the response data 406 is locally accessible to the branch appliance 110. In various embodiments, the central appliance 116 computes hashes for the response data 406 and filters the hashes through the fine filter 224 and the coarse filter 226 to determine any fine and coarse sync-points. The central appliance 116 may then look up any fine sync-points in the fine SHT 202 and coarse sync-points in the coarse SHT 210. Depending on whether at least a portion of the response data 406 is locally accessible to the branch appliance, the central appliance 116 is configured to transmit retrieve instructions to allow the branch appliance 110 to build the response data 406 using data locally accessible to the branch appliance 110.
In sequence 410, the central appliance 116 stores the response data 406 on a temporary page. In the network memory system 100, the response data 406 may be stored in an FHP 218 which may comprise a temporary page and/or a permanent page. The contents within the temporary page may be stored/deleted according to a first-in, first-out (FIFO), least recently used (LRU), or other algorithm as will be apparent to those skilled in the art. In various embodiments, a permanent page may be indexed in the fine SHT 202 and the coarse SHT 210. Regardless of classification, the FHP 218 may be stored in the memory 304 or in the data storage 306.
The central appliance 116 transmits the instructions 412, including any data not locally accessible to the branch appliance 110, to the branch appliance 110. The instructions may comprise a “deferred store instruction” which may include an address associated with the temporary page having at least some of the response data 406. The deferred store instruction may allow the branch appliance 110 to store that response data 406 in a location in the database corresponding to a location in the database of in the central appliance 116.
In sequence 414, the response data 406 is rebuilt based on the instruction 412. The sequence 414 may include retrieving locally accessible data from one or more locations in the data storage 306, assembling the response data into one or more data packets using the retrieved data and the literal data, and/or the like. The response data, when rebuilt, is stored on a temporary page (such as an FHP 218), in sequence 416 based on deferred store instructions. The branch appliance 110 transmits the response data 406 to the computer 108.
Each temporary page may typically contain 256 kilobytes (kB). Thus, if the response data 406 includes less than 256 kB, the temporary page may include response data based on other data requests (not shown). Further, if the response data 406 includes more than 256 kB, the response data 406 may be stored on more than one temporary page in the database.
When a temporary page is full, both the branch appliance 110 and the central appliance 116 may make a determination whether to store the contents of the temporary page in, for example, the data storage 306, in sequence 418. In various embodiments, a separate determination is performed for each temporary page. In other embodiments, a determination is performed for any number of temporary pages. The branch appliance 110 and the central appliance 116 may also separately determine when a temporary page is full and/or when the end of the temporary page is reached.
In alternate embodiments, the temporary page may be treated as full if, for example, a period of time has elapsed since instructions were received. For example, a branch appliance 110 may store response data having less than 256 kB on one of the temporary pages. If no other response data is stored on that temporary page within a predetermined amount of time, such as one minute, the temporary page is treated as if it is full.
Based on at least one determination performed in sequence 418, the branch appliance 110 sends a branch store determination 420 to the central appliance 116. In turn, the central appliance 116, also based on at least one of the determinations performed in sequence 416, sends a central store determination 422 to the branch appliance 110. It is understood that the central store determination 422 may, in some embodiments, be sent simultaneously or prior to the branch store determination 420, as will be apparent to those skilled in the art.
According to various embodiments, the branch store determination 420 and the central store determination 422 include an indication that the response data 406 is to be stored in the data storage 306. The temporary page may be assigned a location in the database (e.g., virtual network memory location). The location in the database may be translatable to a physical address within the data storage 306. In the event that the content of the temporary page is not going to be stored in the data storage 306, the branch store determination 420 and/or the central store determination 422 may indicate that the contents of the temporary page should not be kept. The branch store determination 420 and the central store determination 422 are discussed in greater detail in connection with
In sequence 424, the contents of the temporary page are stored based on the branch store determination 420 and/or the central store determination 422. The sequence 424 is discussed in greater detail in connection with
To illustrate, a page utilization metric may indicate that 45% of the rebuilt data matches data found in a part of the database. In this instance, if the threshold is 90%, the contents of the temporary page will be stored in the database. In one example, the data within the temporary page (i.e., page content) is stored in the data storage 306 and changes are made to the database to indicate the data.
In contrast, if a page utilization metric indicates that 97% of the rebuilt data matches data found in the database, the contents of the temporary page may be discarded. The determination to discard the contents of the temporary page may also be based on whether the found data is stored on the other appliance. In some embodiments, the appliance tracks what has been stored in the other appliance using, for example, peer tables, to track pages that have been sent to or received from the other appliance. In this instance, 97% of the data within the temporary page is also locally accessible to the branch appliance. Thus, the contents of the temporary page may be discarded.
After the determination is made, the branch appliance 110 may send integrity check information 504 to the central appliance 116. The integrity check information 504 may be generated based on the contents of the temporary page and may comprise a CRC, checksum, hash value, or the like. The central appliance 116 may similarly generate integrity check information 506. Based on a comparison of the integrity check information 504 and 506, the branch appliance 110 and the central appliance 116 are able to determine whether the contents of the temporary page in the branch appliance 110 match the contents of the temporary page in the central appliance 116. If the integrity check information 504 and 506 do not match, the contents of both temporary pages may be discarded. In some embodiments, the integrity check information 504 and 506 may be communicated with the first location 510 and the preferred location 516, discussed later herein.
If the integrity check information 504 and 506 do match, the branch appliance, in sequence 508, determines a first location 510 in the database at which to store the data. The branch appliance 110 sends the first location 510 to the central appliance 116.
If the central appliance 116 has determined that the contents of the temporary page should be stored in the database, the central appliance 116 may determine whether the first location is preferred in a sequence 512. If the first location is preferred, the central appliance 116 may designate the first location as the preferred location.
If, however, the first location is not acceptable, the central appliance 116 may determine that another location is the preferred location 516. The other location 516 may correspond to an address in the database in which the central appliance 116 previously directed another branch appliance 110 to store a copy of the contents of the temporary page. In some embodiments, the preferred location 516 may indicate that the central appliance 116 determined that the temporary page is to be discarded. The preferred location 516 is sent to the branch appliance 110.
In a sequence 518, performed substantially in parallel in both the branch appliance 110 and the central appliance 116, the contents of the temporary page are stored at the preferred location 516. The contents of the stored page may be indexed within network memory as described in connection with
In step 602, packet data is rebuilt according to instructions and literal data received from a network device. The packet data may include the response data 406.
In step 604, the rebuilt packet data is written to a temporary page. The temporary page may be stored in RAM.
In step 606, a determination is made as to whether the temporary page is full. In some embodiments, the temporary page may be treated as full if the packet data has been stored thereon for a predetermined amount of time. If the page is not full, the method 600 returns to step 602.
In step 608, if the temporary page is full, the page utilization metric is calculated to compare the rebuilt packet data to data within a database such as a database within network memory.
In step 610, based on a comparison of the page utilization metric to a threshold value, a determination is made as to whether to store the contents of the temporary page in the data storage 306.
In step 612, if the determination of step 610 is made to discard the contents of the temporary page, a “do not store” message is sent to the network device (e.g., central appliance 116).
In step 614, if the determination of step 610 is made to store the contents of the temporary page, the preferred location within the database is reconciled. The reconciliation may include one or more communications with the network device (step 602). In some embodiments, the message sequence depicted in
In step 616, the contents of the temporary page are stored at a page in the preferred location. The preferred location may correspond to a location or address within the database (e.g., within the network memory system). The contents of the temporary page, or a portion thereof, may be written to the data storage 306 at a physical address.
In step 618, an acknowledgement is sent to the network device (e.g., the central appliance 116).
In step 702, a proposed location is received from a network device (e.g., the branch appliance 110).
In step 704, a page utilization metric is calculated to compare rebuilt packet data to data within the database.
In step 706, based on a comparison of the page utilization metric to a threshold value, a determination is made as to whether to persistently store the contents of the temporary page.
In step 708, if the determination of step 706 is made to discard the contents of the temporary page, a “do not store” message is sent to the network device (e.g., branch appliance 110).
In step 710, if the determination of step 706 is made to store the contents of the temporary page, a second determination is made as to whether the received location is preferred.
In step 712, if the proposed location is preferred, the contents of the temporary page are stored at the proposed location. Optionally, an instruction indicating that the proposed location is preferred may be sent to the network device (e.g., branch appliance 110) (not shown).
In step 714, if the received location is not acceptable, the network device (e.g., branch appliance 110) is instructed to store the contents of the temporary page at a preferred location. The preferred location may be based on data already stored in the database corresponding to a third network device.
In step 716, the temporary page is stored at the preferred location having a corresponding address in the database.
The above-described functions can be comprised of executable instructions that are stored on storage media. The executable instructions can be retrieved and executed by a processor. Some examples of executable instructions are software, program code, and firmware. Some examples of storage media are memory devices, tape, disks, integrated circuits, and servers. The executable instructions are operational when executed by the processor to direct the processor to operate in accord with the invention. Those skilled in the art are familiar with executable instructions, processor(s), and storage media.
The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5307413 | Denzer | Apr 1994 | A |
5359720 | Tamura et al. | Oct 1994 | A |
5483556 | Pillan et al. | Jan 1996 | A |
5592613 | Miyazawa et al. | Jan 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5675587 | Okuyama et al. | Oct 1997 | A |
5754774 | Bittinger et al. | May 1998 | A |
5802106 | Packer | Sep 1998 | A |
5883891 | Williams et al. | Mar 1999 | A |
6000053 | Levine et al. | Dec 1999 | A |
6003087 | Housel et al. | Dec 1999 | A |
6081883 | Popelka et al. | Jun 2000 | A |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6308148 | Bruins et al. | Oct 2001 | B1 |
6311260 | Stone et al. | Oct 2001 | B1 |
6374266 | Shnelvar | Apr 2002 | B1 |
6434662 | Greene et al. | Aug 2002 | B1 |
6438664 | McGrath et al. | Aug 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6587985 | Fukushima et al. | Jul 2003 | B1 |
6618397 | Huang | Sep 2003 | B1 |
6633953 | Stark | Oct 2003 | B2 |
6643259 | Borella et al. | Nov 2003 | B1 |
6650644 | Colley et al. | Nov 2003 | B1 |
6674769 | Viswanath | Jan 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6738379 | Balazinski et al. | May 2004 | B1 |
6769048 | Goldberg et al. | Jul 2004 | B2 |
6791945 | Levenson et al. | Sep 2004 | B1 |
6856651 | Singh | Feb 2005 | B2 |
6859842 | Nakamichi et al. | Feb 2005 | B1 |
6910106 | Sechrest et al. | Jun 2005 | B2 |
6968374 | Lemieux et al. | Nov 2005 | B2 |
6978384 | Milliken | Dec 2005 | B1 |
7007044 | Rafert et al. | Feb 2006 | B1 |
7020750 | Thiyagaranjan et al. | Mar 2006 | B2 |
7035214 | Seddigh et al. | Apr 2006 | B1 |
7069342 | Biederman | Jun 2006 | B1 |
7113962 | Kee et al. | Sep 2006 | B1 |
7120666 | McCanne et al. | Oct 2006 | B2 |
7145889 | Zhang et al. | Dec 2006 | B1 |
7197597 | Scheid et al. | Mar 2007 | B1 |
7200847 | Straube et al. | Apr 2007 | B2 |
7215667 | Davis | May 2007 | B1 |
7242681 | Van Bokkelen et al. | Jul 2007 | B1 |
7243094 | Tabellion et al. | Jul 2007 | B2 |
7266645 | Garg et al. | Sep 2007 | B2 |
7318100 | Demmer et al. | Jan 2008 | B2 |
7366829 | Luttrell et al. | Apr 2008 | B1 |
7380006 | Srinivas et al. | May 2008 | B2 |
7383329 | Erickson | Jun 2008 | B2 |
7383348 | Seki et al. | Jun 2008 | B2 |
7388844 | Brown et al. | Jun 2008 | B1 |
7389357 | Duffie et al. | Jun 2008 | B2 |
7389393 | Karr et al. | Jun 2008 | B1 |
7417991 | Crawford et al. | Aug 2008 | B1 |
7420992 | Fang et al. | Sep 2008 | B1 |
7428573 | McCanne et al. | Sep 2008 | B2 |
7451237 | Takekawa et al. | Nov 2008 | B2 |
7453379 | Plamondon | Nov 2008 | B2 |
7457315 | Smith | Nov 2008 | B1 |
7471629 | Melpignano | Dec 2008 | B2 |
7532134 | Samuels et al. | May 2009 | B2 |
7555484 | Kulkarni et al. | Jun 2009 | B2 |
7571343 | Xiang et al. | Aug 2009 | B1 |
7619545 | Samuels et al. | Nov 2009 | B2 |
7620870 | Srinivasan et al. | Nov 2009 | B2 |
7639700 | Nabhan et al. | Dec 2009 | B1 |
7676554 | Malmskog et al. | Mar 2010 | B1 |
7714747 | Fallon | May 2010 | B2 |
7746781 | Xiang | Jun 2010 | B1 |
7849134 | McCanne et al. | Dec 2010 | B2 |
7853699 | Wu et al. | Dec 2010 | B2 |
7953869 | Demmer et al. | May 2011 | B2 |
8140757 | Singh et al. | Mar 2012 | B1 |
20010054084 | Kosmynin | Dec 2001 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020040475 | Yap et al. | Apr 2002 | A1 |
20020065998 | Buckland | May 2002 | A1 |
20020078242 | Viswanath | Jun 2002 | A1 |
20020101822 | Ayyagari et al. | Aug 2002 | A1 |
20020107988 | Jordan | Aug 2002 | A1 |
20020116424 | Radermacher et al. | Aug 2002 | A1 |
20020131434 | Vukovic et al. | Sep 2002 | A1 |
20020150041 | Reinshmidt et al. | Oct 2002 | A1 |
20020163911 | Wee et al. | Nov 2002 | A1 |
20020169818 | Stewart et al. | Nov 2002 | A1 |
20020181494 | Rhee | Dec 2002 | A1 |
20020188871 | Noehring et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20030009558 | Ben-Yehezkel | Jan 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030142658 | Ofuji et al. | Jul 2003 | A1 |
20030149661 | Mitchell et al. | Aug 2003 | A1 |
20030233431 | Reddy et al. | Dec 2003 | A1 |
20040008711 | Lahti et al. | Jan 2004 | A1 |
20040047308 | Kavanagh et al. | Mar 2004 | A1 |
20040083299 | Dietz et al. | Apr 2004 | A1 |
20040114569 | Naden et al. | Jun 2004 | A1 |
20040117571 | Chang et al. | Jun 2004 | A1 |
20040123139 | Aiello et al. | Jun 2004 | A1 |
20040199771 | Morten et al. | Oct 2004 | A1 |
20040202110 | Kim | Oct 2004 | A1 |
20040203820 | Billhartz | Oct 2004 | A1 |
20040205332 | Bouchard et al. | Oct 2004 | A1 |
20040243571 | Judd | Dec 2004 | A1 |
20040255048 | Lev Ran et al. | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050053094 | Cain et al. | Mar 2005 | A1 |
20050091234 | Hsu et al. | Apr 2005 | A1 |
20050111460 | Sahita | May 2005 | A1 |
20050131939 | Douglis et al. | Jun 2005 | A1 |
20050132252 | Fifer et al. | Jun 2005 | A1 |
20050141425 | Foulds | Jun 2005 | A1 |
20050171937 | Hughes et al. | Aug 2005 | A1 |
20050177603 | Shavit | Aug 2005 | A1 |
20050190694 | Ben-Nun et al. | Sep 2005 | A1 |
20050210151 | Abdo et al. | Sep 2005 | A1 |
20050220019 | Melpignano | Oct 2005 | A1 |
20050235119 | Sechrest et al. | Oct 2005 | A1 |
20050243743 | Kimura | Nov 2005 | A1 |
20050243835 | Sharma et al. | Nov 2005 | A1 |
20050256972 | Cochran et al. | Nov 2005 | A1 |
20050278459 | Boucher et al. | Dec 2005 | A1 |
20050286526 | Sood et al. | Dec 2005 | A1 |
20060013210 | Bordogna et al. | Jan 2006 | A1 |
20060026425 | Douceur et al. | Feb 2006 | A1 |
20060031936 | Nelson et al. | Feb 2006 | A1 |
20060036901 | Yang et al. | Feb 2006 | A1 |
20060039354 | Rao et al. | Feb 2006 | A1 |
20060059171 | Borthakur et al. | Mar 2006 | A1 |
20060059173 | Hirsch et al. | Mar 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060143497 | Zohar et al. | Jun 2006 | A1 |
20060195547 | Sundarrajan et al. | Aug 2006 | A1 |
20060195840 | Sundarrajan et al. | Aug 2006 | A1 |
20060212426 | Shakara et al. | Sep 2006 | A1 |
20060218390 | Loughran et al. | Sep 2006 | A1 |
20060227717 | van den Berg et al. | Oct 2006 | A1 |
20060250965 | Irwin | Nov 2006 | A1 |
20060280205 | Cho | Dec 2006 | A1 |
20070002804 | Xiong et al. | Jan 2007 | A1 |
20070011424 | Sharma et al. | Jan 2007 | A1 |
20070076693 | Krishnaswamy | Apr 2007 | A1 |
20070110046 | Farrell et al. | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070127372 | Khan et al. | Jun 2007 | A1 |
20070130114 | Li et al. | Jun 2007 | A1 |
20070140129 | Bauer et al. | Jun 2007 | A1 |
20070174428 | Lev Ran et al. | Jul 2007 | A1 |
20070195702 | Yuen et al. | Aug 2007 | A1 |
20070198523 | Hayim | Aug 2007 | A1 |
20070226320 | Hager et al. | Sep 2007 | A1 |
20070244987 | Pedersen et al. | Oct 2007 | A1 |
20070245079 | Bhattacharjee et al. | Oct 2007 | A1 |
20070258468 | Bennett | Nov 2007 | A1 |
20070263554 | Finn | Nov 2007 | A1 |
20070276983 | Zohar et al. | Nov 2007 | A1 |
20080005156 | Edwards et al. | Jan 2008 | A1 |
20080013532 | Garner et al. | Jan 2008 | A1 |
20080016301 | Chen | Jan 2008 | A1 |
20080028467 | Kommareddy et al. | Jan 2008 | A1 |
20080133536 | Bjorner et al. | Jun 2008 | A1 |
20080184081 | Hama et al. | Jul 2008 | A1 |
20080229137 | Samuels et al. | Sep 2008 | A1 |
20080243992 | Jardetzky et al. | Oct 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080320151 | McCanne et al. | Dec 2008 | A1 |
20090060198 | Little | Mar 2009 | A1 |
20090100483 | McDowell | Apr 2009 | A1 |
20090158417 | Khanna et al. | Jun 2009 | A1 |
20090175172 | Prytz et al. | Jul 2009 | A1 |
20090234966 | Samuels et al. | Sep 2009 | A1 |
20100011125 | Yang et al. | Jan 2010 | A1 |
20100020693 | Thakur | Jan 2010 | A1 |
20100115137 | Kim et al. | May 2010 | A1 |
20100290364 | Black | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1507353 | Feb 2005 | EP |
Entry |
---|
Zhao et al.; “Analysis and Improvement on IPSEC Anti-Replay Window Protocol”; 2003; IEEE' pp. 553-558. |
Singh et al. ;“Future of Internet Security—IPSEC”; 2005; pp. 1-8. |
“Muthitacharoen, Athicha et al., ““A Low-bandwidth Network File System,”” 2001, in Proc. ofthe 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187.” |
Shared LAN Cache Datasheet, 1996, http://www.lancache.com/slcdata.htm. |
“““A protocol-independent technique for eliminating redundant network traffic””, ACM SIGCOMM Computer CommunicationReview, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000”. |
“B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet. ““Duplicate data elimination in a SAN file system””, InProceedings of the 21 st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE.” |
“You, L. L. and Karamanolis, C. 2004. ““Evaluation of efficient archival storage techniques””, In Proceedings of the 21 st IEEESymposium on Mass Storage Systems and Technologies (MSST).” |
“Fred Douglis and Arun Iyengar, Application specific Delta-encoding via Resemblance Detection, Published in the 2003 USENIXAnnual Technical Conference.” |
“You L. L. et al., ““Deep Store an Archival Storage System Architecture”” Data Engineering, 2005. ICDE 2005. Proceedings. 21st.inti Conf on Tokyo, Japan, Apr. 5-8, 2005, pp. 12”. |
“UDI Manber. ““Finding Similar Files in a Large File System””, TR 93-33 Oct. 1994, Department of Computer Science,University of Arizona. http://webglimpse.net/pubs/TR93-33.pdf. Also appears in the 1994 winter USENIX Technical Conference.” |
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001. |