The present subject matter relates to press tools and particularly C-frame crimping tools.
Electrical contractors use crimpable connectors to form terminations on various copper and aluminum wires. Examples of such connectors are described in UL Standard 486 provided by Underwriters Laboratories, Inc. A variety of crimping tools and crimp profile die geometries are used. Although many different types of dies are used in the field, all dies require a linear application of force to plastically form the connector and wire to the internal geometry of the die. A wide variety of such tools are commercially available from suppliers such as Burndy, Greenlee, and Klauke.
Crimp tools typically require about 53 to 130 kN of linear force and 18 to 32 mm of travel in order to perform a crimping operation. Because of the high amount of work capacity involved, the tools are typically large and heavy. For example, a 130 kN tool may weigh as much as 15 pounds. Electrical contractors use the tools in a variety of applications which require that they hold the tool in one hand. Because of this, weight is a primary concern of users. Thus, it is highly desirable to design a tool which is optimized for weight in order to increase ease of use of the tool.
Generally, these crimp tools utilize a C-frame crimping head. The C-frame crimping heads are subjected to high stresses during a crimping operation and thus are typically formed from a high tensile strength material, for example hardened alloy steel, and require a large cross section. The weight of a C-frame crimping head is relatively heavy and optimization efforts are focused on this component.
As crimping tools are presently configured, optimization of the C-frame head is limited by two constraints. One constraint is that the C-frame head must not be allowed to deflect at the open end. Such deflection results in displacement of the dies in a nonlinear or substantially nonlinear manner. In many instances, the dies are displaced away from a generally linear travel path during a crimping operation. In such an event, the dies may become misaligned and the crimp profile may be distorted. In the industry, a crimp is generally considered complete when both ends of the crimp inserts or dies are in contact with each other. The noted problems with deflection can prevent this from occurring, particularly with large connectors. Additionally, the stresses on mating parts are increased and mechanical failures may result. Another constraint is that the maximum stress in the C-frame head must be limited and controlled so as to prevent premature failure and ensure an appropriate failure mode.
Due to the geometry of the components and applications of the loads, the deflection constraint is more restrictive. For example, a C-frame head optimized only for stress has been shown to be lighter. However, a lighter and more flexible C-frame head has also been shown to cause damage to mating parts as a result of the deflection.
Accordingly, a need exists for a C-frame head, such as used in a pressing tool or crimping tool, which avoids these problems, and particularly for such a tool which exhibits a lightweight design, yet which avoids or at least reduces the potential of damage resulting from deflection.
The difficulties and drawbacks associated with previous approaches are addressed in the present subject matter as follows.
In one aspect, the present subject matter provides a C-frame tool head defining a proximal end and an opposite distal end, and an extension axis corresponding to movement of a ram, piston, or force producing member. The tool head comprises a body portion, and a hook member extending from the body portion. The hook member defines a crimp face directed toward the proximal end of the tool head. The crimp face defines a center axis that bisects the crimp face. Upon the tool head being in an unloaded state, the center axis is spaced from the extension axis, and upon being in a loaded state, the center axis is displaced towards the extension axis.
In another aspect, the present subject matter provides a C-frame tool head and at least two crimping inserts. The tool head defines a proximal end and an opposite distal distal end. The tool head comprises a body portion, and a hook member extending from the body portion. The hook member defines a crimp face directed toward the proximal end of the tool head. The tool head also comprises a first crimping insert configured to be received along the crimp face. The first crimping insert defines a first end and a second end. The tool head additionally comprises a second crimping insert defining a first end and a second end. The second crimping insert is positionable with the first crimping insert to thereby form a crimping profile. Upon positioning of the first and the second crimping inserts such that one of the first and the second ends of the first crimping insert contacts one of the first and the second ends of the second crimping insert, and the tool head being in an unloaded state, an opposite end spacing is defined between the other ends of the first crimping insert and the second crimping insert. Upon the tool head being in a loaded state, the other ends of the first crimping insert and the second crimping insert contact each other and the opposite end spacing is zero.
In still another aspect, the present subject matter provides a press tool comprising a frame including a C-frame tool head defining a work region and a first crimp face. The tool also comprises a hydraulic cylinder supported by and affixed to the frame. The tool also comprises a piston movably disposed in the cylinder. The piston defines a piston face and an opposite distal end. The distal end extends outward from the hydraulic cylinder. The tool additional comprises a ram die holder engaged with the distal end of the piston. The ram die holder includes a second crimp face. The ram die holder is accessible in the work region defined by the tool head. Upon application of a crimping load to the first and second crimp faces by the piston, the tool head is configured to deflect to an extent such that the first and second crimp faces are aligned.
In yet another aspect, the present subject matter provides a press tool comprising a frame including a C-frame head defining a work region, a linearly displaceable piston having a distal end, a piston tip engaged with the distal end of the piston, and a ram die holder engaged with the piston tip. The ram die holder is accessible in the work region defined by the C-frame head. The ram die holder is movably affixed to the piston tip. The piston tip defines a first arcuate face surface directed toward the ram die holder, and the ram die holder defines a receiving region with a second arcuate face surface. The first arcuate face surface of the piston tip contacts the second arcuate face surface of the ram die holder, and the first arcuate face surface is continuous and free of apertures.
In still another aspect, the present subject matter provides a method of compensating for deflection occurring in a C-frame head of a press tool during a pressing operation. The method comprises providing a press tool including a C-frame head and a plurality of dies. The method also comprises configuring the C-frame head such that upon application of a load as would be applied during the pressing operation, the tool head deflects to a position such that the plurality of dies are aligned to thereby enable full die closure.
As will be realized, the subject matter described herein is capable of other and different embodiments and its several details are capable of modifications in various respects, all without departing from the claimed subject matter. Accordingly, the drawings and description are to be regarded as illustrative and not restrictive.
The present subject matter provides strategies and components embodying such strategies which compensate for deflections occurring in a C-frame shaped tool head. Generally, in one aspect of the present subject matter, a C-frame tool head is configured such that upon application of loads or forces associated with typical use of the tool and tool head, the C-frame tool head compensates for such loads or forces by deflecting to particular extents and at particular locations along the tool head such that mating components of the tool head are appropriately aligned, positioned, and/or oriented. The present subject matter also provides C-frame press or crimp tools utilizing such assemblies.
The present subject matter also provides deflection compensating engagement assemblies between a piston and a ram die holder in a C-frame press or crimp tool. Such assemblies allow greater deflection within the stress limits of the C-frame tool while maintaining a quality crimp. The present subject matter also provides C-frame press or crimp tools utilizing such assemblies.
The present subject matter tools embodying such strategies and/or using such assemblies can thus be further optimized for weight and crimp quality as compared to existing tools. The present subject matter additionally provides methods of using the noted strategies and/or assemblies. All of these aspects are described in greater detail herein.
In particular embodiments, the present subject matter provides tools with C-frame shaped crimping heads, and particularly those that hold crimping dies such as crimping dies for DIN 46235 connectors. The term “C-frame” or “C-frame head” as used herein refers to the working end or “head” of a press or crimp tool which is characterized by a closed end and an open face typically located along a frontwardly directed region of the head. A working region is generally defined between the closed end of the C-frame head and at least one movable die which is displaced by a piston or other powered member. The terms “press tool” and “crimp tool” are used interchangeably herein as the present subject matter engagement assemblies will find wide application in such tools and related or similar tools. Similarly, the terms “dies” and “inserts” are used interchangeably herein. The term “deformation” is used herein to describe a dimensional change to various tool heads and/or tool components. It will be understood that the term “deformation” refers to elastic deformation that occurs upon application of loads or forces. The term “deformation” as used herein does not refer to, nor include, plastic deformation.
Although the present subject matter is generally directed to hydraulically operated press and/or crimp tools, the present subject matter also includes other tools which may not necessarily utilize hydraulics or liquid displacement pumps to effect displacement of a piston or crimping component. For example, the present subject matter can also be implemented in tools using a powered linearly displaceable member or like components. Such tools may use electrically powered mechanical assemblies or other configurations. The present subject matter can also be implemented in manually powered press or crimp tools. A wide variety of press tools, typically hydraulically operated, are known and described in patents such as U.S. Pat. Nos. 6,035,775; 6,244,085; 6,510,723; and 7,124,608 for example. Examples of C-frame heads are shown and described in U.S. Pat. Nos. 5,062,290; 4,292,833; 6,220,074; and 6,619,101.
In certain embodiments, the present subject matter provides a press tool that is configured such that during use and upon application of a load to a die holder and/or workpiece, i.e., such that the tool is in a loaded state, the tool head deflects to a proper position or orientation at which crimping or other mating components are aligned and/or appropriately positioned relative to one another. In an unloaded state, the tool or tool components may appear to be misaligned, or in an improper position or orientation. The present subject matter provides various embodiments in accordance with this strategy.
In one embodiment, an offset crimping face is provided such that upon application of a load corresponding to a typical operation such as crimping, the crimp face deflects to an aligned position. The crimping face can be provided in a tool head, other tool component, and/or via a combination of a tool head and tool accessories.
In another embodiment, if using crimping inserts with the tool, the inserts are shaped or configured so as to define a gap between the crimping inserts or crimping surfaces at an unloaded state. Upon application of a load corresponding to a typical operation such as crimping, the C-frame deflects thereby causing the inserts to translate and/or rotate so that the gap is eliminated or at least substantially so, and the crimping inserts and/or surfaces are aligned.
In still another embodiment, a crimp tool having a tool head is configured so that a crimping face has a center axis that is, at an unloaded state, spaced from an axis of piston or ram extension. Upon application of a peak force or load corresponding to a typical operation such as crimping, the crimping face deflects toward, and in many embodiments into, alignment with the extension axis.
In yet another embodiment, a crimp tool having a tool head is configured so that a crimping face has a center axis that is, at an unloaded state, spaced from an axis of piston or ram extension as previously described. Upon application of a load corresponding to a typical operation such as crimping, the crimping face deflects toward alignment with the extension axis. The tool head can be configured such that alignment between the noted axes occurs at any point during a typical crimping such as for example at 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%, or any other point between 0% to 99% of peak force application. In such versions of the present subject matter, the tool head would likely be in a misaligned configuration at an end or peak force point of a crimp, e.g., 100% of force application. Thus, the present subject matter includes tool heads that are configured to be fully compensated such that the noted axes are aligned at full load, and tool heads that are configured to be partially compensated such that the noted axes are aligned at some percentage of full load.
In many embodiments described herein, a tool head and/or its related components are configured such that upon application of a load as would be applied during a typical pressing or crimping operation, the tool head and/or the noted components deflect to a position and/or state such that the tool head and/or associated components are aligned so as to enable a proper and/or full die closure. Nonlimiting examples of loads applied during a typical pressing or crimping operation are from about 20 kN to abut 180 kN, more particularly from about 50 kN to about 130 kN, and in certain applications from about 70 kN to about 130 kN.
The present subject matter also provides various methods of using and/or implementing the deflection compensating tool heads. Generally, the methods provide a strategy of compensating for deflection occurring in a C-frame head of a press tool during operation of such tool. The methods comprise providing a press tool including a C-frame head that is configured such that upon application of a load, the tool head deflects to a proper position or orientation at which components are aligned and/or appropriately positioned relative to one another. The methods can also relate to incorporating a tool head as described herein in a press tool.
In certain embodiments, the present subject matter also provides unique engagement assemblies between a piston and a ram die holder utilized in a press or crimp tool. The various engagement assemblies of the present subject matter compensate for deflection occurring within the press or crimp tool and particularly within the C-frame head during pressing or crimping. The ram die holder is movably affixed to an end of the piston by the engagement assembly. During a crimping operation, the piston moves along an extension axis. The ram die holder moves or articulates to correspond to a range of deflections occurring in the C-frame head. In this manner, the articulated assembly between the ram die holder and the piston compensates for deflection which may be occurring in the C-frame head. The ram die holder is movably affixed to the piston end so that the ram die holder can be articulated to a plurality of different positions relative to the extension axis. In certain embodiments, the engagement assemblies include a pivoting connection to allow for guided or limited articulation within a plane between the piston and the ram die holder. The extent of such articulation generally corresponds to the extent of deflection occurring in the C-frame head during a crimping or pressing operation. In particular embodiments, a semi-cylindrical recess or socket is formed on the ram die holder. This socket is engaged with a semi-cylindrical end formed on the piston. In still other versions in which articulation is not limited within a plane, the mating surfaces of the ram die holder and the piston may be semi-spherical. Because of the semi-cylindrical or semi-spherical configuration, rotation and/or arcuate movement between the components is allowed while maintaining the maximum possible surface contact between mating parts.
In particular embodiments, a distal end of the piston may be provided or “tipped” with an insert having a particular geometry. Nonlimiting examples of such geometry include arcuate, convex, concave, semi-cylindrical, and semi-spherical. The piston tip or end can be formed from a material able to withstand high stresses and which is durable and wear-resistant, for example hardened alloy steel. This enables a remaining majority of the piston to be formed from a lighter weight and/or less costly material, for example aluminum alloy. The present subject matter includes assemblies of piston ends without such tips, but which are configured to exhibit the noted geometries. In such embodiments, the ram die holder is configured to correspondingly receive the configured distal end of the piston.
In certain versions, pins, screws, and/or other fasteners extend entirely or partially through the ram die holder and extend into a channel or aperture at the tip or end of the piston. The engagement configuration of these components is such that during the application of force such as from the piston to the ram die holder, the loads are transferred entirely through contact between the mating surfaces. However, as the piston retracts to a starting position after completion of a crimping operation, the pins or screws retain the ram die holder to the piston and cause the entire assembly to retract.
The present subject matter also provides various methods of using and/or implementing the engagement assemblies. Generally, the methods provide a strategy of compensating for deflection occurring in a C-frame head of a press tool during operation of such tool. The methods comprise providing a press tool including a C-frame head defining a work region, a piston movably displaceable along an extension axis, and a ram die holder associated with the piston and accessible in the work region defined by the C-frame head. The methods also comprise incorporating an engagement assembly between the piston and the ram die holder such that the ram die holder can be articulated to a plurality of different positions relative to the extension axis. The engagement assembly can be in accordance with any of the engagement assemblies described herein.
Additional details and aspects of the deflection compensating C-frame heads and the deflection compensating engagement assemblies of the present subject matter are described herein. Additional details and aspects of tools using these C-frame heads and/or assemblies, and related methods are also described herein.
In this aspect of the present subject matter, a C-frame tool head is provided which in an unloaded state may appear to exhibit a misaligned configuration, and in a loaded state exhibits an aligned configuration or a misaligned configuration in an opposite direction. It will be understood that when in an unloaded state, the extent of misalignment may not be visibly apparent. However, the misalignment will be present. The term “loaded state” as used herein refers to the dimensional state, i.e., size and shape, of the tool head upon application of a load that corresponds to a typical maximum use load of the tool head. For example, for a C-frame tool head used in a crimping tool rated at 130 kN (about 12 tons), upon application of a 130 kN force to the tool head, i.e., a typical “crimping load,” the tool head is in a loaded state and deflects to a dimensional state that is different than the dimensional state of the tool at an unloaded state. The differences between the tool head in a loaded state and the tool head in an unloaded state depend upon a variety of factors including the shape of the tool head, and physical properties of the tool head material such as the modulus of elasticity of the material forming the tool head. The term “unloaded state” as used herein refers to the dimensional state, i.e., size and shape, of the tool head in a load-free state at which no external loads are applied.
Upon affixment of the tool head 100 to a corresponding tool component or within a fixture having a force producing member, upon extension of a piston, ram, or force producing member and application of a designated load to the crimp face 133 of the tool head 100, the tool head undergoes deflection from its initial unloaded state.
Upon placing the tool head 100 in a loaded state as shown in
Typically during loading, the first ledge 133A is displaced in the directions of arrow J and arrow K. And, typically the second ledge 133B is also displaced in the directions of arrow J and arrow K, however to a lesser extent.
The scales included in
During displacement of the die 245 toward the die 240, the die head 200 is configured such that the first end locations 242A and 247A of the dies 240, 245 respectively, contact one another prior to contact between the second end locations 242B and 247B. This state is illustrated in
Another indication of the deflection compensating configuration of the tool head 200 is the presence of a bias angle M defined between faces of the dies 240 and 245. Specifically, the bias angle M is defined as the angle between a first line intersecting the end locations 242A and 242B of the first die 240 and a second line intersecting the end locations 247A and 247B of the second die 245, upon initial contact between the end locations 242A and 247A. Similarly, reference to the bias angle is when the tool head is in an unloaded state. Representative and nonlimiting values for the bias angle M range from about 15 degrees to about 0.1 degrees, in certain embodiments from 10 degrees to 1 degree, and in a particular embodiment from 5 degrees to 1 degree.
Specifically, referring to
It will be appreciated that the present subject matter is not limited to deflection compensating C-frame heads as depicted in
It will be understood that the present subject matter includes a wide array of assemblies and tool head configurations which compensate for deflection. For example,
Using the deflection compensating strategies, assemblies, and tool heads as described herein, in certain embodiments partial die closure occurs at a level of force that is less than peak force. As previously noted, without incorporation of the deflection compensating strategies, assemblies and/or tool heads, a conventional tool may reach the peak force at the state shown in
Using the strategies, assemblies and tool heads as described herein, full die closure is possible, and in many embodiments, occurs before peak force is obtained. In many embodiments, the force required to reach full die closure is from about 10% to about 99%, in particular embodiments from about 70% to about 95%, and in certain embodiments about 85% of the peak force reached (such as when one or more internal hydraulic pressure relief valves open in the tool and the crimping or pressing operation is terminated). Thus, in such embodiments, full die closure is reached at a force that is less than the peak force of the tool.
The present subject matter also includes crimping inserts which upon being placed in a loaded state, are configured to deform such that their crimping surfaces are aligned or otherwise appropriately positioned relative to one another. In certain applications, proper positioning is completely closing the inserts such that their ends contact each other. In an unloaded state, the crimping inserts may appear to be misaligned, or in an improper position or orientation.
It will be appreciated that the present subject matter includes a wide array of inserts, insert shapes and configurations, and orientations between the inserts and the tool head. Thus, in no way is the present subject matter limited to the particular arrangement and/or configuration of inserts depicted in
The present subject matter also includes a tool head that is configured with a crimp face which defines a center axis that, at an unloaded state of the tool head, is spaced from an axis of extension of a piston, ram, or other force producing member. Upon placing the tool head in loaded state, deflection occurs such that the center axis becomes aligned with the extension axis, which typically results in the axes becoming parallel with one another or becoming collinear.
Referring to
The change in configuration of the tool head 500 when comparing the crimp face 533 in an unloaded state to a loaded state can also be characterized by reference to a shift in a center axis defined by the crimp face 533 relative to the extension axis A. The center axis of the crimp face 533 is depicted in
The present subject matter also provides crimp tools and press tools (generally and collectively referred to as press tools herein) which utilize the noted deflection compensating tool heads. Generally, the press tools comprise a frame which includes the noted tool head and a hydraulic cylinder supported by and affixed to the frame. The tools also include a piston movably disposed in the cylinder. The piston defines a piston face and an opposite distal end which upon piston displacement, extends outwardly from the hydraulic cylinder. The tools also typically include a ram die holder engaged with the distal end of the piston. The ram die holder defines a second crimp face and is typically accessible in the work region defined by the tool head. Upon application of a crimping or pressing load, the tool head deflects to an extent such that the first and second crimp faces are aligned. Additional details of the tools are described in association with
In certain embodiments, the deflection compensating tool heads, assemblies, and/or related strategies could potentially reduce the required stroke of the tool. Such stroke reductions could be possible so long as the loading and/or unloading of the workpiece is not restricted. Specifically, in certain embodiments, the tool heads could be configured that would require a shorter stroke, such as a stroke that is reduced by about 5% for example. Less stroke results in shorter operation time and for a manually operated tool, many result in one or two less cycles of the hand pump.
Referring further to
The hydraulic cylinder 40 defines a proximal end 44 and an opposite distal end 46. The hydraulic cylinder also defines a chamber 42 in which the piston 50 is movably disposed. The hydraulic cylinder 40 comprises an end plate 48 typically disposed adjacent the distal end 46. One or more hydraulic seals 49 are provided to seal around a piston ram member 56 described in greater detail.
The piston 50 defines a piston face 52 and an opposite distal end 54. Upon assembly and incorporation of the piston 50 in the cylinder 40, the piston face 52 is directed toward the proximal end 44 of the cylinder 40. The piston ram member 56 extends at least partially between the piston face 52 and the piston end 54. The piston 50 is movably disposed in the cylinder 40 and can be linearly displaced along an extension axis A. As will be appreciated, upon administration of hydraulic fluid under pressure in the chamber 42 of the cylinder 40, force is exerted upon the face 52 of the piston 50, thereby displacing the piston along axis A toward the work region 28 of the C-frame head 26.
The ram die holder 60 defines a crimping face 62, a projection member 64, a receiving region 66, and an arcuate contacting surface 68. The crimping face 62 typically provides a desired profile for a crimping operation. The crimping face 62 may be configured to accept inserts for pressing or crimping. The projection member 64 is typically in the form of an outwardly extending member which extends outward from the die holder 60 and which is received and slidingly disposed in the previously noted alignment track 32 defined in the frame 20. The receiving region 66 is generally a recessed region defined in the ram die holder 60 which is directed toward the piston 50 and particularly, toward the distal end 54 of the piston or the piston tip 80. The arcuate contacting surface 68 is generally located at least partially within the receiving region 66.
In certain embodiments, the crimp tool 10 also comprises a piston tip 80 which is disposed at the distal end 54 of the piston 50. The piston tip 80 defines an arcuate face 82. The piston tip 80 can in certain embodiments be pressed onto the distal end 54 of the piston 50. However, the present subject matter includes a wide array of affixment configurations. The present subject matter also includes configurations in which the piston tip 80 is integrally formed with the piston 50.
In particular versions of the present subject matter, the arcuate face 82 of the piston tip 80 is continuous and free of apertures, holes, or other surface discontinuities. Providing a continuous surface for the entirety of the face 82 promotes distribution of forces between the piston tip 80 and the ram die holder 60 and reduced wear between these components.
The ram die holder 60 is movably affixed to the piston 50, and particularly to the distal end 54 of the piston 50, by an engagement assembly 70. For embodiments of the crimp tool 10 using the piston tip 80, the ram die holder 60 is movably affixed to the piston tip 80. The engagement assembly 70 provides for movement of the ram die holder relative to the piston. The engagement assembly 70 includes an arcuate face surface which is provided by either the distal end 54 of the piston 50, or if a piston tip 80 is used, by the arcuate face 82 of the piston tip 80. The engagement assembly 70 also includes the arcuate surface 68 which is provided at least partially within the receiving region 66 of the ram die holder 60. The two arcuate surfaces, i.e., (i) that of the piston end or piston tip, and (ii) that of the ram die holder, are configured to match one another. For example if the arcuate surface of the piston end/tip is convex, then the arcuate surface of the receiving region of the ram die holder is concave; and vice versa. As noted, the engagement assembly 70 enables the ram die holder 60 to adopt a plurality of positions relative to the piston 50. For example, referring to
In certain embodiments, the ram die holder 60 is affixed to the piston tip 80 by a fastener member 84. The ram die holder 60 defines a first aperture, and the piston tip 80 defines a second aperture. Upon insertion of the arcuate face 82 of the piston tip 80 into the receiving region 66 of the ram die holder 60, the arcuate face 82 of the piston tip 80 contacts the arcuate face 68 of the ram die holder 60. Upon placement of the piston tip 80 into the receiving region 66 of the ram die holder 60, and alignment of the first and second apertures, the fastener member 84 is inserted through the apertures. This configuration enables the ram die holder 60 to be pivotally positionable about an axis defined by the center of the cylindrical face 82. The fastener 84 retains and prevents disengagement between the piston tip 80 and the ram die holder 60. Additional securement provisions can be associated with the inserted fastener 84 to thereby securely affix the piston tip 80 with the ram die holder 60. It will be appreciated that if a piston tip 80 is not used, the distal end 54 of the piston 50 is associated with and affixed to the ram die holder 60 using the noted apertures and fastener member 84. The present subject matter includes a wide array of fastener components and techniques for affixing the ram die holder to the piston.
The present subject matter also provides various methods of compensating for deflection occurring in a C-frame head of a press tool during a pressing or crimping operation. The methods generally comprise providing a press tool that includes a C-frame head and a collection of dies. The C-frame head is configured, typically prior to incorporation in the tool, such that upon application of a load as would be applied during a typical pressing or crimping operation, the tool head deflects to a position such that the collection of dies are aligned to thereby enable full die closure. As previously explained herein, at full die closure, contact between opposing faces of adjacent dies occurs on both sides of a fitting or assembly. This is shown for example in
The various deflection compensating engagement assemblies and tools utilizing such assemblies of the present subject matter provide several benefits. Greater deflection of the C-frame head is allowed as a result of the pivoting or articulating connection. The tool(s) and specifically the C-frame head can be further optimized for weight.
Even without weight optimization, all C-frame designs deflect to some extent during typical loading and/or tool use. Thus, the present subject matter also provides benefits over existing tools because a greater surface area and contact pattern is made between the piston and ram die holder. This results in reduced component wear and reduced likelihood of failure due to uneven force distributions.
Additionally, the connection between the ram die holder and piston reduces a slide load as the crimp is completed. Thus, these components are less stressed and the likelihood of failure is reduced. This reduces the side load on the piston to housing/bore also. A reduced side load also decreases wear and in certain assemblies can simplify the piston/bore alignment.
Many other benefits will no doubt become apparent from future application and development of this technology.
All patents, applications, standards, and articles noted herein are hereby incorporated by reference in their entirety.
The present subject matter includes all operable combinations of features and aspects described herein. Thus, for example if one feature is described in association with an embodiment and another feature is described in association with another embodiment, it will be understood that the present subject matter includes embodiments having a combination of these features.
As described hereinabove, the present subject matter solves many problems associated with previous strategies, systems and/or devices. However, it will be appreciated that various changes in the details, materials and arrangements of components, which have been herein described and illustrated in order to explain the nature of the present subject matter, may be made by those skilled in the art without departing from the principle and scope of the claimed subject matter, as expressed in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2712252 | Landis | Jul 1955 | A |
3163105 | Pearson | Dec 1964 | A |
3267717 | Reischer | Aug 1966 | A |
3554000 | Schwab | Jan 1971 | A |
3561252 | Norton et al. | Feb 1971 | A |
3852991 | Poggio | Dec 1974 | A |
4018150 | Shiokawa | Apr 1977 | A |
4084422 | Zilges et al. | Apr 1978 | A |
4612765 | Livesay | Sep 1986 | A |
4873923 | Manning | Oct 1989 | A |
5272904 | Krumholz | Dec 1993 | A |
6073525 | Edwards | Jun 2000 | A |
6768059 | Lefavour et al. | Jul 2004 | B1 |
7134314 | Peterson et al. | Nov 2006 | B1 |
20160211635 | Hamm | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
101247904 | Aug 2008 | CN |
102231467 | Nov 2011 | CN |
Entry |
---|
Chinese Office Action dated Apr. 27, 2017 for Application No. 201610030814.9 (4 pages). |
Search Report dated Apr. 27, 2017 for Application No. 201610030814.9 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20160211635 A1 | Jul 2016 | US |