Defining the Function of RME-8 in Endosomal Regulation During Health and Disease

Information

  • Research Project
  • 10387416
  • ApplicationId
    10387416
  • Core Project Number
    R01GM135326
  • Full Project Number
    3R01GM135326-02S1
  • Serial Number
    135326
  • FOA Number
    PA-20-272
  • Sub Project Id
  • Project Start Date
    2/1/2020 - 5 years ago
  • Project End Date
    1/31/2024 - a year ago
  • Program Officer Name
    GAILLARD, SHAWN R
  • Budget Start Date
    2/1/2021 - 4 years ago
  • Budget End Date
    1/31/2022 - 3 years ago
  • Fiscal Year
    2021
  • Support Year
    02
  • Suffix
    S1
  • Award Notice Date
    8/24/2021 - 3 years ago

Defining the Function of RME-8 in Endosomal Regulation During Health and Disease

Our long-term goal in this proposal is to understand how endosomes differentially balance opposing activities (recycling versus degradation) within a single endosome, especially with respect to regulation by the only known endosomal DNA-J domain protein RME-8. We also seek to understand how RME-8 contributes to neurodegenerative disease. To gain new insights into the mechanisms that balance opposing endosomal functions, we have pioneered the use of the coelomocyte cells of the nematode C. elegans for the direct visualization of endosomal microdomains, and then applied powerful molecular genetic techniques to identify and decipher metazoan- specific mechanisms that control endosome function and functional microdomain separation. We then extend this work into mammalian systems. In previous studies, we identified the J-domain protein RME-8 as a metazoan specific endosome regulator. We further showed that RME-8 functions with Retromer component SNX-1/Snx1, and the chaperone Hsc70, to promote the recycling of retromer cargo in C. elegans and mammals. Most recently, we showed that RME-8 allows Retromer to negatively regulate ESCRT assembly on endosomes, a process required to prevent mixing of recycling and degradative microdomains. Here we propose to define how SNX-1 regulates RME-8, testing a de-repression model for RME-8 activation. We then focus on mechanistic questions of how RME-8 inhibits ESCRT microdomain expansion through the endosomal flat clathrin lattice and newly identified RME-8 interacting proteins. Finally, we use primary mouse neurons and in vivo C. elegans analysis to decipher neuronal functions of RME-8 as revealed by analysis of a familial Parkinson?s associated allele of RME-8. We propose to define how the disease allele affects RME-8 function in endosomal recycling and microdomain maintenance, and determine how RME-8 regulates long-distance axonal transport of endosomes, an additional transport step in neurons required for endocytic cargo sorting. A better mechanistic understanding of these regulatory mechanisms of endosomes will be profoundly important in identifying therapeutic targets to combat diseases associated with endolysosomal dysfunction.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    3
  • Direct Cost Amount
    79972
  • Indirect Cost Amount
  • Total Cost
    79972
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:79972\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
  • Study Section Name
  • Organization Name
    RUTGERS, THE STATE UNIV OF N.J.
  • Organization Department
    BIOCHEMISTRY
  • Organization DUNS
    001912864
  • Organization City
    PISCATAWAY
  • Organization State
    NJ
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    088543925
  • Organization District
    UNITED STATES