The present invention relates generally to a defibrator used in the manufacture of pulp from lignocellulosic material, such as wood chips, and more particularly to a blow valve through which fibrous pulp leaves a defibrator housing, and even more particularly to a specific mounting arrangement for such a blow valve between a discharge pipe and a specially arranged mounting pipe connected to the defibrator housing.
A defibrator is a refining apparatus in which lignocellulosic materials, e.g., wood chips, saw dust and other fibrous materials from wood or plant, are ground between two refining elements in an environment of steam. A typical defibrator for processing fibrous materials is a disc-type refiner, wherein two refiner plates—which also are referred to as refiner discs—are positioned opposite to each and wherein at least one refiner plate rotates with respect to the other refiner plate. The lignocellulosic material to be refined is fed into a central inlet in at least one of the two refiner plates, and moves therefrom into a refining gap arranged between the two refiner plates. As at least one of the refiner plates rotates, centrifugal forces created by the relative rotation between the two refiner plates move the lignocellulosic material outwards and towards the periphery of the refiner plates. The opposing refiner plates have surfaces that include bars and grooves, and the lignocellulosic material is—in the refining gap provided between crossing bars of the opposing refiner plates—separated into fibers by forces created by the crossing bars as the refiner plates rotate in relation to each other. Another type of defibrator is a drum-type refiner, in which a refining gap is formed between an outer cylindrical drum and a rotor that rotates inside the outer cylindrical drum.
In the thermo-mechanical refining process referred to above, a considerable amount of energy is required to create and maintain the rotational movement that separates the lignocellulosic material into fibers, and a large part of this mechanical energy is converted into heat, whereby steam is generated in a defibrator housing in which the defibrator with its refining elements is arranged. The pulp created by the defibrator is fed out from the defibrator housing through a discharge pipe, and because of the pressurized atmosphere prevailing inside the defibrator housing, a blow valve—also referred to as a discharge valve—is arranged at the defibrator housing and is connected to the discharge pipe, and the pulp is fed through this blow valve before being fed into the discharge pipe for further transport and processing. An arrangement of this type is, for example, disclosed in the U.S. Pat. No. 4,163,525 to Reinhall.
As indicated above, the energy consumption in a defibrator is high, and there are always ongoing efforts to reduce this energy consumption and thereby the operating costs of a defibrator. This can, for example, involve more efficient use of the steam generated in the refining process. Another technical challenge is a substantial wear of components in a defibrator, which reduces the operating life-time of these components and leads to high operating costs. Examples of such wear-subjected components are the refining elements, e.g. refiner plates, and also the blow valve, which is arranged at the defibrator housing and through which pulp is fed out into a discharge pipe. An object of the present invention is therefore to reduce the energy consumption in a system comprising a defibrator. Another object is to increase the operational life time for a blow valve arranged at a defibrator housing by reducing the wear of this blow valve.
The above-mentioned objects are achieved with a pulp refining system comprising a defibrator, a defibrator housing and a blow valve according to the independent claim. Preferred embodiments are set forth in the dependent claims.
The invention relates to a pulp refining system comprising a defibrator arranged in a defibrator housing, which has a portion from which pulp is fed out to a discharge pipe. The pulp refining system comprises further a blow valve, which—according to the invention—is mounted before (as seen in the pulp transport direction) the discharge pipe and is connected to the defibrator housing by a mounting pipe having a length, which is at least about 0.2 meter, and more preferably at least about 0.5 m, and even more preferably about 0.7-1.5 m. In one embodiment of the invention, the mounting pipe has the same diameter at its inlet, which is connected to the defibrator housing, as at its outlet, which is connected to the inlet of the blow valve. This diameter is further preferably the same as the diameter of a flow channel through the blow valve when the blow valve is in a fully open position.
The present invention will be further explained hereinafter by means of non-limiting examples and with reference to the appended drawings, wherein:
The provision of a mounting pipe, such as mounting pipe 7, is a novel arrangement according to the invention, because the standard practice in the field is to arrange a blow valve, such as blow valve 11, in direct connection with a defibrator housing, such as defibrator housing 5. However, by providing the mounting pipe 7, which has non-negligible length, surprisingly positive effects have been achieved both regarding the energy consumption of the defibrator 2 and also regarding the wear of the blow valve 11. Without wishing to be bound be theory, it is believed that the provision of the mounting pipe 7 before the blow valve 11 creates a laminar pulp flow through the blow valve 11, i.e. the pulp flow at the exit from the defibrator housing 5, i.e. at the inlet 8 of the mounting pipe 7, is presumably highly turbulent, and by providing the mounting pipe 7, which has a non-negligible length, the pulp flow is “settling down” and a laminar flow is established at the outlet 9 of the mounting pipe 7. And it is further believed that this laminar pulp flow is less aggressive and exposes the inner surfaces of the blow valve 11 to less wear. The reduction of energy consumption in the defibrator 2 is more difficult to understand, but it could be that when a turbulent pulp flow encounters a blow valve—as is the case when a blow valve is mounted directly at a defibrator housing—shock waves are created which are transferred back through the pulp to the rotating refining element and counteract its movement, something which, in turn, requires energy to overcome. Thus, by creating a laminar pulp flow through a blow valve, these repercussioning shock waves are eliminated, which has a positive effect on the energy consumption.
To achieve a laminar pulp flow through the blow valve 11, the mounting pipe 7 has been given a length of at least about 0.2 m, and more preferably a length of at least about 0.5 m, and even more preferably of at least about 0.7 m. In
Although the present invention has been described with reference to specific embodiments, also shown in the appended drawings, it will be apparent to those skilled in the art that many variations and modifications can be done within the scope of the invention as described in the specification and defined with reference to the claims below. It should in particular be noted that in the embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
1650825-1 | Jun 2016 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2017/050587 | 6/1/2017 | WO | 00 |