The present invention relates to a deflection yoke and a cathode-ray tube apparatus, and especially relates to a technology of raster distortion correction.
In a cathode-ray tube (hereafter CRT) apparatus used in televisions and the like, electron beams are emitted from the electron gun and deflected by a magnetic field which is created by the deflection yoke provided on the periphery of the funnel of the CRT. These deflected electron beams scan over the panel, which results in visual display. Here, the panel provided with a screen, which is a face irradiated by the electron beams, does not have a spherical surface centering on the deflection center of the electron beams, and the distance between the deflection center and a point irradiated by the electron beams increases towards the perimeter of the screen. Consequentially, deviation of the electron beams becomes most significant in the four corners of the screen, which leads to one type of raster distortion, pincushion distortion, as shown in
As to pincushion distortion shown in
In reference to
Although it is not shown in the figure, another permanent magnet is symmetrically placed at the bottom front edge of the deflection yoke, opposite to the one at the top deflection yoke in respect to the tube-axis, with the magnetic poles flipped. The pincushion distortion at the bottom of the screen is corrected by this permanent magnet located at the bottom.
When the CRT apparatus is activated, temperature of the apparatus starts increasing from the start of the activation. The temperature differential range is subjected to the ambient temperature of the environment in which the CRT apparatus is placed, but it can be, for instance, several tens of degrees Celsius (° C.). Thus, in the case that activating the apparatus results in an increase in the temperature thereof, the magnetization of the permanent magnet changes with a negative temperature characteristic. When the magnetization of the permanent magnet changes with a negative temperature characteristic, proper correction over the pincushion distortion cannot be maintained any longer.
As a countermeasure for this problem, a technique has been developed (see, Japanese Laid-Open Patent Application No. 2001-126642). In this, a magnetic substance made of a metal alloy having an attribute in which the permeability changes with a negative temperature characteristic is attached to the outer lateral face of the permanent magnet provided on the deflection yoke frame. This allows correction of the pincushion distortion to be maintained against temperature change of the apparatus.
As to a CRT apparatus, late years, there is a trend toward making the panel flat. However, such a CRT apparatus with a flat panel needs to be attached with a permanent magnet with a larger magnetization in order to correct pincushion distortion. For example, compared to a conventional CRT apparatus, a CRT apparatus with a panel like this requires the magnetization of the permanent magnet to be three to five times larger. Thus, in this type of CRT apparatus, change in the magnetization of the permanent magnets in response to temperature change becomes significant, and therefore, a problem has arisen where the method of distortion correction cited in Japanese Laid-Open Patent Application No. 2001-126642 above is not quite competent to correct the pincushion distortion against temperature change of the apparatus. In short, as to the permanent magnet with a large magnetization, the change in the magnetization against temperature change is substantial. And thus, even if the magnetic substance, which is made of a metal alloy having the attribute where the permeability changes with a negative temperature characteristic, is attached as above, sufficient adjustment cannot be made for change in the correction efficiency against the raster distortion in response to change in the magnetization of the permanent magnet.
An additional problem occurs since variation in the magnetization among individual permanent magnets increases when the permanent magnets have a larger magnetization. That is, proper correction of the pincushion distortion cannot be obtained when such a permanent magnet is used in the CRT apparatus. Such a problem, i.e. the variation in the magnetization of the permanent magnets, may be solved in theory; namely, by employing additional manufacturing steps that include screening over the permanent magnets and using only the most appropriate permanent magnets at the manufacturing stage of the CRT apparatus. However, adopting such a method is impractical cost wise.
In view of the above-mentioned problems, the present invention aims to compensate for the variation in the magnetization caused by the individual difference of the permanent magnets, and further to provide a deflection yoke as well as a CRT apparatus provided with the deflection yoke which maintain proper correction of the raster distortion against temperature change of the apparatus.
In order to accomplish the above objects, the deflection yoke and the CRT apparatus of the present invention are characterized as follows.
(1) A deflection yoke (i) is placed on the periphery of a CRT, (ii) applies a deflection magnetic field to an electron beam emitted towards the screen from an electron gun which is mounted in the neck of the cathode-ray tube, and (iii) controls the electron beam to scan across the screen. This deflection yoke contains a magnet for adjusting an irradiated point of the electron beam on the screen. Within the magnet, a magnetic substance whose permeability changes with a negative temperature characteristic is attached on at least one of both end faces, S and N poles.
The deflection yoke of the present invention contains the magnet provided in order to correct the pincushion distortion as well as the magnetic substance having an attribute in which the permeability changes with a negative temperature characteristic. The magnetic substance is attached to the end face, which is a magnetic pole (S pole or N pole) of the magnet. By means of this structure, a bypass of magnetic field lines is formed between the affixed magnetic substance and the opposite magnetic pole of the magnet. Consequentially, the magnetic field line having an influence on the electron beams are efficiently adjusted by concentrating the magnetic field lines running out of the magnet into the bypass mentioned above. In the deflection yoke, the magnetization of the magnet decreases in response to an increase in temperature, which results in an overall decrease in the magnetic field lines running out of the magnet. However, the proportion of the magnetic field lines passing through the bypass, which is formed by the attachment of the magnetic substance, is also lowered. As a result, the function for correcting the raster distortion is maintained. At the same time, by means of attaching the magnetic substance to the end face of the magnet as mentioned above, a decreasing rate of the density of the magnetic field lines passing through the bypass is also accelerated with an increase in temperature, and therefore the effect for adjusting the change in the magnetic field lines running out of the magnet in response to temperature changes is eminent.
Accordingly, the deflection yoke of the present invention, being free from the influence of ambient temperature, always demonstrates stable correction of the raster distortion.
Furthermore, in the deflection yoke of the present invention, the variation in the magnetization of the magnets due to the individual difference is reduced even if a magnet with a large magnetization is placed on the deflection yoke in order to accommodate the pincushion distortion correction of the CRT apparatus with a flat panel. Namely, this is realized by preparing a plurality of magnetic substances differing in the permeability and the temperature characteristics thereof, and selecting and attaching a magnetic substance with the most appropriate attributes according to the magnetization of each magnet.
Compared to the case of screening the magnets in order to minimize their variation, this enables an increase in manpower demand to be held down when the deflection yoke is manufactured, which leads to cost reduction.
In addition, the deflection yoke of the present invention allows for effective adjustment against change in the magnetization of the magnet due to temperature change by means of attaching the magnetic substance to the end face of the magnet, which is the magnetic pole of the magnet. In short, the deflection yoke of the present invention enables adjustment to the magnetization, affecting where magnetic flux density is higher, in comparison to the deflection yoke disclosed in Japanese Laid-Open Patent Application No. 2001-126642. In this conventional deflection yoke, the magnetic substance is attached to the lateral face which is not a magnetic pole of the magnet. Now therefore, the deflection yoke of the present invention functions well to adjust change in the magnetization in response to temperature change even when a magnet with a large magnetization is used in order to accommodate the CRT apparatus with a flat panel.
Consequently, the deflection yoke of the present invention proves effective in compensation for the variation in the magnetization of the permanent magnets due to individual difference, and also in constructing a CRT apparatus in which proper raster distortion correction is maintained against temperature change of the apparatus.
(2) In the deflection yoke of (1) above, the magnet is in the shape of a column that has one or more lateral faces. The magnetic substance includes a basal plane and two open edges extending from the basal plane, and is provided on the magnet in a manner that the basal plane spans one of the end faces covering a part of the one end face while each of the two open edges covers a part of the one or more lateral faces of the magnet.
(3) In the deflection yoke of (2) above, the magnet has a rectangular cross-section with four lateral faces. The magnetic substance has another two open edges extending from the basal plane, thereby having four open edges in total. The magnetic substance is attached to the magnet in a manner that each of the four open edges covers a part of the respective four lateral faces of the magnet.
(4) In the deflection yoke of (1) above, the magnetic substance is made of a metal alloy containing at least one of Fe, Ni, and Cr. An Fe—Ni metal alloy and an Fe—Ni—Cr metal alloy are concrete examples of this.
(5) In the deflection yoke of (1) above, the magnet is provided at a position on the frame of the deflection yoke. The position on the frame is to the screen side of the CRT.
(6) In the deflection yoke of (5) above, a pair of magnets, each of which is attached by the magnetic substance, are provided, and the paired magnets are symmetrically placed opposite to each other in respect to a tube axis of the CRT.
(7) In the deflection yoke of (6) above, magnetic substances, each of which attaches to the paired magnets, have a substantially identical characteristic of permeability change in response to change in temperature.
Note that the term “substantially identical” here indicates the attributes of the magnetic substances are identical insofar as temperature characteristics of the magnets can be practically adjusted.
(8) A CRT apparatus comprises a cathode-ray tube and a deflection yoke. The cathode-ray tube further includes (i) a panel which contains a screen inside, (ii) a neck which mounts an electron gun placed opposite to the panel, and (iii) a funnel which joints the panel and the neck. In the CRT, an electron beam is emitted from the electron gun towards the screen. The deflection yoke (i) is placed on the periphery of the cathode-ray tube, (ii) applies a deflection magnetic field to the electron beam emitted towards the screen from the electron gun which is mounted in the neck of the cathode-ray tube, and (iii) controls the electron beam to scan across the screen. The deflection yoke contains a magnet for adjusting an irradiated point of the electron beam on the screen. Within the magnet, a magnetic substance whose permeability changes with a negative temperature characteristic is attached on at least one of both end faces, S and N poles.
The CRT apparatus of the present invention is provided with the deflection yoke. As stated above the deflection yoke contains the magnet provided in order to correct the pincushion distortion as well as the magnetic substance having an attribute in which the permeability changes with a negative temperature characteristic. The magnetic substance is attached to the end face of the magnet, which is a magnetic pole (S pole or N pole) of the magnet. By means of this structure, a bypass of magnetic field lines is formed between the affixed magnetic substance and the opposite magnetic pole of the magnet. Consequentially, changes in the magnetization of the magnet in response to temperature changes are adjusted, with a potent influence over the magnetic field lines running from the magnet. Now therefore, in the CRT apparatus of the present invention, the raster distortion is corrected well irrespective of the temperature change.
In addition, the magnetic substance is attached to the end face of the magnet as described above, and this enables the magnetic substance to exert a substantial effect on the magnetic field lines running out of the magnet. As a result, the magnetization is adjusted well even for the magnets with significant variation in the magnetization.
Hence, the CRT apparatus of the present invention has high quality performance, compensating the variation in the magnetization of the permanent magnets caused by individual difference, and maintaining proper correction of the raster distortion against temperature changes of the apparatus.
(9) In the CRT apparatus of (8) above, the magnet is in the shape of a column that has one or more lateral faces. The magnetic substance includes a basal plane and two open edges extending from the basal plane, and is positioned on the magnet in a manner that the basal plane spans one of the end faces covering a part of the one end face while each of the two open edges covers a part of the one or more lateral faces of the magnet.
(10) In the CRT apparatus of (9) above, the magnet has a rectangular cross-section with four lateral faces. The magnetic substance has another two open edges extending from the basal plane, thereby having four open edges in total. The magnetic substance is attached to the magnet in a manner that each of the four open edges covers a part of the respective four lateral faces of the magnet.
(11) In the CRT apparatus of (14) above, the magnetic substance is made of a metal alloy containing at least one of Fe, Ni, and Cr. An Fe—Ni metal alloy and an Fe—Ni—Cr metal alloy are concrete examples of this.
(12) In the CRT apparatus of (8) above, the magnet is provided at a position on the frame of the deflection yoke. The position on the frame is to the screen side of the CRT.
(13) In the CRT apparatus of (12) above, a pair of magnets, each of which is attached by the magnetic substance, are provided, and the paired magnets are symmetrically placed opposite to each other in respect to a tube axis of the CRT.
(14) In the CRT apparatus of (13) above, the magnetic substances, each of which attaches to the paired magnets, have a substantially identical characteristic of permeability change in response to change in temperature.
Note that the term “substantially identical” here indicates the attributes of the magnetic substances are identical insofar as temperature characteristics of the magnets can be practically adjusted.
(15) In the CRT apparatus of (8) above, a shadow mask is provided close to the screen which is placed in the panel. The shadow mask is tensed and then maintained.
A CRT apparatus 1 is given below by way of example to illustrate the best embodiment of the present invention.
(1) Overall Structure of the CRT Apparatus 1
The overall structure of the CRT apparatus 1 is described by the aid of
As shown in
The electron gun 20 is an inline gun and comprises firing units for three electron beams of blue (B), green (G), and red (R).
The deflection yoke 30, whose structure is described later, is placed in the space between the funnel 12 and the neck 13 of the CRT 10 so as to follow the periphery of these two.
(2) Structure of the Deflection Yoke 30
Among the components of the CRT apparatus 1, the deflection yoke 30 is a feature of this preferred embodiment.
As illustrated in
In addition, the ferrite core 330 is structured by combining a pair of core members 331 and 332, symmetrically matched half pipes.
Of components of the deflection yoke 30, the frame 300 is made of a platy insulator (a resin molded product) with approximately uniform thickness across the board, and the portion on the screen side following the above funnel-shaped portion is built into the shape of a substantially square picture frame. Hereafter, this portion, which is in the shape of a picture frame, is referred to as a foreside frame 300a.
Platform portions 300b are formed so as to project from the top and bottom edges of the foreside frame 300a located in the y-direction toward the front in the z-direction (i.e. in the direction toward the panel 11 shown in
As shown in
The end faces 341a and 341b of the permanent magnet 341, to which the magnetic substances 342 are affixed, are an N and a S pole, respectively.
Two correction units 340, making a pair, each of which is attached at the top and the bottom of the foreside frame 300a, are symmetrically placed opposite to each other in respect to the tube axis of the CRT 10. In other words, as shown in
Note here that, with the CRT apparatus 1 of this preferred embodiment, one end face 341a of the permanent magnet 341 in each correction unit 340 is an N pole and the other end face is a S pole.
(3) Structure of the Correction Unit 340
With the aid of
As shown in
The magnetic substance 342 has an attribute in which the permeability changes with a negative temperature characteristic. A metal alloy containing, for instance, Ni, Fe, or Cr, can be used to form a magnetic substance with such an attribute. To be more precise, an Fe—Ni metal alloy and an Fe—Ni—Cr metal alloy (e.g. product name: Temperature Compensator Alloy, item numbers: MS-1, MS-2, and MS-3, produced by Sumitomo Special Metals Co., Ltd) can be used.
There are no restrictions on a type of the permanent magnet 341 to be used. One with the main material of BaO.6Fe2O3 is an example of this.
As shown in
The width of the magnetic substance 342 conforming to the width of the permanent magnet 341, W1, is set at (W1+2T), as indicated in
Note that the magnetic substance 342 does not necessarily need to be square-bracket shaped in a plan view, and the magnetic substance 342 attachable to the surfaces of the end faces 341a and 341b, each of which is a magnetic pole of the permanent magnet 341, is acceptable for use.
(4) Magnetic Field Adjustment by the Correction Unit 340
Referring to
As shown in
Accordingly, in the correction unit 840 of the prior art, the magnitude of the magnetic field is adjusted by exerting an influence on the magnetic-field-line constituent 501 whose effects on the electron beams are small since the magnetic substance 842 is affixed to the lateral face of the permanent magnet 841, as illustrated in
On the other hand, in the correction unit 340 provided with the deflection yoke 30 of this preferred embodiment, the magnetic substances 342 are affixed to the permanent magnet 341 so as to cover part of both end faces 341a and 341b, which are two magnetic poles (N and S poles) of the permanent magnet 341, as well as part of the lateral face 341c. This results in a formation of a bypass of the magnetic field lines, running out of the permanent magnet 341, between both magnetic substances 342, as shown in
The correction unit 340 of this preferred embodiment exercises a great effect on the magnetic field lines from the permanent magnet 341 since the end faces 341a and 341b of the permanent magnet 341 are covered as shown in
Hence, the correction unit 340 of this preferred embodiment enables compensation to be made for the variation in the magnetization of the permanent magnet 341, as well as efficient adjustment of the magnetization of the permanent magnet 341 in response to temperature change, even where the permanent magnet 341 with large magnetic force is used in connection with a trend toward a flat panel.
Note here that, when two correction units 340 are attached in a pair, at the top and bottom of the deflection yoke 30, it is advisable to use the correction units 340 whose attributes, including the magnetization of the permanent magnet 341 and properties of the magnetic substances 342, are substantially identical.
(5) Compensation Method for the Variation in the Magnetization of the Correction Unit 340
In general, as for the permanent magnet, the larger the magnetization required, the more significant the variation in the magnetization becomes due to the individual difference as described above. If such a permanent magnet is applied to the deflection yoke without change, the pincushion distortion cannot be corrected as planned. In this instance, a process, in which a plurality of permanent magnets are prepared in advance and a permanent magnet with a desirable magnetization is used after screening, cannot be taken on, due to the number of manufacturing steps and so on.
Given this factor, the preferred embodiment takes measures to prepare multiple types of magnetic substances 342 whose permeability varies from one to another, and to provide the magnetic substances 342 which have the best suited permeability according to the magnetization of the permanent magnet 341. An example of compensating the variation in the magnetization is provided by the aid of
Take notice that materials used here are, as stated above, BaO.6Fe2O3 as the main material of the permanent magnet 341, and an Fe—Ni or an Fe—Ni—Cr metal alloy for the magnetic substances 342.
As illustrated in
On the other hand, in the preferred embodiment, the best suited magnetic substances 342 are attached to the end faces 341a and 341b of the permanent magnet 341, in consideration of the saturation flux density and the variation of the permanent magnet 341 observed in
The method discussed hereinbefore enables compensation to be made for the variation in the magnetization (saturation flux density) of the permanent magnet 341 due to the individual difference as manufactured, and ensures reliable correction of the pincushion distortion in the CRT apparatus 1 by providing the correction unit 340, which has obtained an ideal saturation flux density, to the deflection yoke 30.
Note that, when it comes to the actual manufacturing of the correction unit 340, in addition to making compensation for the variation in the magnetization of the permanent magnet due to the individual difference as cited above, adjustment for change in the magnetization of the permanent magnet 341 in response to temperature change of the apparatus becomes an important factor at the time of selecting the magnetic substances 342.
(6) Change in the Saturation Flux Density of the Correction Unit 340 at the Temperature Change of the Apparatus
Next, as to change in the saturation flux density of the permanent magnet 341 and that of the correction unit 341, their difference when the temperature of the apparatus has been changed is described with reference to
The permanent magnet 341 with the main material of BaO.6Fe2O3 as above generally has temperature characteristics where the magnetization (saturation flux density) is −0.2%/° C. Accordingly, as shown in
Alternatively, the magnetic substances 342 have the attribute, in which the permeability changes with the negative temperature characteristic, because of being made of the above metal alloy. Consequently, the correction unit 340, formed by attaching the magnetic substances 342 to the permanent magnet 341 so as to cover part of both end faces 341a and 341b and part of the lateral face 341c, has a largely steady saturation flux density against change in temperature, of 45000 μT.
Stated differently, at the temperature of 0° C., the saturation flux density of the permanent magnet 341 alone is around 55000 μT, while that of the correction unit 340 is about 45000 μT due to cancellation of magnetic flux exerted by the magnetic substances 342, as illustrated in
On the other hand, as to the magnetic substances 342 with the attribute in which the permeability changes with a negative temperature characteristic, the permeability decreases with an increase in temperature and the influence of counteracting the change in magnetic flux diminishes. In this preferred embodiment, as shown in
As described hereinbefore, in the CRT apparatus 1 provided with the correction unit 340, correction of the pincushion distortion is maintained and performed without fail even if the temperature of the apparatus increases after the apparatus is activated. Resultantly, the CRT apparatus 1 consistently maintains high image quality, being free of influence from temperature changes.
Commonly, as to a CRT apparatus having a flat panel, the shadow mask of the CRT is tensed and then maintained. In such a case, in order to correct pincushion distortion, use of the permanent magnet 341 with a large magnetization is required for the correction unit 340, which is provided with the deflection yoke 30. Here, again, the structure of the correction unit 340 of the preferred embodiment above enables the effect stated above to be obtained.
(7) Modification of the Preferred Embodiment
Although the correction unit 340 of the preferred embodiment shown in
In the correction unit 440 illustrated in
Table 1 shows examples of desirable dimensions for the magnetic substance 442 of the correction unit 440. Bear in mind that, the dimensions in Table 1 are obtained assuming that the end faces 441a and 441b of the permanent magnet 341 have dimensions H1=9.0 mm and W1=9.0 mm and the thickness of the magnetic substance 442 is 1 mm.
As Table 1 indicates, it is advisable to increase the cross-sectional area (H2×W2) of the magnetic substance 442 in proportion to the magnetization of the permanent magnet 441. In these examples of the dimensions of the magnetic substance 442 shown in Table 1, the width W2 is varied while the thickness T and the height H2 are fixed at 1.0 mm and 4.0 mm, respectively. However, the values of the thickness T and the height H2 may be altered. In such cases, these values can be determined in view of the relationship between the permeability of the magnetic substance 442 to be used and the magnetization of the permanent magnet 441, as well as change in this relationship against temperature changes.
In the second modified correction unit 540 as illustrated in
Furthermore, in the correction unit 640 shown in
Note that the above modifications are mere examples of the present invention, and various modifications can be employed for variety of configurations in attaching the magnetic substances to the permanent magnet. In this regard, a point to take notice is that the magnetic substances need to be attached to the permanent magnet so as to cover the end faces, which are the magnetic poles of the permanent magnet, in order to increase the influence of the magnetic substances on the permanent magnet as described above.
(8) Additional Matters
In the preferred embodiment above, two correction units 340 are provided in pairs, each at the top and bottom of the foreside frame 300a of the deflection yoke 30. However, the correction unit 340 does not have to be a pair, and a single correction unit or more than one paired correction units may be provided. Note here that use of paired correction units is yet desirable from the aspect of a balance in the pincushion correction. Additionally, in the above preferred embodiment, the correction units 340 are provided in order to correct distortion in the vertical direction of the pincushion distortion in the panel, however, the correction unit 340 of the present invention may be applied to correct distortion in the horizontal direction.
Furthermore, the magnetic substances of the correction unit are not limited to those composed of the above materials provided that the magnetic substances have the attribute in which the permeability changes with a negative temperature characteristic.
Locations for attaching the correction units 340 within the deflection yoke 30 are not limited to the preferred embodiment, in which two correction units 340 are placed at the locations shown in the above
In addition, respective components used in the CRT apparatus 1 in the preferred embodiment above are only examples, and it is obvious that the present invention is not confined to these. Again, as to the above modifications, the values shown in Table 1 are indicated by way of example, and therefore do not impose any limit on the present invention.
The deflection yoke and the CRT apparatus of the present invention have a beneficial effect on realization of a display apparatus used in a computer and a television set, especially of a display apparatus with a flat panel.
Number | Date | Country | Kind |
---|---|---|---|
2002340026 | Nov 2002 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP03/14782 | 11/20/2003 | WO |