Defining CRISPR adaptation and interference mechanisms in E. coli

Information

  • Research Project
  • 10387608
  • ApplicationId
    10387608
  • Core Project Number
    R01GM115874
  • Full Project Number
    3R01GM115874-05S1
  • Serial Number
    115874
  • FOA Number
    PA-20-272
  • Sub Project Id
  • Project Start Date
    6/1/2021 - 3 years ago
  • Project End Date
    8/31/2021 - 3 years ago
  • Program Officer Name
    BENDER, MICHAEL T
  • Budget Start Date
    6/1/2021 - 3 years ago
  • Budget End Date
    8/31/2021 - 3 years ago
  • Fiscal Year
    2021
  • Support Year
    05
  • Suffix
    S1
  • Award Notice Date
    8/12/2021 - 3 years ago
Organizations

Defining CRISPR adaptation and interference mechanisms in E. coli

Project Summary    Viral resistance is essential in all kingdoms of life, although diverse organisms have  evolved equally diverse mechanisms for combatting infection. In bacteria and archaea, the  CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune system  clears invading DNA during infection through a small-­RNA guided interference mechanism.  CRISPR immunity proceeds through two stages: adaptation, in which fragments of invasive  DNA from bacteriophages or plasmids are inserted as spacers within the CRISPR locus of the  host genome and subsequently serve as templates for the production of small guide CRISPR  (cr)RNAs;? and interference, during which the crRNA and its effector CRISPR associated (Cas)  proteins bind complementary target regions of the invading DNA, leading to its destruction by a  Cas endonuclease. Our goal is to define how bacteria maximize their immune capacity to gain  an advantage in the molecular arms race against their invaders. Our first goal is to understand  the sequence-­dependence of immune system evasion through the development of point  mutations within the invading DNA. Our previous studies have revealed that spacer sequence  greatly influences the effectiveness of these ?escape? mutations, suggesting for the first time  that some spacer sequences provide stronger immunity than others. In addition, we have  discovered that during initial infection, bacteria use a two-­tiered defensive system to broaden  their adaptation capacity. We will evaluate the impact of this tactic on host immunity and  elucidate the molecular mechanisms underlying this defense strategy. Finally, we will determine  the structural basis for rapid adaptation triggered when the CRISPR machinery senses non-­ canonical target sequences. Our studies will have major implications on the understanding of  host-­virus interactions and co-­evolution, an important determinant of the compositional  dynamics within complex ecological systems including the human microbiome.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    3
  • Direct Cost Amount
    23978
  • Indirect Cost Amount
  • Total Cost
    23978
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:23978\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
  • Study Section Name
  • Organization Name
    IOWA STATE UNIVERSITY
  • Organization Department
    BIOCHEMISTRY
  • Organization DUNS
    005309844
  • Organization City
    AMES
  • Organization State
    IA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    500112025
  • Organization District
    UNITED STATES