Defining the Molecular Architecture for Transmembrane Acylation by a Membrane Bound O-Acyltransferase

Information

  • Research Project
  • 10246913
  • ApplicationId
    10246913
  • Core Project Number
    R01GM134102
  • Full Project Number
    5R01GM134102-03
  • Serial Number
    134102
  • FOA Number
    PA-18-484
  • Sub Project Id
  • Project Start Date
    9/1/2019 - 4 years ago
  • Project End Date
    8/31/2022 - a year ago
  • Program Officer Name
    BARSKI, OLEG
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
  • Award Notice Date
    8/20/2021 - 2 years ago
Organizations

Defining the Molecular Architecture for Transmembrane Acylation by a Membrane Bound O-Acyltransferase

Acylated secreted proteins play essential roles in intercellular and organismal signaling pathways implicated in multiple diseases including diabetes and cancer. Protein-modifying members of the membrane-bound O- acyltransferase (MBOAT) enzyme family constitute key molecular control points for signaling through their roles in modifying the secreted proteins ghrelin, Hedgehog, and Wnt. Of these, ghrelin is unique in that it regulates feeding behavior and energy homeostasis. Since ghrelin requires acylation by GOAT for biological activity, a detailed understanding of this MBOAT family member is imperative to understand the role of ghrelin in disease and to target ghrelin-dependent pathways. However, the dearth of information regarding the structure, substrate binding sites, and catalytic mechanism of GOAT impedes understanding ghrelin signaling and development of small molecule tools to study the role of GOAT in metabolism-related diseases. There exists an urgent need to define the structural and catalytic foundations of protein acylation by GOAT, Hhat, and PORCN in order to understand the molecular basis of their diverse biological roles. The objective in this application is to define the structural and chemical basis for transmembrane protein acylation by a membrane O-acyltransferase. The studies proposed herein will develop a molecular-level structural model of GOAT verified and supported by chemical and biochemical studies. Supported by strong preliminary studies, our objective will be pursued in the following three Specific Aims: 1) Define the acyl donor and ghrelin binding sites within human GOAT (hGOAT); 2) Determine the hGOAT catalytic mechanism, and 3) Identify inhibitor binding sites within hGOAT. In the first Aim, an hGOAT structural model generated by bioinformatic analysis coupled with computational modeling will guide studies to identify the acyl donor and ghrelin binding sites within hGOAT, with the ultimate goal of defining how hGOAT accomplishes the topologically challenging transmembrane octanoylation of ghrelin. In the second Aim, structure-guided mutagenesis and mechanistic probes will reveal the location and composition of the active site responsible for ghrelin acylation. In the third Aim, inhibitor binding sites within hGOAT will be identified using cysteine-reactive chemical probes and computational docking studies. This proposal is innovative because it represents a new and substantive departure from the standard approaches for investigating the structure and mechanism of membrane-bound enzymes. Our work will establish a novel powerful and general approach for investigating structurally intractable membrane proteins. The proposed research is significant because it will generate the first structure of an MBOAT enzyme family protein acyltransferase while providing insight into the structures and catalytic strategies of MBOAT family members, which will advance the exploitation of acylated secreted proteins as therapeutic targets for human diseases.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    220000
  • Indirect Cost Amount
    110000
  • Total Cost
    330000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIGMS:330000\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    BBM
  • Study Section Name
    Biochemistry and Biophysics of Membranes Study Section
  • Organization Name
    SYRACUSE UNIVERSITY
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    002257350
  • Organization City
    SYRACUSE
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    132441200
  • Organization District
    UNITED STATES