Degasser and vent manifolds for dialysis

Information

  • Patent Grant
  • 11110215
  • Patent Number
    11,110,215
  • Date Filed
    Friday, November 16, 2018
    6 years ago
  • Date Issued
    Tuesday, September 7, 2021
    3 years ago
Abstract
The invention relates to a degasser manifold and a vent manifold for use with a degasser in a dialysis system. The degasser manifold and vent manifold include a plurality of fluid passageways that convey dialysate or gases into and out of the degasser. The degasser manifold and vent manifold can also include components such as valves and sensors for control over the degassing of dialysate.
Description
FIELD OF THE INVENTION

The invention relates to a degasser manifold and a vent manifold for use with a degasser in a dialysis system. The degasser manifold and vent manifold include a plurality of fluid passageways that convey dialysate or gases into and out of the degasser. The degasser manifold and vent manifold can also include components such as valves and sensors for control over the degassing of dialysate.


BACKGROUND

In dialysis systems including sorbent based systems, certain amounts of gas such as carbon dioxide can be created by the breakdown of urea into ammonia and carbon dioxide by urease. The resulting gas can go into solution in a fluid such as a dialysate and/or form gas bubbles. The bicarbonate buffer system can also contribute to the creation of excess carbon dioxide in dialysis fluid. Removal of carbon dioxide and other dissolved and undissolved gases in a dialysis system can be important in order to maintain a required pH, certain fluid conditions such as bicarbonate or ion concentration, and avoid the creation of gas bubbles. Known systems generally use tubing or fluid lines to direct dialysate into and out of the degasser and to remove gases from the degasser. The tubing creates a risk of leaking, kinking, and occlusions. Using excess tubing also increases costs and space required for the system.


Hence, there is a need for systems that can direct fluid from a dialysate flow path into and out of a degasser without the use of complicated and unreliable tubing or fluid lines. The need extends to the removal of gases from the degasser. There is a need for systems that can accurately control the amount of gas removed by the degasser, and in particular carbon dioxide, without the use of tubing. To decrease costs and improve manufacturability, there is a need for systems that use manifolds, rather than fluid lines, to control fluid and gas movement into and out of the degasser.


SUMMARY OF THE INVENTION

The first aspect of the invention is drawn to a degasser manifold. In any embodiment, the degasser manifold can comprise a plurality of passageways fluidly connectable to one or more inlets and one or more outlets in a dialysis system; the one or more inlets comprising a first inlet fluidly connectable to a first fluid line, the first fluid line fluidly connectable to a dialysate flow path, and a second inlet fluidly connectable to a second fluid line; the second fluid line fluidly connectable to an outlet of a degasser; the one or more outlets comprising a first outlet fluidly connectable to an inlet of the degasser and a second outlet fluidly connectable to a third fluid line, the third fluid line fluidly connectable to the dialysate flow path downstream of the first fluid line.


In any embodiment, the degasser manifold can comprise a pressure sensor in a fluid passageway between the first inlet and the first outlet.


In any embodiment, the first inlet and first outlet can define a first fluid passageway.


In any embodiment, the degasser manifold can comprise a second fluid passageway from the second inlet to the first fluid passageway.


In any embodiment, the degasser manifold can comprise a second fluid passageway from the first fluid passageway to the second outlet.


In any embodiment, the second fluid line can comprise a first fluid pump.


In any embodiment, the degasser manifold can comprise a controller; the controller controlling the first fluid pump and a dialysate pump to control a ratio of fluid passing to the first outlet and second outlet.


In any embodiment, the controller can control the ratio of fluid passing to the first outlet and second outlet based on a fluid pressure measured by the pressure sensor in the fluid passageway and a gas pressure in the degasser.


In any embodiment, the controller can control the ratio of fluid passing to the first outlet and second outlet by controlling a ratio of pump rates of the first fluid pump and the dialysate pump.


Any of the features disclosed as being part of the first aspect of the invention can be included in the first aspect of the invention, either alone or in combination.


The second aspect of the invention is drawn to a method. In any embodiment, the method can comprise a) pumping a dialysate from a dialysate flow path into a first inlet of a degasser manifold; b) pumping a portion of the dialysate through a fluid passageway of the degasser manifold to a first outlet of the degasser manifold; wherein the first outlet of the degasser manifold is fluidly connected to an inlet of a degasser; c) pumping a portion of the dialysate through a fluid passageway of the degasser manifold to a second outlet of the degasser manifold; wherein the second outlet of the degasser manifold is fluidly connected to the dialysate flow path; and d) pumping fluid from an outlet of the degasser into a second inlet of the degasser manifold; wherein the second inlet of the degasser manifold is fluidly connected to the fluid passageway.


In any embodiment, the method can comprise the step of the step of measuring a fluid pressure with a pressure sensor in the fluid passageway.


In any embodiment, the method can comprise the step of controlling a ratio of fluid pumped to first outlet of the degasser manifold to fluid pumped to the second outlet of the degasser manifold based on the fluid pressure.


In any embodiment, the step of controlling a ratio of fluid pumped to first outlet of the degasser manifold to fluid pumped to the second outlet of the degasser manifold can comprise controlling a ratio of pump rates of first pump positioned between an outlet of the degasser and the second inlet and a second pump positioned downstream of the second outlet.


In any embodiment, the method can comprise the step of pumping gas from a gas outlet of the degasser to a first inlet of a vent manifold with a vacuum pump and from the first inlet of the vent manifold to a first outlet of the vent manifold.


In any embodiment, the method can comprise the step of selectively operating a valve positioned between the first inlet of the vent manifold and the first outlet of the vent manifold to control a gas pressure in the degasser.


In any embodiment, the step of selectively operating the valve can be performed by a controller.


Any of the features disclosed as being part of the second aspect of the invention can be included in the second aspect of the invention, either alone or in combination.


The third aspect of the invention is drawn to a system. In any embodiment, the system can comprise the degasser manifold of the first aspect of the invention; and a vent manifold; the vent manifold comprising a plurality of passageways fluidly connectable to one or more inlets and one or more outlets in a dialysis system; the one or more inlets comprising a first inlet fluidly connectable to a first fluid line and a first passageway, the first fluid line fluidly connectable to a gas outlet of the degasser; at least a first valve fluidly connecting the first inlet to a first outlet; the first outlet fluidly connected to a vacuum pump.


In any embodiment, the vent manifold can comprise a second valve; the second valve fluidly connecting a second inlet of the vent manifold to the first inlet; the second inlet connected to a filter.


In any embodiment, the vent manifold can comprise a second valve; the second valve fluidly connecting the first inlet to a second outlet; the second outlet fluidly connected to the dialysate flow path.


In any embodiment, the system can comprise a controller; the controller controlling the first valve to maintain a desired pressure in the degasser.


Any of the features disclosed as being part of the third aspect of the invention can be included in the third aspect of the invention, either alone or in combination.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a shows a schematic of a degassing module for use in sorbent dialysis configured to degas dialysate.



FIG. 1b shows a schematic of a degassing module for use in sorbent dialysis configured to allow air to be drawn into the system.



FIG. 2 shows a schematic of a degassing module for use in sorbent dialysis configured to degas dialysate utilizing a nucleation chamber.



FIG. 3 is a graph showing the outlet CO2 concentration in a degasser as a function of the absolute pressure in the degassing vessel.



FIG. 4 is a graph showing the outlet CO2 concentration in a degasser as a function of the flow rate in a system with a degasser at ambient pressure.



FIG. 5a is a graph showing the amount of dissolved CO2 removed by a degasser with a fluid pump upstream of the degassing vessel for two locations in a dialysis circuit.



FIG. 5b is a graph showing the change in pH of a fluid passing through a degasser with a fluid pump upstream of the degassing vessel for two locations in a dialysis circuit.



FIG. 6a is a graph showing the amount of dissolved CO2 removed by a degasser with a fluid pump downstream of the degassing vessel as a function of the dialysate flow loop flow rate.



FIG. 6b is a graph showing the change in pH of a fluid passing through a degasser with a fluid pump downstream of the degassing vessel as a function of the dialysate flow loop flow rate.



FIG. 7 is a graph showing the amount of dissolved CO2 removed by a degasser with a fluid pump downstream of the degassing vessel as a function of the degassing flow loop flow rate.



FIG. 8a is a graph showing the amount of dissolved CO2 removed by a degasser with a fluid pump downstream of the degassing vessel as a function of the vacuum level in the degassing flow loop.



FIG. 8b is a graph showing the change in pH of a fluid passing through a degasser with a fluid pump downstream of the degassing vessel as a function of the vacuum level in the degassing flow loop.



FIG. 9a is a graph showing the amount of dissolved CO2 removed by a degasser with a fluid pump downstream of the degassing vessel as a function of the CO2 concentration at the inlet of the degasser.



FIG. 9b is a graph showing the change in pH of a fluid passing through a degasser with a fluid pump downstream of the degassing vessel as a function of the pH at the inlet of the degasser.



FIG. 10 is a flow diagram showing the operation of the pumps in relation to the carbon dioxide present in the dialysate.



FIG. 11 is a flow diagram showing an alternative operation of the pumps in relation to the carbon dioxide present in the dialysate.



FIG. 12 is a schematic of a degassing system having a pressure sensor to measure the pressure within the degasser; and having control valves to alternately connect the vent port of the degassing vessel to an air inlet filter, a drain line for gas removal through a vacuum pump, or a dialysate flow path for recirculation of fluid.



FIG. 13 shows a degassing vessel with a degas sprayer entering through a top of the degassing vessel.



FIG. 14 shows a cross-sectional view of a degassing vessel.



FIGS. 15a-b show top and side views of a degassing vessel.



FIG. 16 shows a non-limiting embodiment of a spray nozzle for use in a degassing system.



FIGS. 17a-b show expected carbon dioxide levels entering a degassing system based on simulated treatments.



FIG. 18 illustrates a degasser manifold for use in a degassing system.



FIG. 19 illustrates a vent manifold for use in a degassing system.





DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the relevant art.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “comprising” includes, but is not limited to, whatever follows the word “comprising.” Thus, use of the term indicates that the listed elements are required or mandatory but that other.


The term “consisting of” includes and is limited to whatever follows the phrase “consisting of.” Thus, the phrase indicates that the limited elements are required or mandatory and that no other elements may be present.


The term “consisting essentially of” includes whatever follows the term “consisting essentially of” and additional elements, structures, acts or features that do not affect the basic operation of the apparatus, structure or method described.


The terms “control,” “controlling,” or “controls” can refer to the ability of one component to direct the actions of a second component.


A “controller,” “controller,” “processor,” or “microprocessor” is a device which monitors and affects the operational conditions of a given system. The operational conditions are typically referred to as output variables of the system wherein the output variables can be affected by adjusting certain input variables.


A “degasser” is a component for removing dissolved and undissolved gasses from fluids. The term “degasser” can encompass a degassing vessel, and a fluid pump and a vacuum pump connected to the degassing vessel and working in concert to create a vacuum in the fluid flowing through the degassing vessel and to evacuate gas from the degassing vessel.


A “degasser manifold” can refer to a component containing one or more fluid passageways and optionally one or more components such as valves and sensors. The degasser manifold can be used as part of a dialysis system for conveying fluid, gas, or a combination thereof, to and from a degasser.


The term “dialysate” describes a fluid into or out of which solutes from a fluid to be dialyzed diffuse through a membrane. A dialysate typically contains electrolytes close in concentration to the physiological concentration of electrolytes found in blood.


The term “dialysate flow loop,” “dialysate flow path” or “dialysate conduit flow path” refers to any portion of a fluid pathway that conveys a dialysate and is configured to form at least part of a fluid circuit for hemodialysis, hemofiltration, ultrafiltration, hemodiafiltration or ultrafiltration. Optionally, the fluid pathway can contain priming fluid during a priming step or cleaning fluid during a cleaning step.


A “dialysate pump” can be a pump configured to move fluid, gas, or a combination thereof through a dialysate flow path.


“Dialysis” can be a type of filtration, or a process of selective diffusion through a membrane. Dialysis removes solutes of a specific range of molecular weights via diffusion through a membrane from a fluid to be dialyzed into a dialysate. During dialysis, a fluid to be dialyzed is passed over a filter membrane, while dialysate is passed over the other side of that membrane. Dissolved solutes are transported across the filter membrane by diffusion between the fluids. The dialysate is used to remove solutes from the fluid to be dialyzed. The dialysate can also provide enrichment to the other fluid.


The term “dialysis system” can refer to a set of components configured to carry out dialysis therapy of any type including peritoneal dialysis, hemodialysis, hemofiltration, hemodiafiltration, or ultrafiltration.


The term “downstream” refers to a position of a first component in a flow path relative to a second component wherein fluid, gas, or combinations thereof, will pass by the second component prior to the first component during normal operation. The first component can be said to be “downstream” of the second component, while the second component is “upstream” of the first component.


A “filter” can refer to a component having openings or pores through which fluid, gas or a combination thereof, can pass, but that prevents particles larger than the pores or openings from passing through the filter.


The term “fluidly connectable” refers to the ability of providing for the passage of fluid, gas, or combination thereof, from one point to another point. The ability of providing such passage can be any connection, fastening, or forming between two points to permit the flow of fluid, gas, or combinations thereof. The two points can be within or between any one or more of compartments, modules, systems, components, and rechargers, all of any type.


The term “fluidly connected” refers to a particular state such that the passage of fluid, gas, or combination thereof, is provided from one point to another point. The connection state can also include an unconnected state, such that the two points are disconnected from each other to discontinue flow. It will be further understood that the two “fluidly connectable” points, as defined above, can from a “fluidly connected” state. The two points can be within or between any one or more of compartments, modules, systems, components, and rechargers, all of any type.


A “fluid line” can refer to a tubing or conduit through which a fluid, gas, or combination thereof can pass. The fluid line can also contain air during different modes of operation such as cleaning or purging of a line.


The term “fluid pressure” refers to a force exerted by a fluid on the walls of a container or conduit.


A “fluid pump” can refer to a pump used to move fluid, gas, or combination thereof throughout a system.


The term “gas outlet” refers to a portion of a component through which gas can be pulled out of the component in a fluid line, conduit, or fluid passageway of any type. In one non-limiting embodiment, the component can be a degasser or degas vessel.


The term “gas pressure” refers to a force exerted by a gas. The gas pressure can also refer to the pressure exerted by the gas on the walls of a container or conduit.


The term “inlet” can refer to a portion of a component through which fluid, gas, or combination thereof can be drawn into the component. In one non-limiting example, the component can be a manifold.


To “maintain a desired pressure” or “maintaining a desired pressure” refers to operating a system in such a way that the fluid or gas pressure in a component or conduit remains within a specified range.


The term “measuring” or “to measure” can refer to determining any parameter or variable. The parameter or variable can relate to any state or value of a system, component, fluid, gas, or mixtures of one or more gases or fluid.


The term “outlet” refers to a portion of a component through which fluid, gas, or a combination thereof can be pulled out of the component in a fluid line, conduit, or fluid passageway of any type. In one non-limiting embodiment, the component can be a manifold.


The term “passageway” refers to a fluid path through which fluid, gas, or combinations thereof can flow from one location to another location, where the passageway has walls to restrain the fluid or air within the passageway and the walls at least in-part surround the fluid or gas and connect the two locations.


The term “plurality” can refer to two or more of any type of object. In one embodiment, the term can be used to describe the existence of two or more components, systems, passageways, or fluid paths.


The terms “pumping” or to “pump” refer to moving a fluid, gas, or combinations thereof through a flow path with a pump.


“Pump rate” refers to a volume of a fluid, gas, or combinations thereof moved by a pump per unit time.


The term “pressure sensor” refers to a device for measuring the pressure of a gas, a fluid, or a combination thereof in a vessel, container, or fluid line.


The term “ratio of fluid” refers to relative amounts of fluid moving in differing flow paths.


The term “ratio of pump rates” refers to the relative amounts of fluid, gas, or combinations thereof moved by different pumps in a given amount of time.


The term “selectively operating” a valve refers to opening or closing the valve to create a specified fluid flow path.


The term “upstream” refers to a position of a first component in a flow path relative to a second component, wherein fluid, gas, or a combination thereof, will pass by the first component prior to the second component during normal operation. The first component can be said to be “upstream” of the second component, while the second component is “downstream” of the first component.


A “vacuum pump” is a pump used to create negative pressure in a component.


A “valve” is a device capable of directing the flow of fluid, gas, or combination thereof, by opening, closing or obstructing one or more pathways to allow the fluid, gas, or combination thereof to travel in a path. One or more valves configured to accomplish a desired flow can be configured into a “valve assembly.”


A “vent manifold” refers to a component containing one or more fluid passageways and optionally one or more components such as valves and sensors. The vent manifold can be connected to a gas outlet of a degasser in a dialysate flow path.


Degassing Vessel


The first, second and third aspects of the invention relate to a degasser and related systems and methods for removing gas, and specifically carbon dioxide, generated from the breakdown of urea in the sorbent cartridge. A degassing module in accordance with the first, second and third aspects of the invention is shown in FIG. 1a. The direction of dialysate flow is shown by the arrows. The degassing module can be placed in the dialysis circuit preferably at a point between the sorbent cartridge (not shown) and the dialyzer (not shown). The degassing module can have a degassing flow loop providing fluid flow that is in parallel to the dialysate flow path. The parallel configuration allows the fluid flow through the degassing loop to be independent of the fluid flow rate through the dialyzer such that the fluid flow rate through the degassing loop can be either less than or greater than the dialysate flow rate through the dialyzer. Thus, the parallel configuration provides control flexibility to adjust the degassing loop flow rate for optimal degassing without requiring the dialysate flow rate through the dialyzer to change. Alternatively, the fluid flow through the degassing module can be arranged in series with the dialysate flow to the dialyzer.


As the dialysate enters the degassing module, the dialysate can pass a degas restrictor 13 of FIG. 1a. The degas restrictor 13 can serve to restrict the flow of fluid through the degassing system. The degas restrictor 13 may be a narrow tube or any portion of the flow path that can be narrowed in a controlled fashion. For example, restriction can be provided by a portion of the flow path being crushable and having roller portions to create a portion of the flow path having a narrowed inner diameter to thereby restrict flow. Any other mechanical structures known to those of ordinary skill to restrict flow is also contemplated by the first, second and third aspects of the invention. The fluid pump 12, fluidly connected to the degas restrictor 13, pulls fluid through the degas restrictor 13, creating a reduced pressure in the degassing vessel 11 side of the degas restrictor 13. A vacuum can be created in the degassing vessel 11 side of the degas restrictor 13. A pressure sensor (not shown) can be placed after the degas restrictor 13 to determine the pressure of fluid in the degasser. Importantly, the fluid pump 12 of the present invention can be located downstream of the degassing vessel 11 to allow for improved removal of carbon dioxide. The vacuum that can be created by pulling the fluid through the degas restrictor 13 helps to draw dissolved gases, including carbon dioxide, out of solution by reducing the pressure of the fluid below the partial pressure of the dissolved gas in the liquid. The degas restrictor 13 need not be a separate component. Instead, the fluid inlet of the degassing vessel 11 can be narrow, and therefore operate as a flow restrictor. Vacuum pump 14 on the gas removal pump assembly 15 can be fluidly connected to the degassing vessel 11 by gas removal line 23 and can desirably remove the gases in the low pressure environment inside degassing vessel 11 via mechanical vent valve 20. The fluid enters the degassing vessel 11, by crossing through the base 25 of the degassing vessel 11 and through degas sprayer 18. However, there is no particular requirement of the first, second or third aspects of the invention for the fluid to enter or exit through the base. The degas sprayer 18 creates a thin spray or mist, which can increase release of dissolved gases from solution by increasing the surface area of liquid in contact with the low pressure atmosphere in the gas space 21 inside degassing vessel 11 to increase the rate at which gas can be liberated from the liquid. In certain embodiments, the fluid can enter the degassing vessel 11 at other locations than the base 25. For example, fluid can enter the degassing vessel 11 at a location on the side of the degassing vessel 11. The degas sprayer 18 can be positioned within the degassing vessel 11 so that the degas sprayer 18 is above the maximum fluid level 26. The degas sprayer 18 is optional and not required to remove carbon dioxide or other gases from the dialysate solution. Flow restrictions in degas sprayer 18 cause sufficient pressure reduction in the fluid and degas restrictor 13 is not required. Carbon dioxide and other gases collect in the gas space 21 of the degassing vessel 11 and leave the degassing vessel 11 through vent valve 10, positioned on a connector 33 fluidly connected to the degassing vessel 11. Although depicted as a 3-way valve, vent valve 10 can be any combination of one or more valves suitable for accomplishing the desired control of gas flow. In FIG. 1a, the pathways open in vent valve 10 are shown in black. Vacuum pump 14 on the gas removal pump assembly 15 is attached to the degassing vessel 11 by gas removal line 23, and provides the force necessary to move gases from the lower pressure degassing vessel 11 out into the atmosphere. The vacuum pump 14 exerts a vacuum that is greater than or equal to the vacuum created by the fluid pump 12 pulling fluid through the degas restrictor 13, which allows the removal of the accumulated gas from the degassing vessel 11.


The degassing vessel 11 of the first, second and third aspects of the invention can be operated at a pressure lower than atmospheric pressure due to the presence of vacuum pump 14. By maintaining the degassing vessel 11 at a pressure less than atmospheric pressure, carbon dioxide present in the fluid can be more easily removed than in the absence of the described system of pumps of the first, second and third aspects of the invention. The vent valve 10 can allow gas to leave directly into the atmosphere through filter 29, as represented by arrow 30. The filter 29 is a particle filter that serves to remove particulate matter from air flowing through filter 29. The gases may travel through gas removal line 23, to the gas removal pump assembly 15 and into the atmosphere as represented by arrow 24.


Vent valve 10 can be a three way valve, as shown in FIG. 1a. This can allow air to be removed from the degassing vessel 11 through the gas removal line 23, and also allow air to be drawn into the degas flow loop when fluid is being drained from the system. Overflow float 19 and mechanical vent valve 20 can provide a mechanism for an automatic shutdown, preventing fluid from leaving the degassing vessel 11 through the vent valve 10, but allowing air to be added or removed during filling or draining of the system. If the fluid level in the degassing vessel 11 reaches above a certain point, overflow float 19 can block, either directly or indirectly, the fluid from passing through mechanical vent valve 20. The maximum fluid level in the degassing vessel 11 can be shown by line 26, while the minimum fluid level can be shown by line 22. A degas float channel 27 can be used to ensure that the overflow float 19 properly engages with the mechanical vent valve 20. The degas float channel 27 can be placed directly underneath the mechanical vent valve 20 so that when the overflow float 19 rises to the top of the degassing vessel 11, the overflow float 19 will properly cover the mechanical vent valve 20. Alternatively, the float can move an actuator so that the mechanical vent valve 20 is closed. The degas float channel 27 can be made with a fluid permeable substance, such as mesh, so that fluid can still move freely through the degassing vessel 11. In certain embodiments, the function of the degas float channel 27 can be accomplished by a rod through the overflow float 19 wherein the rod is anchored to the degassing vessel 11. The overflow float 19 can be tethered to actuators (not shown). If the overflow float 19 rises, the tethers (not shown) can activate the actuators by pulling on the actuators to either shut off, or modulate the pump rate of, the vacuum pump 14 and fluid pump 12.


Lower level sensor 17 and upper level sensor 16 can sense the fluid level in the degassing vessel 11. The fluid level in the degassing vessel 11 can be a function of the vacuum created by fluid pump 12 and vacuum pump 14 working independently or in concert. The pump rate of the fluid pump 12 and vacuum pump 14 can be adjusted as necessary to maintain the correct fluid level in the degassing vessel 11. The lower level sensor 17 and upper level sensor 16 can be in electronic communication with a controller (not shown). The pump rates of the fluid pump 12 and vacuum pump 14 can be automatically adjusted by the controller to maintain the proper level of fluid in the degassing vessel 11. If the fluid level in the degassing vessel 11 is near or above the maximum fluid level 26, the pump rates of the fluid pump 12 can be increased, and/or vacuum pump 14 can be reduced. If the fluid level in the degassing vessel 11 is near or below the minimum fluid level 22, the pump rates of the fluid pump 12 can be reduced and/or vacuum pump 14 can be increased.


In certain embodiments, only one sensor is necessary to detect the fluid level in the degassing vessel 11. For example, an ultrasonic sensor or mechanical float can be used to determine the fluid level in the degassing vessel 11. Any other type of fluid level sensor known in the art is contemplated by the first, second and third aspects of the invention.


Carbon dioxide sensor 28 can determine the amount of carbon dioxide present in the dialysate flow path after dialysate has passed through the degasser. The pump rates of fluid pump 12 and vacuum pump 14 can be adjusted as discussed below in response to signals received from the carbon dioxide sensor 28 in order to remove more or less carbon dioxide from the dialysate, and therefore deliver more or less carbon dioxide to the main dialysate flow path. The pumps can be adjusted automatically if the level of carbon dioxide detected in the dialysate by carbon dioxide sensor 28 is higher or lower than a pre-set value. Alternatively, the pumps can be adjusted manually in response to output from the carbon dioxide sensor 28. The system can control the degasser to maintain a carbon dioxide level in fluid exiting the degasser between any of 50 and 200 mmHg partial pressure, 50 and 120 mmHg partial pressure, 50 and 80 mmHg partial pressure, 70 and 100 mmHg partial pressure, 80 and 120 mmHg partial pressure, 50 and 200 mmHg partial pressure, or 100 and 200 mmHg partial pressure. The carbon dioxide sensor 28 can be placed anywhere in the dialysate flow path, but preferably between the outlet of the degassing flow path and the inlet of the dialyzer (not shown). One of skill in the art will understand that the carbon dioxide sensor 28 can be any components capable of measuring the carbon dioxide in a fluid, directly or indirectly.


Carbon dioxide sensors and sensors are known in the art. Examples include non-dispersive infrared (NDIR) detectors that detect carbon dioxide concentration in a gas and which are commercially available from a number of manufacturers, for example Gas Sensing Solutions, Glasgow Scotland; colormetric optical detectors that detect carbon dioxide in a liquid by means of a substrate that produce color change when the concentration of carbon dioxide in the liquid changes (PreSens Precision Sensing GmbH, Regensburg Germany); and sensors that utilize Severinghaus electrodes, such as the InPro CO2 sensor from Mettler Toledo, Leicester England.


The pumps of the degassing module can be of any type known in the art. In certain embodiments, fluid pump 12 and vacuum pump 14 can be the same type of pump. Alternatively, fluid pump 12 and vacuum pump 14 may be different types of pumps. In certain embodiments, the fluid pump 12 and vacuum pump 14 can be a gear pump. Alternatively, fluid pump 12 and vacuum pump 14 can be a peristaltic pump, a diaphragm pump or an impeller pump. Fluid pump 12 can also have a sensor 31 attached to the fluid pump 12 to monitor performance of the fluid pump 12 and detect wear. The fluid pump 12 must be selected for operating with the pump inlet at a low absolute pressure necessary to efficiently remove carbon dioxide.


Flow of fluid through the degassing module can be variable. Control over the flow can be provided by fluid pump 12. Under certain operating conditions the flow rate provided by fluid pump 12 can be less than the flow rate through the main dialysate loop. Fluid pump 12 can be operated so that flow through the degassing module is significantly greater than flow through the main dialysate loop. Fluid pump 12 can be operated to move fluid through the degassing flow loop at a rate of 2-3 times that of the dialysate flow path. Alternatively, the fluid pump 12 can be operated to move fluid through the degassing flow loop at a rate between 1-6 times that of the dialysate flow path, 1-2 times that of the dialysate flow path, 3-4 times that of the dialysate flow path, 4-5 times that of the dialysate flow path or 5-6 times that of the dialysate flow path. The flow through the degassing module can be controlled automatically by a controller in communication with the fluid pump 12 depending on the amount of carbon dioxide that is to be removed.


The invention can utilize the vacuum pump 14 to remove gas from the degassing vessel 11 to the atmosphere when the degassing vessel 11 is operated under vacuum. Known degassing systems pump fluid into a vessel at ambient pressure where bubbles are allowed to escape. However, providing a second pump or any one of the specific pump configurations described in the first, second and third aspects of the invention to keep a degassing vessel 11 under vacuum can unexpectedly result in higher amount of gases such as carbon dioxide being removed.


The passage from the degassing vessel 11 to vent valve 10 can be covered by a hydrophobic membrane (not shown). A hydrophobic membrane will prevent fluid from escaping the degassing vessel 11 through mechanical vent valve 20. This, in turn, protects the vacuum pump 14 from being damaged by liquid and prevents undesired loss of liquid from the system while still enabling gas to be removed. The hydrophobic membrane can be positioned in any appropriate location to guard against inadvertent fluid flow to the vacuum pump 14, and thereby prevent fluid damage. One example of a hydrophobic membrane is Polytetrafluoroethylene, or PTFE. However, the hydrophobic membrane can be made of any material.


During draining of the dialysis system of the first, second and third aspects of the invention, air can be drawn into the system in order to drain out the fluid in the fluid pathways of the system. Air can be added to the system through vent valve 10 as shown in FIG. 1b. In FIG. 1b, the pathways of vent valve 10 that are open are shown in black. Air can be passed through filter 29, which can remove any particulate matter and microorganisms before the air enters the dialysis system, and into the degassing vessel 11 through vent valve 10. Fluid pump 12 can force this air into the dialysate flow path (not shown).


As shown in FIG. 2, the function of the degas sprayer can be replaced by a nucleation chamber 32. Nucleation chamber 32 contains a high surface area medium, such as fiber mesh, filter or beads, or other configuration known to those of ordinary skill. The high surface area provides sites where gas bubbles can nucleate and collect to form larger bubbles, making removal of the gases more efficient. The bubbles rise through the fluid as the fluid enters the degassing vessel 11 and collect at the gas space 21, similar to what is shown in FIG. 1a. The nucleation chamber 32 can be placed inside of the degassing vessel 11, so that fluid moves through the nucleation chamber 32 as the fluid moves through the degassing vessel 11 and gas bubbles, once freed from the high surface area medium in the nucleation chamber 32, are immediately collected in the gas space 21 of the degassing vessel 11.


In certain embodiments, both a nucleation chamber and a degas sprayer can be used. Such an arrangement can further help gas to be released from solution to collect at the top of the degassing vessel 11. However, in certain embodiments, only one of a degas sprayer or nucleation chamber can be used.



FIG. 3 is a graph showing the CO2 outlet concentration, stated as partial pressures, at the outlet of the degasser as a function of the absolute pressure in the degassing vessel 11 for a variety of CO2 inlet concentrations, stated as partial pressures. The block labeled 130 is a desired operating CO2 concentration, expressed as a partial pressure, of between 50 and 120 mmHg. The absolute pressure in the degassing vessel 11 shown in FIGS. 1 and 2 is a function of the fluid pressure, determined by the pump rate of the fluid pump 12, and the vacuum pressure, determined by the pump rate of the vacuum pump 14. By controlling the two pumps, the pressure in the degassing vessel 11 can be accurately controlled. As shown in FIG. 3, the degasser of the first, second and third aspects of the invention is capable of removing enough CO2 to maintain a carbon dioxide level at the outlet of the degasser between 50 and 120 mmHg for a large range of inlet CO2 concentrations and dialysate flow rates. A degassing vessel pressure of between 60 and 200 mmHg absolute pressure can allow for optimal CO2 removal across a range of inlet CO2 concentrations and dialysate flow rates. In certain embodiments, degassing vessel pressure of between any of 40 mmHg and 2000 mmHg, 40 mmHg and 300 mmHg, 40 mmHg and 100 mmHg, 80 mmHg and 150 mmHg, 120 mmHg and 250 mmHg or 200 mmHg and 300 mmHg, can allow for optimal CO2 removal. The desired outlet concentration of CO2 can be obtained for the entire range of inlet CO2 concentrations and flow rates tested by adjusting the pump rates of the two pumps to arrive at the necessary degassing vessel pressure. The vacuum pump 14 may be shut off if the CO2 concentration is below the lower limit. In such cases, the pressure in the degassing vessel 11 will be the same as the pressure of the dialysate fluid, which can be up to 2000 mmHg.



FIG. 4 provides comparative data for known systems operating at ambient pressures showing an outlet CO2 concentration, stated as partial pressure, in a system that does not use a vacuum pump as in the first, second and third aspects of the invention. Because no vacuum pump is used in known systems, and the known degassing vessels are not able to operate at low absolute pressures, the amount of CO2 removed is limited by the need to maintain sufficient pressure in the degassing vessel to vent the released gas. As can be seen in FIG. 4, a degasser without a degassing vessel under vacuum can only operate to obtain an outlet CO2 concentration of between 50 and 120 mmHg when the inlet concentration of CO2 is around 200 mmHg or below.


As shown in FIGS. 5 and 6, the addition of the fluid pump downstream from the degassing vessel can be important to the first, second and third aspects of the invention. By placing the fluid pump downstream of the degas vessel, the efficiency of removing CO2 was increased. FIG. 5a shows the amount of CO2 removed from dialysate without operating the degas vessel under vacuum by means of a fluid pump placed downstream of the degas vessel. FIG. 5b shows the change in pH in the same system. By contrast, FIGS. 6a and 6b show the amount of CO2 removed, and the effect on pH, in the same system with a fluid pump added downstream of a degassing vessel, shown for a dialysate flow path flow rate from 150 mL/min to 500 mL/min. As can be seen in FIGS. 6a and 6b, by adding the fluid pump to a downstream location, between ⅓ and ⅔ of CO2 can be removed, depending on the dialysate flow rate. By contrast, as shown in FIGS. 5a and 5b, much less CO2 is removed when the fluid pump is placed upstream of a degas vessel.


As can be seen in FIG. 5, the location of the degasser upstream or downstream with respect to a microbial filter does not alter the amount of CO2 removed. The described configuration with degasser upstream of the microbial filter can provide for the removal of gas from the dialysate prior to reaching the microbial filter, and thereby advantageously reduce gas accumulation in the microbial filter.



FIG. 7 shows the amount of CO2 removed as a function of the rate of flow through the degassing flow loop. In all runs shown in FIG. 7 the dialysate flow rate was 600 mL/min. As is shown, the amount of CO2 removed can increase as the flow rate through the degassing flow loop increases.



FIGS. 8a and 8b show the amount of CO2 removed, and the effect on pH, as a function of the absolute pressure in the degassing flow loop. In these trials, the dialysate flow rate and degassing flow rate were held constant at 300 mL/min. As can be seen, more CO2 is removed as the absolute pressure in the degassing flow loop is reduced. As is shown in FIGS. 8a and 8b, the degassing flow loop pressure can have a linear relationship with outlet CO2 concentration. The pressure in the degassing flow loop, and in the degas vessel in particular, can be affected by the action of the fluid pump pulling fluid through the degas flow restrictor and the vacuum pump acting to remove the released gases from the degassing vessel. The action of the vacuum pump allows released gases to be vented from the degas vessel when the degas vessel is operated at pressures substantially below ambient. This, in turn, can allow for the removal of additional CO2.


The outlet CO2 concentration can be dependent on the inlet CO2 concentration, the fluid pressures within the degassing flow loop, and the rates of flow through dialysate flow path and the degassing flow loop. The dialysate flow path and the degassing flow loop can operate in parallel or in series. FIGS. 9a and 9b show the amount of CO2 removed, and the effect on pH with differing inlet CO2 concentrations. In all trials, the flow rates through the dialysate flow path and degassing flow loop were held at 300 mL/min and the degassing loop fluid pressure was held constant at 630 mmHg vacuum. As can be seen, the outlet CO2 concentration is not significantly affected by large changes in the inlet CO2 concentration. In all cases, the outlet CO2 concentration was reduced to between 75-85 mmHg, despite the variations in inlet CO2 concentrations.



FIG. 10 shows a flow diagram, explaining one non-limiting embodiment of the operation of the vacuum pump and fluid pump of the first, second and third aspects of the invention in relation to the data received from the CO2 sensor. In FIG. 10, both the vacuum pump and the liquid pump may be operated simultaneously. Data received from the CO2 sensor 111 is transmitted to controller 112. If the CO2 concentration detected by the CO2 sensor 111 is within the desired range in step 117, the controller 112 can continue operating the pumps in the same manner in step 113. If the CO2 concentration detected by the CO2 sensor 111 is too low 118, the controller 112 can do either of two options. The controller 112 can cause the fluid pump to decrease the flow rate in the degassing flow loop in step 114, causing the absolute pressure of the fluid in the degassing loop to increase and thereby reduce the amount of CO2 removed by the degasser as shown in FIGS. 3 and 7. Step 114 can alternatively involve that the fluid pump is shut off completely, thereby stopping the removal of CO2 from the dialysate. Alternatively, the controller 112 can decrease the pump rate of, or shut off completely, the vacuum pump in step 115. In certain embodiments, both steps 114 and step 115 can be carried out in response to a signal showing the CO2 level to be too low. Decreasing the pump rate of the vacuum pump, or shutting the vacuum pump off completely, will result in less gas being removed from the degas vessel. If the CO2 concentration detected by the CO2 sensor 111 is too high 119, the controller 112 can cause the fluid pump to increase the flow rate through the degassing flow loop in step 116, and thereby increase the amount of CO2 removed by the degasser as shown in FIGS. 3 and 7. The controller 112 can increase the pump rate of the vacuum pump in step 110, to remove the increased amount of gas being released from solution when the flow rate through the fluid pump is increased 116 which also enables the proper liquid level to be maintained in the degas vessel when the pressure within the degas vessel is reduced and causes the removal of more CO2. Steps 116 and 110 can both be carried out in response to a signal showing that the CO2 concentration is too high. Regardless of the action taken in response to the data received by the CO2 sensor 111, the CO2 concentration in the dialysate can be continuously monitored, as represented by arrow 120, and further adjustments to the rate of the fluid pump can be made as the CO2 concentration in the dialysate changes. The vacuum pump may run continuously with the exception of step 115, to draw out the CO2 from the degas vessel as the CO2 accumulates.



FIG. 11 shows an alternative embodiment to that shown in FIG. 10, where the vacuum pump and fluid pump are run alternately. The fluid pump can be operated to pull fluid through the degassing flow loop. Data is sent from the CO2 sensor 121 to the controller 122 showing the CO2 concentration in the dialysate. While the CO2 concentration in the dialysate is above the desired range 123, the fluid pump can be operated as explained above to remove CO2 from the dialysate. The CO2 concentration can be continuously monitored as the fluid pump operates, as shown by arrow 128. Once the CO2 concentration has decreased into the desired range 127, the controller 112 can cause the fluid pump to shut off 124. Simultaneously, the vacuum pump can be turned on 125 to remove the gases that have collected in the degas vessel. While the fluid pump is shut down, the CO2 concentration in the dialysate will increase, due to the fact that dialysate is not being directed through the degasser, and will be monitored as shown by arrow 129. When the CO2 concentration has risen 126 to a desired range 123, the fluid pump can again be operated and the vacuum pump shut off.


The controller can set initial pump rates for both the vacuum pump and fluid pump based on the initial carbon dioxide concentration in the dialysate. For example, if the initial carbon dioxide concentration in the dialysate is 415 mmHg partial pressure, the fluid pump and vacuum pump may be set to maintain an absolute pressure in the degas vessel of 100 mmHg. As shown in FIG. 3, this would allow for an outlet CO2 concentration of between 50-120 mmHg partial pressure. If, during operation, the concentration of carbon dioxide were to become reduced to 117 mmHg partial pressure, the controller can alter the pump rates of the fluid pump and/or vacuum pump as described above to maintain an absolute pressure in the degas vessel of 190 mmHg. As shown in FIG. 3, this would maintain a carbon dioxide level above 50 mmHg partial pressure.


In certain embodiments, the degasser can be located in a fluid flow path in a position directly after the sorbent cartridge. The position of the degasser, however, is not limited to any one position. Alternatively, the degassing module may be located in other positions between the sorbent cartridge and the dialyzer.


To make use of the dialysis system of the first, second and third aspects of the invention easier, the valves and pumps may be operated by a programmable controller or computer system that can be programmed to regulate flow through the pumps and valves and into and out of the reservoirs. A rotometer or turbine with optical sensor, photocell, magnetic sensor, or other flow sensing apparatus may detect the flow of fluid through any two points in the degassing system. For example, an optical fluid flow device can be provided for measuring flow wherein the device includes an optical fluid pressure measuring device having sensors positioned in any one of the flow paths between the reservoirs, in the connectors, or in the valves or valve assemblies. The optical fluid sensors described above can be connected to an interferometer associated with an opto-electronic demodulator which has an output signal representing the differential pressure between the two sensed areas. In certain embodiments, a flow sensing apparatus can have a flow-responsive element projecting into a fluid flow path, and a position sensor associated with the element which detects a change in position of the flow-responsive element in response to the fluid flow. The flow-responsive element can be made of a wide variety of materials having the desired properties known to those of ordinary skill in the art.


The reader is directed to FIG. 8a, which demonstrates the relationship between the pressure in the degasser and the concentration of dissolved carbon dioxide in the fluid that has passed through the degasser, and also to FIG. 9a, which demonstrates that the carbon dioxide concentration in the fluid that has passed through the degasser remained constant in a tight range when the carbon dioxide concentration in the fluid entering the degasser was more than doubled. As illustrated in FIG. 8a and FIG. 9a, the operating pressure of the degasser can be used to control the concentration of carbon dioxide in the fluid exiting the degasser.


Referring to FIG. 12, a description is provided of how the concentration of dissolved carbon dioxide in the dialysate can be controlled by controlling the operating fluid pressure in the degasser to a predetermined level. Blood enters dialyzer 50 as shown by arrow 51 and exits the dialyzer 50 as shown by arrow 52. Dialysate recirculating in dialysate flow path 55 enters the dialyzer 50 at connector 54 and exits the dialyzer 50 at connector 53 with urea that has been removed from the blood. The dialysate is pumped by dialysate pump 49 through valve 47 and through sorbent cartridge 48 where the urea is removed from the dialysate by an exchange process that results in carbon dioxide being added to the dialysate as the dialysate flows through sorbent cartridge 48. The dialysate exiting the sorbent cartridge 48 is drawn into the degassing system by action of fluid pump 12 through inlet line 65. The dialysate passes through degas flow restrictor 67 where the fluid pressure is reduced by the pressure drop that occurs as the dialysate flows through the degas flow restrictor 67. The dialysate enters degassing vessel 68 and passes through optional degas sprayer 18 that acts to increase the surface area of the liquid and thereby increase the rate at which the dissolved carbon dioxide is released from the fluid to the gas space 21 at the top of the degassing vessel 68. Carbon dioxide gas is collected in the gas space 21 and the degassed fluid is collected in the liquid space of degassing vessel 11. Gas bubbles in the liquid rise to be collected in gas space 21 and the liquid exits the base 25 of degassing vessel 68 and passes through fluid pump 12 and is returned to the recirculating dialysate flow path 55 through return line 66.


The released gas can exit the degassing vessel 68 at outlet connector 33 and pass through vent line 63 to vent control valve 40 through outflow line 42 to outflow valve 41. During degassing, outflow valve 41 directs the flow path to gas removal pump assembly 15 through gas removal line 64. Vacuum pump 14 pulls the gas from the low pressure environment of degassing vessel 68 and pumps the gas out through degassing outlet line 43. Degassing outlet line 43 can optionally be connected to drain line 46. Connecting degassing outlet line 43 to drain line 46 muffles the noise of the vacuum pump 14 and directs any condensed water vapor to reservoir 60 through drain line 46 and connector 59. The removed gas flows out of reservoir 60 through vent 58.


Level sensor 61 can measure the liquid level 26 in degassing vessel 68. Level sensor 61 can be an ultrasonic sensor. Level sensor 61 can be an array of reed switches that detect the height of a magnetic float. Level sensor 61 can include a linear array of hall-effect sensors. The rate of vacuum pump 14 can be increased to increase the liquid level 26 when level sensor 61 detects that the liquid level 26 is below a predetermined level. The rate of vacuum pump 14 can be reduced when the level sensor 61 detects that the liquid level 26 is above a predetermined level. The vacuum pump 14 can act as a check valve preventing air or liquid from returning to the degasser through degassing outlet line 43, but can allow gas outflow from the degasser through degassing outlet line 43 including when the gas removal pump is de-energized or turned off Air can be rapidly evacuated from the dialysate flow path 55 through outlet connector 33, vent line 63, vent control valve 40, degassing outflow valve 41 and gas removal pump assembly 15 and degassing outlet line 43 during priming operations when the liquid entering the dialysate flow path 55 causes the pressure to increase, forcing the air in the gas space 21 of degassing vessel 68 through outlet connector 33 when the pressure in gas space 21 is greater than atmospheric pressure.


Vent control valve 40 can be switched to filter 29 and air can be drawn into the degassing vessel 68 as depicted by arrow 45 when liquid is being drained from the recirculating dialysate flow path 55 through drain valve 47 through drain line 46 and connector 59 to reservoir 60. Filter 29 can have a pore size that excludes microbes and particulate to prevent contamination of the system when air is drawn in.


During flushing, cleaning and disinfection of the dialysis system, degassing vessel 68 can be completely filled with liquid and liquid can be passed out through outlet connector 33 through vent line 63, vent control valve 40, and degassing outflow valve 41 to recirculation line 44. This flow path enables cleaning and disinfection solutions, including the non-limiting examples of hot water, heated citric acid solution, and bleach to be recirculate through the outlet connector 33, vent line 63, and vent control valve 40. In this manner microbiological contamination and biofilms can be minimize in the degassing vessel 68 and also in the flow path used to bring air into the system when liquid is being drained from the system.


The flow restrictor 67 can have a fixed restriction, or can comprise a pressure regulator that changes the amount of flow restriction as the pumping rate of fluid pump 12 changes, such that a predetermined pressure is maintained in the dialysate exiting the restrictor across a range of operating rates of fluid pump 12. The amount of restriction caused by flow restrictor 67 can be controlled to achieve a predetermined pressure in the fluid passing through the degasser.


Pressure sensor 62 can measure the fluid pressure in the degassing system. Pressure sensor 62 can be located on the degassing vessel 11 and can measure the pressure in the liquid or the gas. Pressure sensor 62 can be located at any point in the degasser between the flow restrictor 67 and fluid pump 12. The pressure measurement obtained from pressure sensor 62 can be used to adjust the restriction of flow restrictor 67 to obtain a predetermined pressure in the degassing system. The rate of fluid pump 12 can be controlled to achieve a predetermined fluid pressure in the degassing system. The rate of fluid pump 12 can be increased to reduce the fluid pressure in the degasser if the fluid pressure measured by pressure sensor 62 is above the predetermined pressure. The rate of fluid pump 12 can be decreased to increase the fluid pressure in the degasser if the fluid pressure measured by pressure sensor 62 is below the predetermined fluid pressure.


In FIG. 12, an alternative control scheme can be employed in any embodiment of the invention, wherein the pressure in the gas space 21 can be controlled by vacuum pump 14. The pressure in the gas space 21 can be measured by pressure sensor 62 and a controller can adjust the rate of vacuum pump 14 to keep the pressure in gas space 21 at a predetermined level. In this alternative control scheme, the rate of fluid pump 12 can be increased to decrease the liquid level 26 in degassing vessel 68 or the rate of fluid pump 12 can be decreased to increase the liquid level 26 in degassing vessel 68. In this scheme, liquid level measurements from level sensor 61 can be used to determine whether the rate of fluid pump 12 should be increased or decreased. Those of skill in the art will note that the rate of fluid pump 12 can be maintained at a constant rate while increasing the amount of flow restriction caused by flow restrictor 67 to decrease the liquid level 26 in degassing vessel 68 or decreasing the amount of flow restriction caused by flow restrictor 67 to increase liquid level 26 in degassing vessel 68.



FIG. 13 is an alternative degassing system for use in dialysis that reduces foaming. During treatment, dialysate is pumped from a dialyzer (not shown) through dialysate line 201. Dialysate can enter degassing vessel 206 through a fluid inlet, shown as degas sprayer 207, which enters the degassing vessel 206 through a top portion 208 of degassing vessel 206. In certain embodiments, a fluid inlet can be located at the bottom of the degassing vessel 206 or at any other location relative to the degassing vessel 206. An internal conduit or passageway can convey the fluid to the degas sprayer 207 at the top of the degassing vessel 206. The top portion 208 of the degassing vessel 206 can also be referred to as the “headspace.” The degas sprayer 207 sprays dialysate downwardly into the degassing vessel 206. Foaming can be controlled by spraying downwardly onto a liquid pool in the degassing vessel 206. The downward spray cuts the upward growth of foam, as described. The degassing vessel 206 can be separated into a spray chamber 210 and a float chamber 209 by separator 229. A channel (not shown) can be included in separator 229 to allow fluid to move from the spray chamber 210 to the float chamber 209 to provide an accurate reading on fluid level. Any fluid connections in addition to a channel such as a passageway or other means to equilibrate the fluid level between the spray chamber 210 and a float chamber 209 is contemplated. In a preferred embodiment, the fluid connections connecting the spray chamber 210 and the float chamber 209 are located in a lower portion of the degassing vessel 206. The float chamber 209 can include one or more level sensors. As illustrated in FIG. 13, the level sensor can include a magnetic float 231 on guide 230. A linear array of Hall effect sensors (not shown) can be included to measure the level of the float 231 and determine the fluid level in the degassing vessel 206. In certain embodiments, the float 231 can be magnetic, and a linear array of Hall effect sensors can measure the height of the float directly. Alternatively, a magnet can be affixed to the float 231. In alternative embodiments, the level sensors can include a capacitive or ultrasonic sensor to measure the height of the liquid directly. An ultrasonic sensor emits an ultrasonic wave and measures the distance to the liquid based on the time between emission of the wave and detection of the wave reflected back by the liquid. A capacitive sensor measures distance to the liquid by measuring changes in capacitance as the liquid moves closer to or further away from the sensor. The height of the fluid in the degassing vessel 206 can be controlled to within a predetermined range to ensure that the liquid level is below the degas sprayer 207, ensuring that the degas sprayer 207 nozzle is exposed and that atomized fluid is exposed to the low pressure in the top portion 208 of the degassing vessel 206. The fluid level should also remain low enough that loss of liquid through the gas outlet line 217 is prevented, and high enough such that undissolved gas bubbles in the liquid are separated and captured.


Fluid can be sprayed into the spray chamber 210 of the degassing vessel 206. Gas can be removed from the fluid through a gas outlet fluidly connected to gas outlet line 217. A gage pressure sensor 216 in the gas outlet can measure the pressure inside the degassing vessel 206. Gas bubble nucleation can occur as the fluid is sprayed into the spray chamber 210. Before the gas bubbles can exit the degassing vessel 206, the gas bubbles rise through the liquid and are captured and collected in a headspace of the degassing vessel 206. Bubble capture can be ensured when the downward velocity of the liquid in the degassing vessel 206 is less than the rise velocity of the bubbles through the liquid. The degas sprayer 207 atomizes the fluid and creates a high surface area to volume ratio between the liquid droplets and gas in the degas vessel headspace. In certain embodiments, vacuum pump 218 is used to lower the pressure in the degassing vessel 206, and is fluidly connected to gas outlet line 217 by valve 219 and vacuum line 220 and can be controlled by a controller to maintain a desired pressure within the degassing vessel 206. In a preferred embodiment, the vacuum pump 218 is continuously run at a high rate, and the controller can pulse width modulate valve 219 to control the pressure in the degassing vessel 206 to a desired target. The removed gases are expelled through gas line 221, which can be vented to the air, or alternatively, connected to a waste reservoir.


Degassed fluid can exit the degassing vessel 206 through a liquid outlet 212 in a base 211 of the degassing vessel 206, fluidly connected to fluid line 204. The liquid outlet 212 is located at a lower elevation in the degassing vessel 206 than the gas outlet at gas outlet line 217. Fluid can be pumped by fluid pump 213, through fluid line 205, and back to dialysate line 201 at junction 227. The fluid pump 213 provides the force necessary to move fluid from the low pressure degassing vessel 206 to the higher pressure in dialysate line 201. The fluid lines 204, 205, and 201, with degassing vessel 206, form a degassing flow path that is parallel to a main dialysate flow path. Fluid can be pumped from the degassing flow path at junction 232 into the main dialysate flow path through fluid line 203 by dialysate pump 214 into dialysate line 202. The flow rate of fluid through the main dialysate flow path can be controlled by dialysate pump 214, and optionally one or more additional dialysate pumps. As such, the flow rate of fluid through the degassing flow loop can be controlled independently of the flow rate of fluid in the main dialysate flow path. By operating fluid pump 213 at a higher pump rate than dialysate pump 214, fluid can be recirculated through the degassing vessel 206 multiple times prior to returning to the main dialysate flow path, allowing additional control over the amount of gas removed. The rate of liquid recirculation through the degassing vessel 206 can help to ensure sufficient exposure to the headspace of the degassing vessel 206 so that dissolved gases in the liquid come into equilibrium with the gas partial pressures in the degassing vessel 206. In certain embodiments, the flow rate of fluid through the degassing flow loop can be set to about two times the dialysate flow rate. The fluid pump 213 and dialysate pump 214 can be controlled by a controller (not shown) to operate at the desired ratio.


A vent valve 223 fluidly connected to the gas outlet line 217 can be controlled to allow air into the degassing vessel 206 when the degassing vessel 206 is drained. Filter 224 prevents contamination of the degassing vessel 206, and can have a pore size that excludes microbes and particulate matter to prevent contamination of the system when air is drawn in through vent valve 223. During flushing, cleaning and disinfection of the dialysis system, degassing vessel 206 can be completely filled with liquid and liquid can be passed out through gas outlet line 217 through valve 225 and fluid line 226, to dialysate line 202 at junction 228. The flow path enables cleaning and disinfection solutions, including the non-limiting examples of hot water, heated citric acid solution, and bleach to be recirculate through all of the lines of the degassing system. In this manner, microbiological contamination and biofilms can be minimized in the degassing vessel 206 and also in the flow path used to bring air into the system when liquid is being drained from the system. A temperature sensor (not shown) can be included to monitor the temperature during disinfection, and to measure the temperature of dialysate prior to reaching a heater (not shown) in the dialysate flow path. An ambient pressure sensor 222 can measure the atmospheric pressure outside of the degassing system, and is used in control of gas removal from the fluid.


During treatment, the degassing system should control carbon dioxide removal to maintain a carbon dioxide level within a desired range. In certain embodiments, the desired range can be between 40 mmHg-150 mmHg pCO2. The concentration of the dissolved gases in the dialysate exiting the degassing vessel 206 are proportional to the absolute partial pressures of the gas in the top portion 208, and as such, the environmental pressure as measured by ambient pressure sensor 222 can be used to control the gas pressure within the degassing vessel 206. Ambient pressure sensor 222 measures the absolute pressure of the environment outside of the degassing vessel 206. Gage pressure sensor 216 measures a gage pressure referenced to the ambient pressure sensor 222. The pressure as measured by ambient pressure sensor 222 plus the gage pressure measured by gage pressure sensor 216 provides the absolute pressure in the top portion 208 of the degassing vessel 206. Alternatively, the gage pressure sensor 216 can be replaced by an absolute pressure sensor, and the ambient pressure sensor 222 is not required. The dialysate flow rate also controls the amount of gas removed. In certain embodiments, the dialysate flow rate through the degassing flow loop can be between 100 mL/min to 800 mL/min. In certain embodiments, the dialysate flow path can include a heater (not shown) to heat the dialysate to a desired temperature prior to reaching the dialyzer. The degassing flow loop can be positioned either upstream or downstream of the heater. The degassing system should be able to operate over the entire possible range of dialysate temperatures. When positioned downstream of the heater, the dialysate temperature in the degassing flow loop should be between about 35° C. to about 39.5° C. When positioned upstream of the heater, the possible temperature range of dialysate in the dialysate flow path can be larger, including from between about 10° C. to about 45° C.


The amount of gas removed by the degassing system is a function of the absolute headspace pressure in the degassing vessel 206, as well as the degassing flow loop flow rate. In some embodiments, the headspace pressure of the degassing vessel 206, an estimated degasser inlet carbon dioxide concentration is used, as described. In a preferred embodiment, the size and flow rate through the degassing flow loop and degas sprayer 207 is sufficient to ensure that dissolved gases in the liquid exiting the degassing vessel 206 through fluid line 204 are in approximate equilibrium with the gas partial pressure in the top portion 208, or headspace, of the degassing vessel 206. When the dissolved gases in the liquid are in approximate equilibrium with the gas partial pressure in the top portion 208 of the degassing vessel 206, the carbon dioxide pressure can be controlled by controlling the absolute headspace pressure. As such, the carbon dioxide pressure can be controlled across a very wide range of inlet carbon dioxide pressures. The headspace pressure can be controlled to a predetermined target, irrespective of the estimated carbon dioxide concentration in the liquid entering the degassing vessel through dialysate line 201. In certain embodiments, the vacuum pump 218 is operated by the controller at a fixed rate. The absolute headspace pressure in the degassing vessel 206 is equal to the degassing vessel pressure as measured by gage pressure sensor 216 plus the atmospheric pressure as measured by absolute ambient pressure sensor 222. Valves 219 and 223 can be selectively operated by the controller to allow the vacuum pump 218 to remove air from the degassing vessel 206 or to allow air to flow into degassing vessel 206, thereby controlling the headspace pressure to the headspace pressure set point. In certain embodiments, the estimated degasser inlet carbon dioxide concentration can vary as a profile during a dialysis session, and as such, the headspace pressure set point can also vary during treatment. The degassing flow loop flow rate can be controlled by using a fixed pressure change to achieve a desired flow rate. The pressure change can be measured by the difference between the incoming fluid pressure as measured by pressure sensor 215 and the pressure within the degassing vessel 206 measured by gage pressure sensor 216. Using the fixed pressure change, a pressure change set point can be set, and the fluid pressure at pressure sensor 215 varied by changing the fluid pump 213 rate until the pressure change set point is reached. In certain embodiments, the relationship between the pressure change and the flow rate can be empirically determined. Alternatively, the relationship can be calculated using an algorithm. The degassing flow loop flow rate should be set at a rate sufficient to ensure the dialysate comes into approximate equilibrium with the gas pressures in the degassing vessel 206, but low enough to avoid over degassing, erratic level behavior, or excess foam generation. In certain embodiments, the degassing flow loop flow rate can be set between 750 and 800 mL/min. Over degassing with a degassing flow loop flow rate of ˜800 mL/min and a dialysate flow rate of about 100 mL/min has not been observed. If the pump rate of fluid pump 213 deviates from the normal relationship with the pressure change, an obstruction in the inlet of the degassing vessel 206 or an error in the control over the pressure change may be indicated.


If an error is indicated, the system can generate an alert informing the user of the error and/or stop treatment. In certain embodiments, a protective system can be used. The protective system can receive the dialysate flow rate from a flow sensor (not shown) in the dialysate flow path and determine the change in pressure set point to operate the degassing flow loop flow rate at a set ratio to the dialysate flow path flow rate. The protective system can determine an expected operating rate (RPM) of the fluid pump 213 corresponding to the pressure change set point, and calculate a running average operating rate for fluid pump 213. The protective system can generate an alert if the running average of RPM for fluid pump 213 is outside of a predetermined range of the expected value. In certain embodiments, the predetermined range can be ±10% of the expected value. The protective system can also monitor the pressure in the headspace of the degassing vessel 206. The protective system can measure the ambient pressure with ambient pressure sensor 222 and the pressure inside the degassing vessel 206 with gage pressure sensor 216 to calculate the absolute pressure within the degassing vessel 206 and can calculate a running average of the absolute pressure. The running average of absolute pressure can be compared to a predetermined limit, and an alert generated if the absolute pressure is outside of the predetermined limit.



FIG. 14 shows a cross-section of a degassing vessel 301 for use in dialysis. The degassing vessel 301 can be divided into a spray chamber 302 and a float chamber 303. As described, the float chamber 303 can contain one or more level sensors in communication with a controller. In certain embodiments, the level sensors can be a magnetic float and a linear array of Hall effect sensors (not shown). Fluid enters the degassing vessel 301 through a fluid inlet 304 fluidly connected to a degas sprayer 305. The degas sprayer 305 sprays the fluid into the spray chamber 302. One or more channels (not shown) connect the spray chamber 302 to the float chamber 303 equilibrating the fluid level in each chamber. Degassed fluid exits the degassing vessel 301 through opening 306 fluidly connected to liquid outlet 307. In certain embodiments, the liquid outlet 307 is located in a bottom portion of the spray chamber 302. By placing the liquid outlet 307 at the bottom portion of the spray chamber 302, fluid may enter or exit the float chamber 303 only when the fluid level in the degassing vessel 301 is changing, reducing turbulence in the float chamber 303 and reducing the amount of gas bubbles that come out of solution in the float chamber 303. By reducing turbulence and gas bubbles in the float chamber 303, a more accurate and stable detection of fluid level may be achieved. Alternatively, the liquid outlet 307 can be positioned in a bottom portion of the float chamber 303 or between the spray chamber 302 and float chamber 303. Further, placing the liquid outlet 307 at the bottom portion of the spray chamber 302 increases the recirculating flow rate of fluid in the degassing flow loop, which beneficially increases the gas removal rate.


Gases can be removed from the degassing vessel 301 through gas outlet 308, which can be fluidly connected to a vacuum pump (not shown) by one or more valves. In a preferred embodiment, the gas outlet 308 is positioned at a top portion of the degassing vessel 301 between the spray chamber 302 and the float chamber 303. Placing the gas outlet 308 between the spray chamber 302 and float chamber 303 allows symmetrical gas removal from both chambers while preserving the filling, draining, and disinfection capabilities of the degassing vessel 301. Holes 309 can be included for securing a circuit board including the linear array of Hall effect sensors to detect the level of the float (not shown) and therefore the liquid level in the degassing vessel 301.


As illustrated in FIG. 14, the spray chamber 302 can have a substantially conical shape, as opposed to a tubular or other shape. The conical shape of the spray chamber 302 can cause spraying fluid to contact the walls of the spray chamber 302 at a shallower angle than if the spray chamber 302 has a tubular shape. The shallow angle of spray contacting the walls of the spray chamber 302 may result in less turbulence, reducing foaming of the fluid in the degassing vessel 301 and allowing more accurate measurements of the fluid level. The conical film of spray existing the nozzle of degas sprayer 305 and impinging on the cone wall creates a foam cutting barrier above which the foam cannot grow. Reducing foaming also reduces gas flow restrictions out of the degassing vessel 301, allowing for a higher gas removal volume and faster headspace recovery. When foam exits thru gas outlet 308 the foam can impede the gas flow thru the vacuum pump, causing an abrupt increase in headspace pressure. Preventing the foam from rising to gas outlet 308 prevents the gas flow from the vacuum pump from being restricted by the foam and the headspace can more quickly recover from any perturbation.


The spray chamber 302 can be any length and diameter sufficient to effectively capture bubbles in the fluid sprayed into the spray chamber 302. In certain embodiments, the spray chamber 302 can have a diameter of about 75 mm and a height of about 10 cm, which gives a balance of degassing capacity and foam control without excessive size or fluid volume. In other embodiments, the diameter can be between about 50 mm to about 100 mm, including between 50 mm and 75 mm, between 50 mm and 60 mm, between 60 mm and 100 mm, or between 75 mm and 100 mm. The height of the spray chamber 302 can be between about 60 mm and about 200 mm, including between 60 mm and 100 mm, between 60 mm and 75 mm, between 70 mm and 100 mm, between 90 mm and 125 mm, between 100 mm and 150 mm, between 125 mm and 200 mm or between 150 mm and 200 mm. A larger length and diameter of the spray chamber 302 can further reduce foaming by creating a better transition zone when fluid is sprayed into the spray chamber 302. A larger diameter spray chamber 302 also increases the surface area of the fluid and causes the sprayed liquid to have a greater contact time with the headspace, allowing more efficient gas removal.


In certain embodiments, the degas sprayer 305 can be constructed to create an even cone shaped spray, rather than a more coarse “fountain like” spray, which can further reduce foaming in the spray chamber 302. Importantly, by placing the degas sprayer at a top of the degassing vessel 301 rather than at a base of the degassing vessel 301, the sprayer can reduce foaming by acting as a cap to control the foam. A finer spray cone, rather than a fountain type spray, can also increase atomization of the fluid and accelerate gas removal, increasing the efficiency of the degasser.



FIG. 15a is a top view of a degassing vessel 401 for use in dialysis and FIG. 15b is a side view of the degassing vessel 401. The degassing vessel 401 can include a spray chamber 407 and a float chamber 408. One or more level sensors (not shown) can be included in float chamber 408 to measure a fluid level in the degassing vessel 401. In certain embodiments, a manifold 410 can house fluid flow paths in a degassing flow loop. Fluid enters the manifold 410 from a dialysate flow path (not shown) through inlet 411. The fluid flows through fluid line 403 and fluid inlet 404 in a top portion 402 of the degassing vessel 401. The fluid inlet 404 can be fluidly connected to a degas sprayer (not shown in FIGS. 15a-b) in an interior of the spray chamber 407. Gases are removed via gas outlet 409, as illustrated in FIG. 15a, which can be fluidly connected to a vacuum pump (not shown). As illustrated in FIG. 15b, fluid exits the degassing vessel 401 through a liquid outlet 416 in a base 406 of the degassing vessel 401. Fluid lines (not shown) can connect the liquid outlet 416 to a fluid pump (not shown), and back to the manifold 410 through a second inlet 412 to recirculate the fluid in the degassing flow loop. Fluid can be directed back to a dialysate flow path, parallel to the degassing flow loop, through outlet 417 in manifold 410. Gage pressure sensor 405 can measure the pressure in the headspace of the degassing vessel 401. Pressure sensor 413 can measure the pressure of the incoming liquid, which may be used to control the pump rates of the fluid pumps. Mounting bases 414, 415, and 418 can be included to attach the circuit board including the linear array of Hall effect sensors to detect the float in the float chamber 408.


As described, a cone-like spray from the degas sprayer reduces foaming in the degassing vessel. FIG. 16 illustrates a non-limiting embodiment of a spray nozzle 501 for use in a degassing system. The spray nozzle 501 includes an internal conduit 502 through which fluid flows. The internal conduit 502 can include one or more swirl inducing sets 503, which force the fluid into a vortex motion within the internal conduit 502, breaking the fluid apart. As a result, fluid exiting the spray nozzle 501 produces a full cone 504 that evenly distributes a spray pattern. The high surface area to volume ratio in the cone 504 allows gas to rapidly move from solution into equilibrium with the low gas pressure inside the degassing vessel. The spray nozzle 501 used with a degasser influences the relationship between the flow rate and the pressure change from the fluid inlet to the inside of the degassing vessel. As described, the relationship between the flow rate and pressure change can be used to control the degassing flow loop flow rate, and the pressure change set point can be adjusted based on the spray nozzle used. In a preferred embodiment, the spray is a dense conical film that smashes foam bubbles as the foam head grows upward, thus limiting the upward growth of the foam to the surface height defined by the spray cone.


The degassing system should be able to control the carbon dioxide concentration in the dialysate flow path at the dialyzer inlet to a specified range, which in certain embodiments can be between 40 mmHg-150 mmHg pCO2. The expected range of CO2 concentrations at the inlet to the degassing flow loop can vary from between 85 to 650 mmHg pCO2. To predict the expected degasser inlet CO2 concentration, 10,000 simulated treatments were conducted. FIGS. 17a and 17b illustrate the expected pCO2 minima and maxima, respectively. A summary of the simulations are shown in Table 1.









TABLE 1







Expected Sorbent Outlet PCO2 Level from Model











Minimum
Maximum
Range


Scenario
(mmHg)
(mmHg)
(mmHg)





99th Percentile
130
415
130-415


99.9th Percentile
110
510
110-510


99.99th Percentile
 95
590
 95-590


99.99th Percentile with
 85
650
 85-650


Engineering Margin of 10%









As illustrated in FIGS. 17a and b and Table 1, the 99th percentile for the minimum range for carbon dioxide concentration in dialysate exiting a sorbent cartridge, or the minimum range for carbon dioxide concentration in dialysate entering the degassing system is 130 mmHg. The 99.99th percentile for the minimum range for carbon dioxide concentration is 85 mmHg, even with a built-in engineering margin of 10%. The 99th percentile for the maximum range for carbon dioxide concentration is 415 mmHg. The 99.99th percentile for the maximum range for carbon dioxide concentration is 650 mmHg, even with a built-in engineering margin of 10%.


Fluid entering the degassing system will also contain dissolved nitrogen and oxygen gases. Table 2 summarizes the results of simulated treatments to determine the expected concentration ranges of oxygen and nitrogen when exiting the degasser as a function of the blood flow rate QB, the dialysate flow rate QD, the type of blood access, the dialyzer used, the initial patient nitrogen and oxygen blood concentrations CBin and the degasser inlet concentrations for both nitrogen and oxygen CDin. The simulations provided the dialysance D, as well as the degasser outlet concentration for oxygen and nitrogen CDout. The data in Table 2 was obtained assuming that the concentration of nitrogen in the patient's blood was approximately equal to atmospheric nitrogen concentration, or 600 mmHg. A low blood oxygen concentration was assumed to be 30 mmHg, while a high blood oxygen concentration was assumed to be 100 mmHg. The dialysance of oxygen and nitrogen was approximated by the KoA for urea. Table 3 summarizes the findings for possible ranges of each gas in the dialysate based on high or low values for each gas.









TABLE 2







ENGINEERING ESTIMATES OF DIALYSATE pN2, pO2 @ DEGASSER INLET










Inputs
Outputs

















Gas
QB
QD


Ko



K or D



Content
(ml/
(ml/
Blood
Dialyzer
(ml/

CBin
CDin
(ml/
CDout


Scenario
min)
min)
Access
Reference
min/m2)
A
(mmHg)
(mmHg)
min)
(mmHg)




















Low N2
50
600
CVC
Baxter
262
0.50
600
4
46
50






CA50








Low O2
50
600
CVC
Baxter
262
0.50
30
1
46
3






CA50








Nominal
300
600
Fistula
Baxter
506
2.1
600
120
272
338


Case N2



CA-HP












201








Nominal
300
600
Fistula
Baxter
506
2.1
90
20
272
52


Case O2



CA-HP












201








High N2
500
499
Fistula
B.Braun
826
2.3
600
300
396
538






Xevonta












Hi23








High O2
500
499
Fistula
B.Braun
826
2.3
100
50
396
90






Xevonta












Hi23





Note: QB can not equal QD


Assumptions


1. pN2 in blood plasma is approximately equal to atmospheric nitrogen concentration (600 mmHg)


2. Low pO2 in venous blood is assumed to be 30 mmHg.


3. High pO2 in venous blood is assumed to be 100 mmHg.


4. dialysance of O2 and N2 can be approximated by KoA urea













TABLE 3







Sorbent Outlet (Degasser Inlet) Gas Concentration Summary

















Test



pO2
pN2
pCO2

Gas


TEST CASE
(mmHg)
(mmHg)
(mmHg)
% CO2
Mix





Low N2, Low O2, Low CO2
 3
 50
 85
62%
60%


Low N2, Low O2, High CO2
 3
 50
650
92%
90%


Nominal N2, O2, CO2
 52
338
300
43%
40%


High N2, High O2, Low CO2
100
600
 85
11%
10%


High N2, High O2, High CO2
100
600
650
48%
50%









Table 3 summarizes the findings for possible ranges of each gas in the dialysate based on high or low values for each gas. As described, the possible ranges for carbon dioxide, nitrogen, and oxygen concentrations in the dialysate are used to control the degasser by setting a headspace pressure set point and degassing loop flow rate.


In certain embodiments, portions of the degasser flow path can be contained within a degasser manifold 601, as illustrated in FIG. 18. Dialysate from a dialysate flow path (not shown) can enter the degasser manifold 601 from fluid line 603 through an inlet 604 of the degasser manifold 601. The dialysate can pass through a first fluid passageway 606 to a first outlet 605 of the degasser manifold 601. The first outlet 605 is fluidly connectable to a fluid line 607 and a degasser 602. In a non-limiting embodiment, the degasser 602 can be the degasser illustrated in FIG. 13. The dialysate, after being pumped through the degasser 602 can exit the degasser 602 through fluid line 610 and re-enter the degasser manifold 601 through a second inlet 608. The dialysate can be pumped through a second fluid passageway 609 to the first fluid passageway 606, allowing the dialysate to recirculate through the degasser 602. A third fluid passageway 612 can connect to a second outlet 611 of the degasser manifold 601 and connect to fluid line 614. Fluid line 614 can connect to the dialysate flow path downstream of fluid line 603. Fluid pump 613 can pump the dialysate through the degasser 602 and degasser manifold 601. A dialysate pump (not shown) can be fluidly connected to fluid line 614 to draw fluid out of the degasser flow path and back into the main dialysate flow path.


A controller (not shown) can control the pump rates of the fluid pump 613 and the dialysate pump (not shown) as described herein to control the fluid pressure entering the degasser 602. By varying the ratio of pump rates of the fluid pump 613 and dialysate pump, the ratio of fluid passing to the first outlet 605 and second outlet 611 of the degasser manifold 601 is controlled. Pressure sensor 615 can be located inside or outside of the degasser manifold 601 and can provide the fluid pressure of the fluid entering the degasser 602. As described, by using a fixed pressure change between the pressure as measured by pressure sensor 615 and the pressure within the degasser 602, a pressure change set point can be set, and the fluid pressure at pressure sensor 615 varied by changing the fluid pump 613 pump rate, thereby controlling the ratio of fluid passing to the first outlet 605 and second outlet 611 until the pressure change set point is reached.



FIG. 19 illustrates a non-limiting embodiment of a degasser system using a vent manifold 701. Dialysate can enter the degasser 702 through fluid line 717 and exit through fluid line 718. In a non-limiting embodiment, the degasser 702 can be the same degasser as illustrated in FIG. 13. Gas removed from the fluid can exit the degasser 702 through gas outlet 703 fluidly connected to fluid line 704 and enter the vent manifold 701 through inlet 705. A vacuum pump 709 can be fluidly connected to an outlet 708 of the vent manifold 701. Valve 707 can be selectively operated to control the movement of gas from fluid passageway 706 to the outlet 708. Removed gases are expelled from the vacuum pump 709 through gas line 710.


A vent valve 711 fluidly connectable to the fluid passageway 706 can be selectively operated to allow air into the degasser 702 through inlet 712 of the vent manifold 701 when the degasser 702 is drained. Filter 713 connected to inlet 712 prevents contamination of the degasser 702, as described. During flushing, cleaning and disinfection of the dialysis system, the degasser 702 can be completely filled with liquid and liquid can be passed out of the degasser 702 through fluid passageway 706 through valve 714 to outlet 715 and fluid line 716, to a dialysate line.


As described, a controller (not shown) can control valve 707 to maintain a desired pressure within the degasser 702. In a preferred embodiment, the vacuum pump 709 is continuously run at a high rate, and the controller can pulse width modulate valve 707 to control the pressure in the degasser 702 to a desired target. A pressure sensor (not shown) can be included in the degasser 702 for control over the gas pressure. Alternatively, the pressure sensor can be included within the vent manifold 701. The removed gases are expelled through gas line 710, which can be vented to the air, or alternatively, connected to a waste reservoir.


One of skill in the art will understand that the described degassing systems can use either or both of the degasser manifold 601 illustrated in FIG. 18 and/or the vent manifold 701 illustrated in FIG. 19. In certain embodiments, the degasser manifold 601 and vent manifold 701 can be combined into a single manifold that controls both fluid and gas movement into and out of the degasser.


The degasser manifold 601 and vent manifold 701 can be made of any biocompatible materials and can be in any shape suitable for being placed in the dialysate flow path. The manifolds can be produced using a standard injection molding, or by any other known methods. The sensors and the valves or other internal structures can be fixed or attached to the degasser manifold 601 and vent manifold 701 using techniques suitable to a person of skill in the art. In certain embodiments, the sensors and the valves can be welded to the main body of the degasser manifold 601 and vent manifold 701.


It will be apparent to one skilled in the art that various combinations and/or modifications and variations can be made in the dialysis system depending upon the specific needs for operation. Moreover, features illustrated or described as being part of an aspect of the invention can be included in the aspect of the invention, either alone or in combination.

Claims
  • 1. A degasser manifold, comprising: a plurality of passageways fluidly connectable to one or more inlets and one or more outlets in a dialysis system;the one or more inlets comprising a first inlet fluidly connectable to a first fluid line, the first fluid line fluidly connectable to a dialysate flow path, and a second inlet fluidly connectable to a second fluid line; the second fluid line fluidly connectable to an outlet of a degasser;the one or more outlets comprising a first outlet fluidly connectable to an inlet of the degasser and a second outlet fluidly connectable to a third fluid line, the third fluid line fluidly connectable to the dialysate flow path downstream of the first fluid line.
  • 2. The degasser manifold of claim 1, further comprising a second fluid passageway from the second inlet to the first fluid passageway.
  • 3. The degasser manifold of claim 2, further comprising a pressure sensor in a fluid passageway between the first inlet and the first outlet.
  • 4. The degasser manifold of claim 1, 2, or 3, further comprising a second fluid passageway from the first fluid passageway to the second outlet.
  • 5. The degasser manifold of claim 1, the second fluid line comprising a first fluid pump.
  • 6. The degasser manifold of claim 5, further comprising a controller; the controller controlling the first fluid pump and a dialysate pump to control a ratio of fluid passing to the first outlet and second outlet.
  • 7. The degasser manifold of claim 6, the controller controlling the ratio of fluid passing to the first outlet and the second outlet based on a fluid pressure measured by the pressure sensor in the fluid passageway and a gas pressure in the degasser.
  • 8. The degasser manifold of claim 6, the controller controlling the ratio of fluid passing to the first outlet and the second outlet by controlling a ratio of pump rates of the first fluid pump and the dialysate pump.
  • 9. A method, using the degasser manifold of claim 1, and comprising the steps of: a) pumping a dialysate from the dialysate flow path into the first inlet of the degasser manifold;b) pumping a portion of the dialysate through at least one of the plurality of fluid passageways of the degasser manifold to the first outlet of the degasser manifold; wherein the first outlet of the degasser manifold is fluidly connected to the inlet of a degasser;c) pumping a portion of the dialysate through a second fluid passageway of the degasser manifold to the second outlet of the degasser manifold; wherein the second outlet of the degasser manifold is fluidly connected to the dialysate flow path; andd) pumping fluid from the outlet of the degasser into the second inlet of the degasser manifold; wherein the second inlet of the degasser manifold is fluidly connected to the fluid passageway.
  • 10. The method of claim 9, further comprising the step of measuring a fluid pressure with a pressure sensor in at least one fluid passageway.
  • 11. The method of claim 10, further comprising the step of controlling a ratio of fluid pumped to first outlet of the degasser manifold to fluid pumped to the second outlet of the degasser manifold based on the fluid pressure.
  • 12. The method of claim 11, wherein the step of controlling a ratio of fluid pumped to first outlet of the degasser manifold to fluid pumped to the second outlet of the degasser manifold comprising controlling a ratio of pump rates of a first pump positioned between an outlet of the degasser and the second inlet and a second pump positioned downstream of the second outlet.
  • 13. The method of claim 9, further comprising the step of pumping gas from a gas outlet of the degasser to a first inlet of a vent manifold with a vacuum pump and from the first inlet of the vent manifold to a first outlet of the vent manifold.
  • 14. The method of claim 9; further comprising the step of selectively operating a valve positioned between the first inlet of the vent manifold and the first outlet of the vent manifold to control a gas pressure in the degasser.
  • 15. The method of claim 14, wherein the step of selectively operating the valve is performed by a controller.
  • 16. A system, comprising: the degasser manifold of claim 1; and further comprising:a vent manifold; the vent manifold comprising a plurality of passageways fluidly connectable to one or more inlets and one or more outlets in a dialysis system; the one or more inlets comprising a first inlet fluidly connectable to a first fluid line and a first passageway, the first fluid line fluidly connectable to a gas outlet of the degasser; at least a first valve fluidly connecting the first inlet to a first outlet; the first outlet fluidly connected to a vacuum pump.
  • 17. The system of claim 16, the vent manifold further comprising a second valve; the second valve fluidly connecting a second inlet of the vent manifold to the first inlet; the second inlet connected to a filter.
  • 18. The system of claim 16 or 17, the vent manifold further comprising a second valve; the second valve fluidly connecting the first inlet to a second outlet; the second outlet fluidly connected to the dialysate flow path.
  • 19. The system of any of claims 16-17, further comprising a controller, the controller controlling the first valve to maintain a desired pressure in the degasser.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/634,777 filed Feb. 23, 2018, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (464)
Number Name Date Kind
3091098 Bowers May 1963 A
3370710 Bluemle Feb 1968 A
3506126 Lindsay, Jr. Apr 1970 A
3608729 Haselden Sep 1971 A
3669878 Marantz Jun 1972 A
3669880 Marantz Jun 1972 A
3692648 Matloff Sep 1972 A
3776819 Williams Dec 1973 A
3809241 Alvine May 1974 A
3850835 Marantz Nov 1974 A
3884808 Scott May 1975 A
3902490 Jacobsen Sep 1975 A
3932150 Komai Jan 1976 A
3939069 Granger Feb 1976 A
3989622 Marantz Nov 1976 A
4060485 Eaton Nov 1977 A
4094775 Mueller Jun 1978 A
4136708 Cosentino Jan 1979 A
4142845 Lepp Mar 1979 A
4201555 Tkach May 1980 A
4202760 Hall May 1980 A
4209392 Wallace Jun 1980 A
4269708 Bonomini May 1981 A
4316725 Hovind Feb 1982 A
4371385 Johnson Feb 1983 A
4374382 Markowitz Feb 1983 A
4376707 Lehmann Mar 1983 A
4381999 Boucher May 1983 A
4430098 Bowman Feb 1984 A
4460555 Thompson Jul 1984 A
4490135 Troutner Dec 1984 A
4556063 Thompson Dec 1985 A
4562751 Nason Jan 1986 A
4581141 Ash Apr 1986 A
4612122 Ambrus Sep 1986 A
4650587 Polak Mar 1987 A
4678408 Mason Jul 1987 A
4685903 Cable Aug 1987 A
4695385 Boag Sep 1987 A
4715398 Shouldice Dec 1987 A
4739492 Cochran Apr 1988 A
4747822 Peabody May 1988 A
4750494 King Jun 1988 A
4816162 Rosskopf et al. Mar 1989 A
4826663 Alberti May 1989 A
4828693 Lindsay May 1989 A
4885001 Leppert Dec 1989 A
4900308 Verkaart Feb 1990 A
4915713 Buzza Apr 1990 A
4950230 Kendell Aug 1990 A
4977888 Rietter Dec 1990 A
5015388 Pusineri May 1991 A
5032265 Jha Jul 1991 A
5080653 Voss Jan 1992 A
5092886 Dobos-Hardy Mar 1992 A
5097122 Coiman Mar 1992 A
5114580 Ahmad May 1992 A
5127404 Wyborny Jul 1992 A
5141493 Jacobsen Aug 1992 A
5180403 Kogure Jan 1993 A
5192132 Pelensky Mar 1993 A
5203890 Tatsuo Apr 1993 A
5230702 Lindsay Jul 1993 A
5284470 Beltz Feb 1994 A
5302288 Meidl Apr 1994 A
5305745 Zacouto Apr 1994 A
5308315 Khuri May 1994 A
5318750 Lascombes Jun 1994 A
5399157 Goux Mar 1995 A
5419347 Carruth May 1995 A
5441049 Masano Aug 1995 A
5442969 Troutner Aug 1995 A
5468388 Goddard Nov 1995 A
5507723 Keshaviah Apr 1996 A
5591344 Kenley Jan 1997 A
5643201 Peabody Jul 1997 A
5662806 Keshaviah et al. Sep 1997 A
5683432 Goedeke Nov 1997 A
5685835 Brugger Nov 1997 A
5685988 Malchesky Nov 1997 A
5702536 Carruth Dec 1997 A
5744031 Bene Apr 1998 A
5762782 Kenley Jun 1998 A
5849179 Emerson Dec 1998 A
5858186 Glass Jan 1999 A
5863421 Peter Jan 1999 A
5938938 Bosetto Aug 1999 A
5944684 Roberts Aug 1999 A
5948251 Brugger Sep 1999 A
6048732 Anslyn Apr 2000 A
6052622 Holmstrom Apr 2000 A
6058331 King May 2000 A
6114176 Edgson et al. Sep 2000 A
6126831 Goldau Oct 2000 A
6171480 Lee Jan 2001 B1
6230059 Duffin May 2001 B1
6248093 Moberg Jun 2001 B1
6251167 Berson Jun 2001 B1
6254567 Treu Jul 2001 B1
6264680 Ash Jul 2001 B1
6321101 Holmstrom Nov 2001 B1
6362591 Moberg Mar 2002 B1
6363279 Ben-Haim Mar 2002 B1
6521184 Edgson et al. Feb 2003 B1
6554798 Mann Apr 2003 B1
6555986 Moberg Apr 2003 B2
6589229 Connelly Jul 2003 B1
6593747 Puskas Jul 2003 B2
6602399 Fromherz Aug 2003 B1
6627164 Wong Sep 2003 B1
6666840 Falkvall et al. Dec 2003 B1
6676608 Keren Jan 2004 B1
6711439 Bradley Mar 2004 B1
6719745 Taylor Apr 2004 B1
6726647 Sternby Apr 2004 B1
6780322 Bissler Aug 2004 B1
6814724 Taylor Nov 2004 B2
6818196 Wong Nov 2004 B2
6824524 Favre Nov 2004 B1
6861266 Sternby Mar 2005 B1
6878283 Thompson Apr 2005 B2
6960179 Gura Nov 2005 B2
7023359 Goetz Apr 2006 B2
7033498 Wong Apr 2006 B2
7074332 Summerton Jul 2006 B2
7077819 Goldau Jul 2006 B1
7097630 Gotch Aug 2006 B2
7101519 Wong Sep 2006 B2
7153693 Tajiri Dec 2006 B2
7169303 Sullivan Jan 2007 B2
7208092 Micheli Apr 2007 B2
7241272 Karoor Jul 2007 B2
7276042 Polaschegg Oct 2007 B2
7279031 Wright Oct 2007 B1
7318892 Connell Jan 2008 B2
7326576 Womble et al. Feb 2008 B2
7435342 Tsukamoto Oct 2008 B2
7488447 Sternby Feb 2009 B2
7500958 Asbrink Mar 2009 B2
7537688 Tarumi May 2009 B2
7544300 Brugger Jun 2009 B2
7544737 Poss Jun 2009 B2
7563240 Gross Jul 2009 B2
7566432 Wong Jul 2009 B2
7575564 Childers Aug 2009 B2
7597806 Uchi Oct 2009 B2
7674231 McCombie Mar 2010 B2
7704361 Garde Apr 2010 B2
7736507 Wong Jun 2010 B2
7744553 Kelly Jun 2010 B2
7754852 Burnett Jul 2010 B2
7756572 Fard Jul 2010 B1
7776210 Rosenbaum Aug 2010 B2
7785463 Bissler Aug 2010 B2
7790103 Shah Sep 2010 B2
7794141 Perry Sep 2010 B2
7794419 Paolini Sep 2010 B2
7850635 Polaschegg Dec 2010 B2
7857976 Bissler Dec 2010 B2
7867214 Childers Jan 2011 B2
7896831 Sternby Mar 2011 B2
7922686 Childers Apr 2011 B2
7922911 Micheli Apr 2011 B2
7947179 Rosenbaum May 2011 B2
7955290 Karoor Jun 2011 B2
7955291 Sternby Jun 2011 B2
7967022 Grant Jun 2011 B2
7981082 Wang Jul 2011 B2
7988854 Tsukamoto Aug 2011 B2
8002726 Karoor Aug 2011 B2
8029454 Kelly Oct 2011 B2
8034161 Gura Oct 2011 B2
8066658 Karoor Nov 2011 B2
8070709 Childers Dec 2011 B2
8080161 Ding et al. Dec 2011 B2
8087303 Beavis Jan 2012 B2
8096969 Roberts Jan 2012 B2
8180574 Lo May 2012 B2
8183046 Lu May 2012 B2
8187250 Roberts May 2012 B2
8197439 Wang Jun 2012 B2
8202241 Karakama Jun 2012 B2
8246826 Wilt Aug 2012 B2
8273049 Demers Sep 2012 B2
8292594 Tracey Oct 2012 B2
8303532 Hamada Nov 2012 B2
8313642 Yu Nov 2012 B2
8317492 Demers Nov 2012 B2
8357113 Childers Jan 2013 B2
8366316 Kamen Feb 2013 B2
8366655 Kamen Feb 2013 B2
8404491 Li Mar 2013 B2
8409441 Wilt Apr 2013 B2
8409444 Wong Apr 2013 B2
8449487 Hovland May 2013 B2
8491517 Karoor Jul 2013 B2
8496809 Roger Jul 2013 B2
8499780 Wilt Aug 2013 B2
8500672 Caleffi Aug 2013 B2
8500676 Jansson Aug 2013 B2
8500994 Weaver Aug 2013 B2
8512271 Moissl Aug 2013 B2
8518258 Balschat Aug 2013 B2
8518260 Raimann Aug 2013 B2
8521482 Akonur Aug 2013 B2
8535525 Heyes Sep 2013 B2
8560510 Brueggerhoff Oct 2013 B2
8562822 Roger Oct 2013 B2
8580112 Updyke Nov 2013 B2
8597227 Childers Dec 2013 B2
8696626 Kirsch Apr 2014 B2
8777892 Sandford Jul 2014 B2
8903492 Soykan Dec 2014 B2
8906240 Crnkovich Dec 2014 B2
9144640 Pudil Sep 2015 B2
9173987 Meyer Nov 2015 B2
20020027106 Smith Mar 2002 A1
20020042561 Schulman Apr 2002 A1
20020045851 Suzuki Apr 2002 A1
20020104800 Collins Aug 2002 A1
20020112609 Wong Aug 2002 A1
20030010717 Brugger Jan 2003 A1
20030034305 Luehmann Feb 2003 A1
20030080059 Peterson May 2003 A1
20030097086 Gura May 2003 A1
20030105424 Karoor Jun 2003 A1
20030105435 Taylor Jun 2003 A1
20030114787 Gura Jun 2003 A1
20040019312 Childers Jan 2004 A1
20040019320 Childers Jan 2004 A1
20040068219 Summerton Apr 2004 A1
20040082903 Micheli Apr 2004 A1
20040099593 DePaolis May 2004 A1
20040102732 Naghavi May 2004 A1
20040143173 Reghabi Jul 2004 A1
20040147900 Polaschegg Jul 2004 A1
20040168969 Sternby Sep 2004 A1
20040215090 Erkkila Oct 2004 A1
20050006296 Sullivan Jan 2005 A1
20050065760 Murtfeldt Mar 2005 A1
20050101901 Gura May 2005 A1
20050113796 Taylor May 2005 A1
20050115898 Sternby Jun 2005 A1
20050126961 Bissler Jun 2005 A1
20050131331 Kelly Jun 2005 A1
20050131332 Kelly Jun 2005 A1
20050153904 Fager Jun 2005 A1
20050126998 Childers Jul 2005 A1
20050148923 Sternby Jul 2005 A1
20050150832 Tsukamoto Jul 2005 A1
20050234381 Niemetz Oct 2005 A1
20050274658 Rosenbaum Dec 2005 A1
20060025661 Sweeney Feb 2006 A1
20060217771 Soykan Feb 2006 A1
20060054489 Denes Mar 2006 A1
20060076295 Leonard Apr 2006 A1
20060157335 Levine Jul 2006 A1
20060157413 Bene Jul 2006 A1
20060186044 Nalesso Aug 2006 A1
20060195064 Plahey Aug 2006 A1
20060226079 Mori Oct 2006 A1
20060241709 Soykan Oct 2006 A1
20060264894 Moberg Nov 2006 A1
20070007208 Brugger Jan 2007 A1
20070066928 Lannoy Mar 2007 A1
20070072285 Barringer Mar 2007 A1
20070138011 Hofmann Jun 2007 A1
20070140916 Spiss Jun 2007 A1
20070175827 Wariar Aug 2007 A1
20070179431 Roberts Aug 2007 A1
20070213653 Childers Sep 2007 A1
20070213665 Curtin Sep 2007 A1
20070215545 Bissler Sep 2007 A1
20070243113 DiLeo Oct 2007 A1
20070255250 Moberg Nov 2007 A1
20080006570 Gura Jan 2008 A1
20080015493 Childers et al. Jan 2008 A1
20080021337 Li Jan 2008 A1
20080051696 Curtin Feb 2008 A1
20080053905 Brugger Mar 2008 A9
20080067132 Ross Mar 2008 A1
20080093276 Roger Apr 2008 A1
20080154543 Rajagopal Jun 2008 A1
20080215247 Tonelli Sep 2008 A1
20080217245 Rambod Sep 2008 A1
20080230473 Herbst Sep 2008 A1
20080253427 Kamen Oct 2008 A1
20090012450 Shah Jan 2009 A1
20090020471 Tsukamoto Jan 2009 A1
20090078636 Uchi Mar 2009 A1
20090084199 Wright Apr 2009 A1
20090084718 Prisco Apr 2009 A1
20090084721 Yardimci Apr 2009 A1
20090101549 Kamen Apr 2009 A1
20090101552 Fulkerson Apr 2009 A1
20090101577 Fulkerson Apr 2009 A1
20090105629 Grant Apr 2009 A1
20090107335 Wilt Apr 2009 A1
20090124963 Hogard May 2009 A1
20090127193 Updyke May 2009 A1
20090131858 Fissell May 2009 A1
20090159527 Mickols Jun 2009 A1
20090171261 Sternby Jul 2009 A1
20090173682 Robinson Jul 2009 A1
20090182263 Burbank Jul 2009 A1
20090187138 Lundtveit Jul 2009 A1
20090216045 Singh Aug 2009 A1
20090223539 Gibbel Sep 2009 A1
20090275849 Stewart Nov 2009 A1
20090275883 Chapman Nov 2009 A1
20090281484 Childers Nov 2009 A1
20090282980 Gura Nov 2009 A1
20090314063 Sternby Dec 2009 A1
20100004588 Yeh Jan 2010 A1
20100007838 Fujimoto Jan 2010 A1
20100010429 Childers Jan 2010 A1
20100022936 Gura Jan 2010 A1
20100030151 Kirsch Feb 2010 A1
20100042035 Moissl Feb 2010 A1
20100051552 Rohde Mar 2010 A1
20100078092 Weilhoefer Apr 2010 A1
20100078381 Merchant Apr 2010 A1
20100078387 Wong Apr 2010 A1
20100084330 Wong Apr 2010 A1
20100087771 Karakama Apr 2010 A1
20100094158 Solem Apr 2010 A1
20100100027 Schilthuizen et al. Apr 2010 A1
20100102190 Zhu et al. Apr 2010 A1
20100106071 Wallenborg Apr 2010 A1
20100114012 Sandford et al. May 2010 A1
20100130906 Balschat May 2010 A1
20100137693 Porras Jun 2010 A1
20100137782 Jansson Jun 2010 A1
20100140149 Fulkerson Jun 2010 A1
20100168546 Kamath Jul 2010 A1
20100192686 Kamen Aug 2010 A1
20100199670 Robertson Aug 2010 A1
20100213127 Castellarnau Aug 2010 A1
20100217180 Akonur Aug 2010 A1
20100217181 Roberts Aug 2010 A1
20100224492 Ding Sep 2010 A1
20100234795 Wallenas Sep 2010 A1
20100241045 Kelly Sep 2010 A1
20100252490 Fulkerson Oct 2010 A1
20100274171 Caleffi Oct 2010 A1
20100282662 Lee Nov 2010 A1
20100312172 Hoffman Dec 2010 A1
20100312174 Hoffman Dec 2010 A1
20100326911 Rosenbaum Dec 2010 A1
20100327586 Mardirossian Dec 2010 A1
20110009798 Kelly Jan 2011 A1
20110017665 Updyke Jan 2011 A1
20110048949 Ding et al. Mar 2011 A1
20110066043 Banet Mar 2011 A1
20110071465 Wang Mar 2011 A1
20110077574 Sigg Mar 2011 A1
20110079558 Raimann Apr 2011 A1
20110087187 Beck Apr 2011 A1
20110100909 Stange May 2011 A1
20110105983 Kelly May 2011 A1
20110106003 Childers May 2011 A1
20110120930 Mishkin May 2011 A1
20110120946 Levin May 2011 A1
20110130666 Dong Jun 2011 A1
20110132838 Curtis Jun 2011 A1
20110144570 Childers Jun 2011 A1
20110160637 Beiriger Jun 2011 A1
20110163030 Weaver Jul 2011 A1
20110163034 Castellarnau Jul 2011 A1
20110168017 Lamers Jul 2011 A1
20110184340 Tan Jul 2011 A1
20110189048 Curtis Aug 2011 A1
20110220562 Beiriger Sep 2011 A1
20110247973 Sargand Oct 2011 A1
20110272337 Palmer Nov 2011 A1
20110284377 Rohde Nov 2011 A1
20110297593 Kelly Dec 2011 A1
20110315611 Fulkerson Dec 2011 A1
20110315632 Freije Dec 2011 A1
20120006762 McCabe Jan 2012 A1
20120016228 Kroh Jan 2012 A1
20120031825 Gura Feb 2012 A1
20120083729 Childers Apr 2012 A1
20120085707 Beiriger Apr 2012 A1
20120092025 Volker Apr 2012 A1
20120115248 Ansyln May 2012 A1
20120199205 Eyrard Aug 2012 A1
20120220528 VanAntwerp Aug 2012 A1
20120220926 Soykan Aug 2012 A1
20120248017 Beiriger Oct 2012 A1
20120258545 Ash Oct 2012 A1
20120258546 Marran Oct 2012 A1
20120259276 Childers Oct 2012 A1
20120273354 Orhan et al. Nov 2012 A1
20120273415 Gerber Nov 2012 A1
20120273420 Gerber Nov 2012 A1
20120277546 Soykan Nov 2012 A1
20120277552 Gerber Nov 2012 A1
20120277604 Gerber Nov 2012 A1
20120277650 Gerber Nov 2012 A1
20120277655 Gerber Nov 2012 A1
20120277722 Gerber Nov 2012 A1
20120302945 Hedmann Nov 2012 A1
20130001165 Pohlmeier Jan 2013 A1
20130015302 Orter et al. Jan 2013 A1
20130018301 Weaver Jan 2013 A1
20130019994 Schaer Jan 2013 A1
20130030356 Ding Jan 2013 A1
20130037465 Heyes Feb 2013 A1
20130062265 Balschat Mar 2013 A1
20130193073 Hogard Aug 2013 A1
20130199998 Kelly Aug 2013 A1
20130211730 Wolff Aug 2013 A1
20130213890 Kelly Aug 2013 A1
20130228516 Jonsson Sep 2013 A1
20130228517 Roger Sep 2013 A1
20130231607 Roger Sep 2013 A1
20130248426 Pouchoulin Sep 2013 A1
20130256227 Kelly Oct 2013 A1
20130274642 Soykan Oct 2013 A1
20130304020 Wilt Nov 2013 A1
20130324915 (Krensky)Britton Dec 2013 A1
20130330208 Ly Dec 2013 A1
20130331774 Farrell Dec 2013 A1
20140001112 Karoor Jan 2014 A1
20140018727 Burbank Jan 2014 A1
20140018728 Plahey Jan 2014 A1
20140042092 Akonur Feb 2014 A1
20140065950 Mendelsohn Mar 2014 A1
20140088442 Soykan Mar 2014 A1
20140110340 White Apr 2014 A1
20140110341 White Apr 2014 A1
20140158538 Collier Jun 2014 A1
20140158588 Pudil Jun 2014 A1
20140158623 Pudil Jun 2014 A1
20140190876 Meyer Jul 2014 A1
20140190885 Meyer Jul 2014 A1
20140190886 Pudil Jul 2014 A1
20140190891 Lura Jul 2014 A1
20140216250 Meyer Aug 2014 A1
20140217020 Meyer Aug 2014 A1
20140217027 Meyer Aug 2014 A1
20140217028 Pudil Aug 2014 A1
20140217029 Meyer Aug 2014 A1
20140217030 Meyer Aug 2014 A1
20140220699 Pudil Aug 2014 A1
20140224736 Heide Aug 2014 A1
20140251908 Ding Sep 2014 A1
20150057602 Mason Feb 2015 A1
20150083647 Meyer Mar 2015 A1
20150114891 Meyer Apr 2015 A1
20150144539 Pudil May 2015 A1
20150144542 Pudil May 2015 A1
20150157960 Pudil Jun 2015 A1
20150238673 Gerber Aug 2015 A1
20150250937 Pudil Sep 2015 A1
20150258268 Collier Sep 2015 A1
20150352270 Pudil Dec 2015 A1
20160038666 Kelly Feb 2016 A1
20160166748 Meyer Jun 2016 A1
20160166751 Meyer Jun 2016 A1
20160166752 Meyer Jun 2016 A1
20160166753 Meyer Jun 2016 A1
20180243494 Meyer Aug 2018 A1
Foreign Referenced Citations (163)
Number Date Country
101687070 Mar 2010 CN
101883594 Nov 2010 CN
102307650 Jan 2012 CN
202105667 Jan 2012 CN
101237918 Jan 2013 CN
101883584 Jul 2013 CN
103209721 Jul 2013 CN
103889481 Jun 2014 CN
103957960 Jul 2014 CN
201510761050.6 Aug 2017 CN
3215003 Apr 1985 DE
102011052188 Jan 2013 DE
0022370 Jan 1981 EP
0187109 Jul 1986 EP
266795 Nov 1987 EP
0264695 Apr 1988 EP
0298587 Jun 1994 EP
0743071 Nov 1996 EP
1124599 May 2000 EP
1175238 Nov 2000 EP
711182 Jun 2003 EP
2308526 Oct 2003 EP
1364666 Nov 2003 EP
1523347 Jan 2004 EP
1523350 Jan 2004 EP
0906768 Feb 2004 EP
1691863 Apr 2005 EP
2116269 Feb 2008 EP
1450879 Oct 2008 EP
1514562 Apr 2009 EP
2219703 May 2009 EP
1592494 Jun 2009 EP
1490129 Sep 2009 EP
2100553 Sep 2009 EP
2398529 Nov 2010 EP
2575827 Dec 2010 EP
2100553 Aug 2011 EP
2388030 Nov 2011 EP
2576453 Dec 2011 EP
2701580 Nov 2012 EP
2701595 Nov 2012 EP
1545652 Jan 2013 EP
1345856 Mar 2013 EP
2344220 Apr 2013 EP
1351756 Jul 2013 EP
2190498 Jul 2013 EP
1414543 Sep 2013 EP
2701596 Mar 2014 EP
2740502 Jun 2014 EP
2883558 Jun 2015 EP
1787666 Nov 2015 EP
2237639 Feb 1977 FR
2479130 May 2011 GB
2002306904 Oct 2002 JP
2006325668 Dec 2006 JP
5099464 Oct 2012 JP
2013521862 Jun 2013 JP
9532010 Nov 1995 WO
1996040313 Dec 1996 WO
9937342 Jul 1999 WO
9937342 Jul 1999 WO
0057935 Oct 2000 WO
WO2000057935 Oct 2000 WO
200066197 Nov 2000 WO
2000066197 Nov 2000 WO
200170307 Sep 2001 WO
2001085295 Sep 2001 WO
0185295 Nov 2001 WO
2002043859 Jun 2002 WO
2003043677 May 2003 WO
2003043680 May 2003 WO
2003051422 Jun 2003 WO
2004008826 Jan 2004 WO
2004009156 Jan 2004 WO
2004030716 Apr 2004 WO
2004030717 Apr 2004 WO
2004064616 Aug 2004 WO
2004062710 Oct 2004 WO
2004105589 Dec 2004 WO
2005044339 May 2005 WO
2004105589 Jun 2005 WO
2005061026 Jul 2005 WO
2005123230 Dec 2005 WO
2005123230 Dec 2005 WO
2006023589 Mar 2006 WO
2006124431 Nov 2006 WO
2007010164 Jan 2007 WO
2007089855 Aug 2007 WO
2007146162 Dec 2007 WO
2007146162 Dec 2007 WO
2008037410 Apr 2008 WO
2008051994 May 2008 WO
2009026603 Dec 2008 WO
2009024566 Feb 2009 WO
2009026603 Mar 2009 WO
2009061608 May 2009 WO
2009064984 May 2009 WO
2009067071 May 2009 WO
2009071103 Jun 2009 WO
WO 2009073567 Jun 2009 WO
2009094184 Jul 2009 WO
2009132839 Nov 2009 WO
2009157877 Dec 2009 WO
2009157878 Dec 2009 WO
20090157877 Dec 2009 WO
2010028860 Mar 2010 WO
2010028860 Mar 2010 WO
2010042666 Apr 2010 WO
2010042666 Apr 2010 WO
2010052705 May 2010 WO
2010062698 Jun 2010 WO
2010096659 Oct 2010 WO
2010121820 Oct 2010 WO
2010102190 Nov 2010 WO
2011017215 Feb 2011 WO
2011025705 Mar 2011 WO
2011072337 Aug 2011 WO
2011113572 Sep 2011 WO
WO 2011112317 Sep 2011 WO
2012026978 Mar 2012 WO
2012042323 Apr 2012 WO
2012050781 Apr 2012 WO
2012051996 Apr 2012 WO
2012067585 May 2012 WO
2010042666 Jun 2012 WO
2012138604 Oct 2012 WO
2012148781 Nov 2012 WO
2012148786 Nov 2012 WO
2012148789 Nov 2012 WO
2012162515 Nov 2012 WO
20120277551 Nov 2012 WO
2012172398 Dec 2012 WO
2013019179 Feb 2013 WO
2013019994 Feb 2013 WO
2013025844 Feb 2013 WO
2013025844 Feb 2013 WO
2013027214 Feb 2013 WO
2013028809 Feb 2013 WO
2013028809 Feb 2013 WO
2013019994 Apr 2013 WO
2013025844 May 2013 WO
2013103607 Jul 2013 WO
2013103906 Jul 2013 WO
2013110906 Aug 2013 WO
2013110919 Aug 2013 WO
2013114063 Aug 2013 WO
2013121162 Aug 2013 WO
2013140346 Sep 2013 WO
2013141896 Sep 2013 WO
2013188861 Dec 2013 WO
14066254 May 2014 WO
14066255 May 2014 WO
14077082 May 2014 WO
WO 2014099631 Jun 2014 WO
2014117000 Jul 2014 WO
2014121158 Aug 2014 WO
2014121162 Aug 2014 WO
2014121163 Aug 2014 WO
2014121167 Aug 2014 WO
2014121169 Aug 2014 WO
WO 2014159918 Oct 2014 WO
2015071247 May 2015 WO
WO2017001358 Jan 2017 WO
Non-Patent Literature Citations (224)
Entry
[NPL105] Brynda, et. al., The detection of toman 2-microglcbuiin by grating coupler immunosensor with three dimensional antibody networks. Biosensors & Bioelectronics, 1999, 363-368, 14(4).
[NPL10] Wheaton, et al., Dowex Ion Exchange Resins—Fundamentals of Ion Exchange; Jun. 2000, pp. 1-9. http://www.dow.com/scripts/litorder.asp?filepath=liguidseps/pdfs/noreg/177-01837.pdf.
[NPL111] Zhong, et. al., Miniature urea sensor based on H(+)-ion sensitive field effect transistor and its application in clinical analysis, Chin. J. Biotechnol., 1992, 57-65. 8(1).
[NPL119] PCT/US2012/034331, International Search Report and Written Opinion dated Jul. 9, 2012.
[NPL121] Roberts M, The regenerative dialysis (REDY) sorbent system. Nephrology, 1998, 275-278:4.
[NPL138] U.S. Appl. No. 61/480,544.
[NPL139] U.S. Appl. No. 61/480,541 dated Apr. 29, 2011.
[NPL142] Hemametrics, Crit-Line Hematocrit Accuracy, 2003, 1-5, vol. 1, Tech Note No. 11 (Rev. D).
[NPL144] Weissman, S., et al., Hydroxyurea-induced hepatitis in human immunodeficiency virus-positive patients. Clin. Infec. Dis, (Jul. 29, 1999): 223-224.
[NPL146] PCT/US2012/034334, International Search Report, dated Jul. 6, 2012.
[NPL147] PCT/US2012/034335, International Search Report, dated Sep. 5, 2012.
[NPL148] PCT/US/2012/034327, International Search Report, dated Aug. 13, 2013.
[NPL149] PCT/US/2012/034329, International Search Report, dated Dec. 3, 2012.
[NPL161] EP13182115.9-1651 European Search Report, dated Feb. 3, 2014.
[NPL162] International Search Report from PCT/US2012/051946 dated Mar. 4, 2013.
[NPL163] U.S. Appl. No. 61/526,209.
[NPL164] Written Opinion of the International Searching Authority for PCT/US2012/049398 dated Feb. 25, 2013.
[NPL169] Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-10G: Suppl.
[NPL16] PCT/US2014/067650 International Search Report Written Opinion dated Mar. 9, 2015.
[NPL170] Bleyer, et al, Kidney International. Jun. 2006; 69(12):2268-2273.
[NPL172] U.S. Appl. No. 29/446,285, filed Feb. 1, 2013.
[NPL175] Marchant, et. al., In vivo Biocompatibility Studies 1: The Cage Implant System and a Biodegradable Hydrogel, J. Biomed. Mat. Res., 1983, 301-325: 17.
[NPL176] Bleyer, et. al., Sudden and cardiac death rated in hemodialysis patients, Kidney International. 1999, 1553-1559: 55.
[NPL178] PCT/US2012/025711, International Search Report dated Jul. 4, 2012.
[NPL179] PCT/US2013/020404, International Search Report, dated Jan. 4, 2013.
[NPL187] PCT/US2012/034333, International Preliminary Report on Patentability, dated Oct. 29, 2013.
[NPL188] PCT/US2012/034333, International Search Report, dated Aug. 29, 2012.
[NPL188] PCT/US2012/034333, International Search Report, dated Aug. 29, 2013.
[NPL189] PCT/US2012/051011, International Search Report, dated Jan. 17, 2014.
[NPL197] PCT/US2012/034330, International Preliminary Report on Patentability, dated Oct. 29, 2013.
[NPL205] Culleton, BF et al. Effect of Frequent Nocturnal Hemodialysis vs. Conventional Hemodialysis on Left Ventricular Mass and Quality of Life. 2007 Journal of the American Medical Association 298 (11), 1291-1299.
[NPL217] U.S. Appl. No. 13/757,722, filed Feb. 1, 2013.
[NPL218] U.S. Appl. No. 13/757,794, filed Feb. 2, 2012.
[NPL219] U.S. Appl. No. 13/791,755, filed Mar. 8, 2013.
[NPL21] U.S. Appl. No. 13/424,479 dated Nov. 1, 2012.
[NPL220] U.S. Appl. No. 13/757,792, filed Feb. 2, 2013.
[NPL222] U.S. Appl. No. 13/757,794, filed Feb. 2, 2013.
[NPL227] U.S. Appl. No. 13/837,287, filed Mar. 15, 2013.
[NPL22] U.S. Appl. No. 13/424,429 dated Nov. 1, 2012.
[NPL230] Redfield, et. al, Restoration of renal response to atrial natriuretic factor in experimental low-output heat failure, Am. J. Physiol., Oct 1, 1989, R917-923:257.
[NPL231] Rogoza, et. al., Validation of A&D UA-767 device for the self-measurement of blood pressure, Blood Pressure Monitoring, 2000, 227-231, 5(4).
[NPL234] Lima, et. al., An electrochemical sensor based on nanostructure hollsndite-type manganese oxide for detection of potassium ion, Sensors, Aug. 24, 2009, 6613-8625, 9.
[NPL235] Maclean, et, al., Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat, J. App. Physiol., 1998, 1583-1592, 85(4).
[NPL237] U.S. Appl. No. 13/757,693, dated Feb. 1, 2013.
[NPL238] PCT Application, PCT/US20013/020404, filed Jan. 4, 2013.
[NPL23] U.S. Appl. No. 13/424,525.
[NPL240] U.S. Appl. No. 13/836,973, filed Mar. 15, 2013.
[NPL241] U.S. Appl. No. 14/259,655, filed Apr. 23, 2014.
[NPL242] U.S. Appl. No. 14/259,589, filed Apr. 23, 2014.
[NPL243] U.S. Appl. No. 13/757,693, filed Jan. 4, 2013.
[NPL244] U.S. Appl. No. 13/836,079, filed Mar. 15, 2013.
[NPL245] U.S. Appl. No. 14/240,129, filed Aug. 22, 2013.
[NPL246] PCT/US2014/014346 International Search Report and Written Opinion.
[NPL247] U.S. Appl. No. 13/835,735, filed Mar. 15, 2013.
[NPL248] PCT/US2014/014345 International Search Report and Written Opinion, dated May 2014.
[NPL250] U.S. Appl. No. 13/835,735 IDS, filed Jun. 13, 2013.
[NPL264] PCT/US2014/014357 International Search Report and Written Opinion dated May 19, 2014.
[NPL268] Ronco et al. 2008, Cardiorenal Syndrome, Journal American College Cardiology, 52:1527-1539, Abstract.
[NPL26] Overgaard, et. al., Activity-induced recovery of excitability in K+-depressed rat soleus muscle, Am. J. p. 280: R48-R55, Jan 1, 2001.
[NPL27] Overgaard. et. al., Relations between excitability and contractility in rate soleusmuscle: role of the NA+-K+ pump and Na+-K-S gradients. Journal of Physiology, 1999, 215-225, 518(1).
[NPL306] Coast, et al. 1990, An approach to Cardiac Arrhythmia analysis Using Hidden Markov Models, IEEE Transactions on Biomedical Engineering. 1990, 37(9):826-835.
[NPL309] Weiner, et. al., Article: Cardiac Function and Cardiovascular Disease in Chronic Kidney Disease, Book: Primer on Kidney Diseases (Author: Greenberg, et al), 2009, 499-505, 5th Ed., Saunders Elsevier, Philadelphia, PA.
[NPL310] U.S. Appl. No. 61/480,532.
[NPL311] U.S. Appl. No. 13/424,479.
[NPL312] U.S. Appl. No. 13/424,429 dated Nov. 1, 2012.
[NPL313] U.S. Appl. No. 13/424,525.
[NPL317] U.S. Appl. No. 61/480,530.
[NPL318] U.S. Appl. No. 61/480,528 dated Apr. 29, 2011.
[NPL32] Secemsky, et. al, High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm, Apr. 2011, 592-598 : vol. 8, No. 4.
[NPL35] Wei, et. al., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Analytica Chimica Acta, 2001, 77-85:437.
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 1-140.
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 141-280.
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 281-420.
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 421-534.
[NPL377] European Search Report 12819714.2-1651/2739325 PCT/US2012049398, dated Jun. 12, 2015.
[NPL378] PCT/US2014/14343 Intl Search Report & Written Opinion, dated May 9, 2014.
[NPL379] PCT/US2014/014350 International Search Report and Written Opinion dated May 2014.
[NPL37] U.S. Appl. No. 13/368,225 dated Feb. 7, 2012.
[NPL380] EP 14746793 Supplementary European Search Report dated Aug. 18, 2016.
[NPL631] Understanding Dialysate Bicarbonate—A simple approach to understanding a complex equation by Fresenius Medical Care, 2011.
[NPL635] International Search Report, Application PCT/US2016/043948, dated Feb. 2, 2017.
[NPL636] Written Opinion, Application PCT/2016/043948, dated Feb. 2, 2017.
[NPL637] International Search Report, Application PCT/US2016/043935, dated Feb. 2, 2017.
[NPL638] Written Opinion, Application PCT/US2016/043935, dated Feb. 2, 2017.
[NPL639] International Search Report and Written Opinion in App. No. PCT/US2012/049398 dated Feb. 25, 2013.
[NPL640] Office Action in European App. No. 12819714.2 dated Aug. 5, 2016.
[NPL641] PCT/US2014/014343 Written Opinion dated Jan. 2, 2015.
[NPL642] PCT/US2014/014343 International Preliminary Search Report dated Mar. 18, 2015.
[NPL643] European Search Report for EP Appl. No. 1474679.4 dated Aug. 19, 2016.
[NPL644] Office Action for Chinese Application 201510761050.6 dated Aug. 2, 2017.
[NPL645] PCT/US2014/014355 International Search Report and Written Opinion dated May 1, 2014.
[NPL646] PCT/US2014/014355 International Preliminary Report dated Apr. 13, 2015.
[NPL647] EP 14746817.7 European Search Report dated Sep. 27, 2016.
[NPL650] Office Action in Chinese Application No. 201480007132.5 dated Feb. 27, 2017.
[NPL652] Office Action in Chinese Application No. 201280047921.2 dated Jun. 11, 2015.
[NPL654] International Preliminary Report from International Application No. PCT/US2014/014348 dated Jan. 9, 2015.
[NPL655] European Search Report from European Application No. EP 14746193.3 dated Oct. 19, 2016.
[NPL656] European Search Report from European Application No. EP 14746193.3 dated Jun. 8, 2016.
[NPL661] PCT/US2014/014346 Writtent Opinion dated Apr. 10, 2015.
[NPL662] PCT/US2014/014346 International Search Report and Writtent Opinion dated May 23, 2014.
[NPL663] EP 14746415.0 European Search Report dated Aug. 22, 2016.
[NPL664] Office Action in European Application No. EP 14746415.0 dated Apr. 19, 2017.
[NPL665] PCT/US2014/014357 International Search Report and Written Opinion dated May 19, 2014.
[NPL666] PCT/US2014/014357 Written Opinion dated Feb. 18, 2015.
[NPL667] European Search Report in European Application No. EP 14746010.9 dated Sep. 15, 2016.
[NPL670] Office Action in European Application No. 14746415.0 dated Apr. 19, 2017.
[NPL67] U.S. Appl. No. 13/424,490.
[NPL68] U.S. Appl. No. 13/424,517.
[NPL704] Written Opinion for PCT/US2015/060090 dated Feb. 16, 2016.
[NPL705] EP 13733819 Supplementary European Search Report dated Jan. 28, 2015.
[NPL713] EP Search Report and Opinion for Application No. 15193720.8 dated May 2, 2016.
[NPL714] Office action for European Application No. 15193720.8 dated Apr. 25, 2017.
[NPL723] PCT/US2012/051011, International Search Report and Written Opinion, dated Mar. 4, 2013.
[NPL724] Office Action for European Application No. 14746611.4 dated Jan. 3, 2017.
[NPL725] Supplemental Search Report and Search Opinion for European Application No. 14746611.4 dated Aug. 18, 2016.
[NPL728] Examination Report in Australian Application No. AU2014212135 dated May 25, 2017.
[NPL729] Office Action in Chinese Application No. 201480007138.2 dated May 31, 2017.
[NPL736] Office Action in European Application No. 14746193.3 dated Apr. 19, 2017.
[NPL739] European Office Action in Application No. 14746793.0 dated Apr. 13, 2017.
[NPL743] Examination report in Australian Application No. 2014212141 dated May 26, 2017.
[NPL744] Examination report for Australian Application 2015361083 dated Jul. 20, 2017.
[NPL750] European Search Report and Search Opinion for European Application EP15193720 dated May 2, 2016.
[NPL751] Office Action in European Application No. 15193720.8 dated Apr. 25, 2017.
[NPL752] International Preliminary Report on Patentability for PCT2015/060090 dated Jun. 13, 2017.
[NPL753] European Search Report for European Application EP 15193830.5 dated May 4, 2016.
[NPL754] Office Action for European Application No. 15193645.7 dated Apr. 21, 2017.
[NPL81] U.S. Appl. No. 61/480,539 dated Apr. 29, 2011.
[NPL84] U.S. Appl. No. 61/480,535 dated Apr. 29, 2011.
[NPL90] Nedelkov, et. al., Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry, Proteomics, 2002, 441-446, 2(4).
PCT/US2017/025868 International Search Report dated Jun. 29, 2017.
PCT/US2017/025868 Written Opinion dated Jun. 29, 2017.
PCTUS2017025858 International Search Report dated Jun. 29, 2017.
PCTUS2017025858 Written Opinion dated Jun. 29, 2017.
PCTUS2017025876 International Search Report dated Jun. 29, 2017.
PCTUS2017025876 Written Opinion dated Jun. 29, 2017.
2017-530641_OA.
[NPL381] EP 14746791 Supplementary European Search Report dated Aug. 19, 2016.
[NPL382] EP 14746799 Supplementary European Seach Report dated Aug. 18, 2016.
[NPL383] Leifer et al., A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles, J. Atmospheric & Oceanic Tech., vol. 17, pp. 1392-1402, Oct. 2000.
[NPL384] Talaia, Terminal Velocity of a Bubble Rise in a Liquid Column, World Acad. of Sci., Engineering & Tech., vol. 28, pp. 264-268, Published Jan. 1, 2007.
[NPL386] The FHN Trial Group. In-Center. Hemodialysis Six Times per Week versus Three Times per Week, New England Journal of Medicine, 2010 Abstract.
[NPL39] PCT/US2012/034332, International Search Report, dated Jul. 5, 2012.
[NPL462] Office Action in U.S. Appl. No. 13/757,717 dated Dec. 26, 2014.
[NPL463] Office Action in U.S. Appl. No. 13/757,709 dated Jun. 6, 2015.
[NPL464] Office Action in U.S. Appl. No. 13/757,709 dated Jan. 7, 2016.
[NPL465] Office Action in U.S. Appl. No. 13/757,728 dated Jan. 8, 2016.
[NPL466] Office Action in U.S. Appl. No. 13/757,728 dated Aug. 12, 2016.
[NPL467] Office Action in U.S. Appl. No. 13/757,796 dated Apr. 13, 2015.
[NPL468] Office Action in U.S. Appl. No. 13/757,796 dated Dec. 21, 2015.
[NPL469] Office Action in U.S. Appl. No. 13/836,538 dated Aug. 19, 2015.
[NPL46] Siegenthaler, et al., Pulmonary fluid status monitoring with intrathoracic impedance, Journal of Clinical Monitoring and Computing, 24:449-451, published Jan. 12, 2011.
[NPL470] Office Action in U.S. Appl. No. 13/836,538 dated Jan. 11, 2016.
[NPL471] Office Action in U.S. Appl. No. 13/836,538 dated Apr. 27, 2016.
[NPL472] Office Action in U.S. Appl. No. 13/757,722 dated May 19, 2016.
[NPL473] Office Action in U.S. Appl. No. 13/757,709 dated Jan. 7, 2016.
[NPL474] Office Action in U.S. Appl. No. 13/757,693 dated Nov. 13, 2015.
[NPL475] Office Action in U.S. Appl. No. 13/757,693 dated May 23, 2016.
[NPL476] Office Action in U.S. Appl. No. 13/757,709 dated Jun. 6, 2015.
[NPL47] U.S. Appl. No. 61/480,544.
[NPL481] Office Action in U.S. Appl. No. 13/757,794 dated Oct. 21, 2015.
[NPL482] Office Action in U.S. Appl. No. 13/757,794 dated May 2, 2016.
[NPL483] Office Action in U.S. Appl. No. 13/424,525 dated Aug. 11, 2015.
[NPL484] Office Action in U.S. Appl. No. 13/424,525 dated Feb. 25, 2016.
[NPL485] Office Action in U.S. Appl. No. 13/424,525 dated Jun. 17, 2016.
[NPL486] Office Action in U.S. Appl. No. 13/424,525 dated Oct. 20, 2016.
[NPL487] Office Action in U.S. Appl. No. 13/424,479 dated Nov. 24, 2014.
[NPL488] Office Action in U.S. Appl. No. 14/566,686 dated Apr. 28, 2016.
[NPL489] Office Action in U.S. Appl. No. 13/424,533 dated Oct. 22, 2013.
[NPL490] Office Action in U.S. Appl. No. 13/424,533 dated Apr. 18, 2014.
[NPL491] Office Action in U.S. Appl. No. 13/424,533 dated Jan. 5, 2015.
[NPL492] Office Action in U.S. Appl. No. 13/424,533 dated Jun. 2, 2015.
[NPL493] Office Action in U.S. Appl. No. 13/424,533 dated Jul. 14, 2016.
[NPL496] Welgemoed, T.J., Capacitive Deionization Technology: An Alternative to desalination Solution, Desalination 183 (2005) 327-340.
[NPL497] European Search Report for App. No. 15193645.7, dated Apr. 15, 2016.
[NPL498] European Search Report in App. No. 15193720.8 dated Apr. 26, 2016.
[NPL499] EP. App. 14746193.3 Search Report dated Oct. 19, 2016.
[NPL528] Office Action in U.S. Appl. No. 14/555,393 dated May 4, 2016.
[NPL529] Office Action in U.S. Appl. No. 14/555,393 dated Nov. 1, 2016.
[NPL530] Office Action in U.S. Appl. No. 14/555,414 dated May 4, 2016.
[NPL531] Office Action in U.S. Appl. No. 14/555,414 dated Nov. 3, 2016.
[NPL534] Office Action in U.S. Appl. No. 13/586,824 dated Dec. 21, 2015.
[NPL535] Office Action in U.S. Appl. No. 13/586,824 dated Jun. 4, 2016.
[NPL546] Office Action in Chinese Application No. 201480007138.2 dated Sep. 28, 2016.
[NPL553] Ruperez et al., Comparison of a tubular pulsatile pump and a volumetric pump for continuous venovenous renal replacement therapy in a pediatric animal model, 51 ASAIO J. 372, 372-375 (2005).
[NPL554] St. Peter et al., Liver and kidney preservation by perfusion, 359 The Lancet 604, 606(2002).
[NPL555] Dasselaar et al., Measurement of relative blood volume changes during hemodialysis: merits and limitations, 20 Nephrol Dial Transpl. 2043, 2043-2044 (2005).
[NPL556] Ralph T. Yang, Adsorbents: Fundamentals and Applications 109 (2003).
[NPL557] Henny H. Billett, Hemoglobin and Hematocrit, in Clinical Methods: The History, Physical, and Laboratory Examinations 719(HK Walker, WD Hall, & JW Hurst ed., 1990).
[NPL558] Office Action in U.S. Appl. No. 13/565,733 dated Jan. 11, 2016.
[NPL559] Office Action in U.S. Appl. No. 13/565,733 dated Jun. 11, 2015.
[NPL55] U.S. Appl. No. 13/424,454.
[NPL560] Office Action in U.S. Appl. No. 13/586,824 dated Jun. 4, 2015.
[NPL561] Office Action in U.S. Appl. No. 13/757,792 dated Jun. 2, 2016.
[NPL562] Office Action in U.S. Appl. No. 13/757,796 dated Apr. 13, 2015.
[NPL563] Office Action in U.S. Appl. No. 13/757,796 dated Dec. 21, 2015.
[NPL564] Office Action in U.S. Appl. No. 13/835,735 dated Oct. 13, 2015.
[NPL565] Office Action in U.S. Appl. No. 13/836,079 dated Apr. 17, 2015.
[NPL566] Office Action in U.S. Appl. No. 13/836,079 dated Jun. 30, 2016.
[NPL569] Office Action in U.S. Appl. No. 13/791,755 dated Mar. 16, 2016.
[NPL570] Office Action in U.S. Appl. No. 13/791,755 dated Aug. 9, 2016.
[NPL571] Office Action in U.S. Appl. No. 13/835,735 dated Jun. 16, 2016.
[NPL572] Office Action in U.S. Appl. No. 13/836,079 dated Nov. 6, 2015.
[NPL578] Office Action in U.S. Appl. No. 13/791,755 dated Sep. 10, 2015.
[NPL579] Office Action in U.S. Appl. No. 13/791,755 dated Apr. 20, 2015.
[NPL57] U.S. Appl. No. 13/424,467.
[NPL580] Office Action in U.S. Appl. No. 14/259,589 dated Nov. 4, 2016.
[NPL581] Office Action in U.S. Appl. No. 14/261,651 dated Aug. 25, 2016.
[NPL586] International Search Report from International Application No. PCT/US2014/014347 dated May 9, 2014.
[NPL587] International Search Report for PCT/US2015/060090 date of completion is Feb. 9, 2016 (3 pages).
[NPL592] St. Peter et al., Liver and Kidney Preservation by perfusion, 369 The Lancet 604, 606 (2002).
[NPL593] Office Action for Chinese Application 20148007136.3, dated Jun. 2, 2016.
[NPL593] Office Action in Chinese Application No. 20148007136.3 dated Jun. 15, 2017.
[NPL594] Office Action for Chinese Application 20148007136.3, dated Jan. 26, 2017.
[NPL597] Franks, Gene, Cabon Filtration: What it does, What it doesnt, Mar. 14, 2012, pp. 1-3.
[NPL597] Franks, Gene, Carbon Filtration: What it does, What it doesnt, Mar. 14, 2012, pp. 1-3.
[NPL598] PCT/US2014/014352 International Search Report and Written Opinion dated Jul. 7, 2014.
[NPL599] PCT/US2014/014352 International Prelminary Report on Patentability, dated Aug. 14, 2015.
[NPL600] Hamm et al,. Sorbent regenerative hemodialysis as a potential cuase of acute hypercapnia, Kidney International, vol. 21, (1982), pp. 416-418.
[NPL624] Office Action in Chinese Application No. 201480007132.5 dated Jul. 19, 2017.
[NPL627] EP Search Report for Application No. 16204175.0 dated Mar. 29, 2017.
[NPL629] Office Action for Chinese Application 201510713880.1 dated Apr. 1, 2017.
[NPL629] Office Action in Chinese Application 201510713880.1 dated Apr. 1, 2017.
[NPL62] U.S. Appl. No. 13/424,533.
Office Action in European App. No. 19158804.5, dated Sep. 4, 2020.
Related Publications (1)
Number Date Country
20190262523 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62634777 Feb 2018 US