1. Field of Invention
This invention relates to printing, and in particular to printing with a deformable pad.
2. Prior Art
Pad printing has long been used to apply images to surfaces. This printing technology is especially useful for applying images to uneven, non-flat surfaces of virtually any size. These include products ranging from bottles to cellular telephones to home and industrial appliance panels.
The concept of a deformable pad for printing is taught in our U.S. Pat. No. 6,840,167 (2005). The pad comprises a flat sheet of flexible pad material, such as silicone rubber. It is preferably square, 10 cm on a side, and 1.5 cm thick. The pad can be smaller or larger. The size of the pad is determined by the area and shape of the final receiving surface.
The pad is initially flat and its edges are restrained by a holding bracket. An inkjet head deposits an image on the flat front pad surface. The pad is then forcibly deformed by a ram applied to the opposite side of the pad. The ram preferably has a curved frontal shape. Since the edges of the pad are restrained, the ram forces the pad into a bulged shape. The bulged pad is then brought into contact with the final receiving surface. The previously-applied inkjet image transfers from the pad to the receiving surface. A printed or decorated receiving surface results. The principal advantage of this system is the ability to transfer multi-color images in a single step. This system has been shown to work well, however operation of its pad can be improved for use in certain machine configurations.
An alternative pad design comprises, in one embodiment, a bulged pad. A flat ram is used to deform the pad, but a shaped ram can still be used.
A pad 100 (
Operation—
In preparation for use, pad 100 is restrained by two concentrically disposed annular rings, 400 and 405 (
In
In
In
In
In
Ram 600 now moves upward (not shown), away from pad 100, returning pad 100 to its resting condition. Bulge 110 resumes its original shape, shown in
The flat side of pad 100 is made to bulge during transfer in order to prevent the entrapment of air between pad 100 and the receiving surface of object 800. As pad 100 is urged against object 800, the bulged surface of pad 100 executes a rolling motion. This motion prevents formation of air pockets which can otherwise abruptly release air, causing ink droplets 600 to be ejected in a direction parallel to the surface of object 800, thereby ruining the image.
If the receiving surface of object 800 is flat, bulging pad 100 prior to transfer does not distort the image since pad 100 is again flattened by the surface of object 800 during transfer; an image is applied to a first flat surface and then transferred to a second flat surface. However, if the surface of object 800 is irregular, steps must be taken to properly pre-distort the image to be transferred. This pre-distortion step is well-known to those skilled in the art of pad printing. It is normally done in imaging software (not shown) prior to applying droplets 610 to pad 100.
The embodiment of
In another aspect, shown in
Instead of steel, an elastomeric material such as a thermoplastic rubber can be used for spring 1200. In this case, elastomeric spring 1200 extends to near the edges of pad 100 and be anchored by bolts 410.
In yet another aspect,
In still another aspect,
The various alternative embodiments provide additional ways to use the basic concept of the first embodiment. One embodiment may be selected over another when it is desired to print either a small or a large number of parts, for example. Alternatively, one embodiment may be selected over another when printing machine cost, size, or complexity is a consideration.
Thus it is seen that we have provided an improved deformable pad for pad printing. Instead of deforming a flat shape with a domed ram, a flat ram is used to deform a domed pad. Alternatively, a domed ram can still be used. Instead of a mechanical ram, the shape of the pad can be controlled by application of pressure or a vacuum to the back side of the pad. In some applications, this pad provides an advantage in that a simpler ram, i.e. one with a flat face, can be used. In the case of a flat-face ram, the same ram can be used with pads of different sizes and there is no critical requirement to center the ram on the bulge of the pad.
While the above description contains many specificities, it will be apparent that the inventive system is not limited to these and can be practiced with the use of additional hardware and combinations of the various components described. For example, a variety of shapes of ram, pad, and restraining members can be used, including rectangular, oval, star-shaped, pentagonal, hexagonal, octagonal, and the like. The size of the pad can vary from very small to very large, depending on the size of the surface to be printed. A wide variety of materials can be used for the components.
Accordingly the full scope of the invention should be determined by the appended claims and their legal equivalents, rather than the examples given. Also, while the present system employs elements that are well-known to those skilled in the art of pad printing, it combines these elements in a novel way which produces a new result not heretofore discovered.
This application claims priority of our provisional patent application, Serial Number US60/709,216, filed Aug. 18, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3587455 | Childress | Jun 1971 | A |
6276266 | Dietz et al. | Aug 2001 | B1 |
6840167 | Clark et al. | Jan 2005 | B2 |
20030136281 | Clark et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
3820340 | Jun 1988 | DE |
4020223 | Jun 1990 | DE |
01087347 | Mar 1989 | JP |
Number | Date | Country | |
---|---|---|---|
60709216 | Aug 2005 | US |