The present invention relates to medical devices that support and surgically correct a heart valve experiencing valve regurgitation due to degenerative valvular disease. In particular, the present invention pertains to annuloplasty ring prostheses, in a set of rings, the shape of which is specifically adapted to the anatomical configuration of various forms of degenerative mitral valve disease.
The human heart has four valves; the aortic valve, the mitral valve, the pulmonary valve and the tricuspid valve. Various diseases and certain genetic defects of the heart valves can impair their proper functioning. The common defects and diseases affecting each of these valves, and the treatments thereof, are typically different.
As seen in
Several diseases can affect the structure and function of the mitral valve. The mitral valve and, less frequently, the tricuspid valve, are prone to deformation and/or dilation of the valve annulus, tearing of the chordae tendineae and leaflet prolapse, which results in valvular insufficiency wherein the valve does not close properly and allows for regurgitation or back flow from the left ventricle into the left atrium. Deformations in the structure or shape of the mitral or tricuspid valve are repairable.
Mitral regurgitation is one of the most common valvular malfunctions in the adult population, and typically involves the elongation or dilation of the posterior two-thirds of the mitral valve annulus, the section corresponding to the posterior leaflet. The most common etiology of systolic mitral regurgitation is myxomatous degeneration, also termed mitral valve prolapse (29% to 70% of cases), which afflicts about 5 to 10 percent of the population in the U.S. Women are affected about twice as often as men. Myxomatous degeneration has been diagnosed as Barlow's syndrome, billowing or ballooning mitral valve, floppy mitral valve, floppy-valve syndrome, prolapsing mitral leaflet syndrome, or systolic click-murmur syndrome. The symptoms include palpitations, chest pain, syncope or dyspnea, and a mid-systolic click (with or without a late systolic murmur of mitral regurgitation). These latter symptoms are typically seen in patients with Barlow's syndrome, where extensive hooding and billowing of both leaflets are the rule. Some forms of mitral valve prolapse seem to be hereditary, though the condition has been associated with Marfan's syndrome, Grave's disease, and other disorders.
Myxomatous degeneration involves weakness in the leaflet structure, leading to thinning of the tissue and loss of coaptation. Barlow's disease is characterized by myxoid degeneration and appears early in life, often before the age of fifty. In Barlow's disease, one or both leaflets of the mitral valve protrude into the left atrium during the systolic phase of ventricular contraction. The valve leaflets are thick with considerable excess tissue, producing an undulating pattern at the free edges of the leaflets. The chordae are thickened, elongated and may be ruptured. Papillary muscles are occasionally elongated. The annulus is dilated and sometimes calcified. Some of these symptoms are present in other pathologies as well and, therefore, the present application will refer to myxoid degeneration, which is the common pathologic feature of the various diagnoses, including Barlow's syndrome.
Other causes of mitral regurgitation include ischemic heart disease with ischemic mitral regurgitation (IMR), dilated cardiomyopathy (in which the term “functional mitral regurgitation” [FMR] is used), rheumatic valve disease, mitral annular calcification, infective endocarditis, fibroelastic deficiency (FED), congenital anomalies, endocardial fibrosis, and collagen-vascular disorders. IMR is a specific subset of FMR, but both are usually associated with morphologically normal mitral leaflets. Thus, the types of valve disease that lead to regurgitation are varied and present vastly differently.
A number of these disease states have been schematically illustrated in
As is clear from the illustrations of
Another approach to characterizing mitral valve disease is Carpentier's functional classification of the types of leaflet and chordal motion associated with mitral regurgitation. This is illustrated in
Various surgical techniques may be used to repair diseased or damaged mitral and tricuspid valves. These include but are not limited to annuloplasty (i.e., contracting the valve annulus to restore the proper size and shape of the valve), quadrangular resection of the leaflets (i.e., removing tissue from enlarged or misshapen leaflets), commissurotomy (i.e., cutting the valve commissures to separate the valve leaflets), shortening and transposition of the chordae tendoneae, reattachment of severed chordae tendoneae or papillary muscle tissue, and decalcification of valve and annulus tissue.
In patients with degenerative mitral valve disease, valve repair using mitral valvuloplasty valve reconstruction, remodeling, or annuloplasty has been the standard for surgical correction of mitral regurgitation and has provided good long-term results. A rigid support ring (e.g., Carpentier-Edwards Classic® Annuloplasty Ring), a semi-flexible ring (e.g., Carpentier-Edwards Physio® Annuloplasty Ring), or a flexible curved band (e.g., Cosgrove-Edwards® Annuloplasty System) may be used. Closed rings are typically D- or kidney-shaped and generally exhibit a minor/major axis ratio of about 3:4. Some rings are flat or planar, while others exhibit three-dimensional bows. The rings are sutured to the deformed annulus so as to theoretically restore its normal shape and size and restore apposition of the leaflets. It should be noted that not all physicians agree which ring is appropriate for any one condition.
For illustration of conventional treatment,
Despite accepted treatments for correcting mitral regurgitation, there is a need for a simpler and more effective approach that takes into account more of the common pathologies.
Annuloplasty rings designed to restore the specific morphology and dynamic characteristics of heart valves damaged by various degenerative valvular disease to overcome some of the limitations of currently available rings is described. For instance, despite satisfactory results over the years with the currently available Carpentier-Edwards Physio® ring, rings described here better meet the need for treating degenerative valvular diseases.
The annuloplasty rings will take into account the effects of degenerative valvular diseases over various heart valve sizes and optimize:
the ring shape and dimensions,
the saddle shape configuration,
the ring flexibility,
the sewing cuff of the ring, and
the method of ring selection.
For patients suffering from degenerative valvular diseases, the use of currently available rings to either restore the shape of a normal mitral valve annulus, or overcorrect the annular shape by pulling inward a segment of the annulus yields sub-optimal results. It has been discovered that an optimal technique to correct mitral valve dysfunction in degenerative valvular diseases is to restore the peculiar (abnormal) shape of the annulus characteristic of each type of valvular disease. Furthermore, the ratio between the antero-posterior diameter and the transverse diameter in prior rings is not appropriate for the peculiar ring configuration needed in degenerative valvular disease. Annuloplasty rings are designed taking into account such important characteristics as the overall shape of the annulus, the dimensions in the different orientations, and the curvature of the different segments of the annulus. The global morphology of the annulus of a heart valve affected by degenerative valvular diseases is assessed by metrology, imaging techniques, and intra-operative measurements. Mathematical models have been used to design optimal shapes and size characteristics of the ring sets.
A method of implanting an annuloplasty ring described herein therefore includes assessing the characteristic shape of an annulus of a heart valve afflicted by degenerative valvular disease. The “characteristic shape” of such an annulus includes both its size and three-dimensional shape, and may be obtained by direct or indirect measurements of the particular patient, or by a combination of measurements and an understanding of the morphological characteristic of different disease states. The characteristic shape depends, inter alia, on the nature of the valvular disease and the valve size. In general, the shape becomes more circular as the ring size increases, and conversely becomes more kidney-shaped as the ring size decreases. For example, a number of disease states have been schematically illustrated in
Similarly, it has been discovered that previous annuloplasty rings having a saddle or upward bulge in the anterior sections may not be optimal in the case of degenerative valvular disease. In particular, prior rings can suffer from ring dehiscence at the commissural segments. The saddle shape of ring sets set forth here are, therefore, optimized to conform to specific morphologies and structures of the different degenerative valvular diseases. Again, saddle shape optimization has been obtained from imaging techniques and intra-operative valve analyses. In addition to an increase in the pre-existing upward bow in the anterior section, a posterior bow has been emphasized. The double bow configuration provides a more compliant structure, particularly at the commissures.
A method of implanting an annuloplasty ring at a patient's valve annulus afflicted by a degenerative heart valve disease is disclosed herein. The method includes measuring the size of the valve annulus, and referencing the characteristic shape of the annulus of a heart valve afflicted by the degenerative heart valve disease. An annuloplasty ring is selected having a size and shape that corresponds to the characteristic shape of the degenerative heart valve disease for that annulus size. Finally, the surgeon implants the selected annuloplasty ring at the patient's valve annulus.
In the preceding method, the step of referencing may comprise echocardiographic and intraoperative measurements of the patient's valve annulus. Where the patient's valve annulus is the mitral valve annulus, the measurements typically include transverse diameter, antero-posterior diameter, and at least three oblique dimensions extending from the geometric center of the annulus to the posterior aspect of the annulus. The degenerative heart valve disease may manifest as mitral valve regurgitation.
A method of manufacturing an annuloplasty ring is disclosed herein and comprises first referencing the characteristic shape of the annulus of a heart valve afflicted by a degenerative heart valve disease. Next, an annuloplasty ring is formed with a size and shape that corresponds to the characteristic shape of the annulus. The characteristic shape may be obtained partly by echocardiographic and intraoperative measurements of an afflicted annulus. For instance, where the patient's valve annulus is the mitral valve annulus, the measurements may include transverse diameter, antero-posterior diameter, and at least three oblique dimensions extending from the geometric center of the annulus to the posterior aspect of the annulus. The degenerative heart valve disease may manifest as mitral valve regurgitation.
The present application also describes a mitral annuloplasty ring for correcting a patient's mitral valve annulus afflicted by a degenerative heart valve disease. The ring has a ring body defining a periphery with an anterior segment opposite a posterior segment, and two side segments. The ring body has a size and shape that corresponds to the characteristic shape of the heart valve afflicted by the degenerative heart valve disease for that annulus size. The characteristic shape of the annulus of the heart valve afflicted by the degenerative heart valve disease may be obtained partly by echocardiographic and intraoperative measurements of an afflicted annulus. Where the patient's valve annulus is the mitral valve annulus, the measurements may typically include transverse diameter, antero-posterior diameter, and one or more, preferably three, oblique dimensions extending from the central axis of the annulus to the posterior aspect of the annulus. The degenerative heart valve disease may manifest as mitral valve regurgitation.
In the preceding rings and methods of forming, and where the patient's valve annulus is the mitral valve annulus, the ring typically defines a major axis and a minor axis and may be selected to have a size and shape symmetric about the minor axis that preserves or restores full leaflet mobility to the patient's mitral valve. Preferably, the size and shape of the ring as proposed herein addresses the problems of excess tissue and related valve dysfunction commonly seen in degenerative valvular diseases. In one example, for rings having a size of 34 mm or larger, the size and shape of the ring conforms to the abnormal annulus shape of Barlow's disease, rather than a normal shape.
Where the patient's valve annulus is the mitral valve annulus, the ring typically defines an anterior segment opposite a posterior segment, and two side segments, and may have varying flexibility around its periphery with the posterior segment being more flexible than the anterior segment. In a preferred embodiment, the ring generally defines a D-shape in plan view with a relatively straight anterior segment opposite a curved posterior segment, and for rings having a size of 34 mm or larger the D-shape diminishes and becomes generally more circular. In another embodiment, the ring is three-dimensional with the center of the anterior segment rising to a height C and the center of the posterior segment rising to height D above a common datum plane, wherein the ratio C/D>1, preferably about 3:1
The present application also discloses a mitral annuloplasty ring, or method of forming such a ring, comprising a ring body defining a periphery with an anterior segment opposite a posterior segment, and two side segments, wherein the periphery is defined in plan view by four circular arcs, one for each segment, connected at points of tangency. Preferably, the ring defines a horizontal line segment a1-a2 having a length A along the major axis of the ring. Two of the four circular arcs defining the ring body periphery consist of portions of two congruent circles c2, c3 that include points a1 and a2, respectively, and both have a center along line segment a1-a2 and include a point b1 at the center of line segment a1-a2.
The mitral annuloplasty ring may further define a vertical line segment b1-b2 extending from center point b1 and having a length B′=(0.3125·A), a vertical line segment b1-b3 opposite b1-b2, wherein the line segment b2-b3 defines the minor axis of the ring and has a length B. A third one of the four circular arcs defining the ring body periphery consists of an arc T1-T4 that is tangent at both ends to the outer circles c2 and c3 and includes point b2, and a fourth one of the four circular arcs defining the ring body periphery consists of an arc T2-T3 that is tangent at both ends to the outer circles c2 and c3 and includes point b3. Desirably, the lengths A and B of the ring body are selected from the groups consisting of:
A mitral annuloplasty ring defined herein has a ring body defining a periphery with an anterior segment opposite a posterior segment, and two side segments. The ring body in plan view defines a major axis A and a minor axis B extending across from the anterior segment to the posterior segment. The dimensional pairs B and A are selected from the groups consisting of:
In the aforementioned mitral annuloplasty ring, the ratio of B/A is preferably greater than or equal to 0.69 and less than or equal to 0.73. Furthermore, the axial elevation of the anterior segment is preferably higher than the axial elevation of the posterior segment. In one embodiment, the ring body generally defines a D-shape in plan view with a relatively straight anterior segment opposite a curved posterior segment, and as the ring size increases the D-shape diminishes and becomes generally more circular.
Another mitral annuloplasty ring defined herein comprise a ring body defining a periphery with an anterior segment opposite a posterior segment, and two side segments, the ring body in plan view defining a major axis A and a minor axis B extending across from the anterior segment to the posterior segment, wherein A is about 34 mm and B is about 23.5 mm. In a similar ring, A is about 36 mm and B is about 25.5 mm, or A is about 38 mm and B is about 27.2 mm, or A is about 40 mm and B is about 28.7 mm. Desirably, the ring body is also three-dimensional with the center of the anterior segment rising to a height C and the center of the posterior segment rising to height D above a common datum plane, wherein the ratio C/D>1, preferably about 3:1.
Another method of manufacturing mitral annuloplasty rings disclosed herein includes forming mitral annuloplasty rings of different sizes where each ring has a ring body defining a periphery with an anterior segment opposite a posterior segment, and two side segments. Each ring body in plan view defines a major axis dimension A and a minor axis dimension B extending across from the anterior segment to the posterior segment, and each ring has an identified orifice size. The ring bodies in plan view approximate a D-shape for smaller ring sizes and have gradually more circular shapes for larger ring sizes. Desirably, the method includes forming the ring body to be three-dimensional with the center of the anterior segment rising to a height C and the center of the posterior segment rising to height D above a common datum plane, wherein the ratio C/D>1, preferably about 3:1. The shapes of the ring bodies in plan view for different orifice sizes preferably change to comply with predicted shapes of degenerative valvular disease for different annulus orifice sizes. In one example, the ratio B/A for each ring body increases with increasing ring orifice size.
In accordance with another embodiment, ring sets comprise two upward bows on both the anterior and posterior sections of the ring bodies. Desirably, the anterior bow is more pronounced than the posterior bow so as to adapt to the specific configuration of the mitral annulus. For instance, the anterior section may bow upward between 2-8 mm, preferably between 3-6 mm. In one embodiment, the anterior bow in a set of annuloplasty rings changes across ring sizes to take into account the tendency of the annulus of degenerative valves to flatten as the annulus dilates. The posterior bow desirably varies between 0.5-4 mm, and preferably between 0.5-2 mm. Again, the relative posterior bow typically flattens for larger annulus sizes.
The set of annuloplasty rings for correcting a heart valve annulus, comprises a set of rings each having a ring body able to resist deformation when subjected to the stress imparted thereon by the valve annulus. The ring bodies are each arranged around a flow axis having an upward direction and a downward direction, the downward direction corresponding to the direction of blood flow through the valve annulus when the annuloplasty ring is implanted. Each ring has an identified orifice size and the proportional shapes of the ring bodies change with increasing orifice sizes of the rings in the set. The annuloplasty rings may be configured for implantation in various positions, including the mitral and tricuspid positions. The annuloplasty rings are desirably configured for implantation in the mitral position and smaller rings in the set generally define a D-shape in plan view with a relatively straight anterior segment opposite a curved posterior segment, and as the orifice sizes of the rings become larger the D-shape diminishes and becomes generally more circular. Furthermore, the ring bodies are preferably three-dimensional with the center of the anterior segment rising to a height C and the center of the posterior segment rising to height D above a common datum plane, wherein the ratio C/D>1. Preferably, the ratio C/D is about 3:1, and the height C of the anterior segment rises up to at least 6 mm above the common datum plane. In a preferred embodiment the change in proportional shapes of the ring bodies is a change in the ratio of the heights C and D of the opposite sides.
In one particularly useful embodiment, the proportional shapes of the ring bodies change to comply with the characteristic shapes of a particular valvular disease for different annulus orifice sizes. The characteristic shapes of a particular valvular disease may be calculated from echocardiographic and intraoperative measurements. For instance, if the annuloplasty rings are configured for implantation in the mitral position and have an anterior segment opposite a posterior segment, the measurements include transverse diameter, antero-posterior diameter, and at least three oblique dimensions extending from a central axis of the annulus to the posterior aspect of the annulus.
In another aspect, a set of mitral annuloplasty rings each comprises a ring body able to resist deformation when subjected to the stress imparted thereon by the mitral valve annulus and arranged around a flow axis having an upward direction and a downward direction. The downward direction corresponds to the direction of blood flow through the mitral valve annulus when the annuloplasty ring is implanted. In accordance with a preferred embodiment, each ring body defines in plan view a major axis A and a minor axis B extending across from an anterior segment to a posterior segment, and each ring has an identified orifice size. In plan view, as seen along the flow axis, the ring bodies in a set of rings defines different proportional shapes depending on the type of degenerative valvular disease in the size of the ring. The proportional shapes of the ring bodies change with increasing orifice sizes of the rings in the set. For instance, the ratio B/A for each ring body increases with increasing orifice sizes of the rings in the set. In the latter case, the ring bodies will have a more pronounced circular shape in the larger sizes and more pronounced kidney or D-shapes in the smaller sizes. The set of rings is optimally sized to take into account more of the common pathologies. The ring bodies may also have varying flexibility around their peripheries, wherein the relative flexibility between the anterior segment and the posterior segment changes with increasing ring orifice size. Desirably, each ring further includes a suture-permeable covering over the ring body, and the covering has a smooth relatively flat inflow side and a stepped outflow side.
In a still further aspect a set of mitral annuloplasty rings each comprises a ring body able to resist deformation when subjected to the stress imparted thereon by the mitral valve annulus and arranged around a flow axis having an upward direction and a downward direction. The downward direction corresponds to the direction of blood flow through the mitral valve annulus when the annuloplasty ring is implanted. Each ring has an identified orifice size, and each ring body in plan view defines a major axis A and a minor axis B extending across from an anterior segment to a posterior segment, the ratio B/A for the ring bodies changing with increasing ring orifice size. The ring bodies are preferably D-shaped in plan view with a relatively straight anterior segment opposite a curved posterior segment, wherein the shape of the ring bodies is a more pronounced D-shape for smaller rings and becomes gradually more circular with increasing ring orifice size. The ring bodies may also be three-dimensional with the center of the anterior segment rising to a height C and the center of the posterior segment rising to height D above a common datum plane, and wherein the ratio C/D changes with increasing ring orifice size. Desirably, each ring further includes a suture-permeable covering over the ring body, and the covering has a smooth relatively flat inflow side and a stepped outflow side. The ring bodies each define a continuous or discontinuous periphery.
Features and advantages of the devices and methods disclosed herein can be understood with reference to the specification, claims, and appended drawings wherein:
FIGS. 17A/17B, 18A/18B, and 19A/19B show plan and side views of several different sized rings;
A novel set of annuloplasty rings for correcting pathologies resulting in mitral regurgitation is provided. In one embodiment, a set of rings is structurally defined by ring bodies wherein the proportional shapes of the ring bodies change with increasing identified orifice sizes of the rings in the set. Each ring includes a ring body and an outer covering of suture-permeable material, typically silicone covered with fabric. The set of rings is formed of ring bodies that will initially resist deformation when subjected to the stress imparted thereon by the mitral valve annulus, i.e. the shapes of the ring bodies are formed during manufacture and are not easily manipulated. Examples include ring bodies formed of titanium or Eligiloy® bands. In the absolute sense, however, even these relatively rigid ring bodies can be deformed with the application of sufficient force. However, a ring that is “able to resist deformation” or is “generally rigid” is not a fully flexible ring. Indeed, in a preferred embodiment the rings described herein do not possess the same degree of flexibility in every cross-plane. A desirable configuration consists of a ring that is more flexible across the antero-posterior dimension (the minor axis) than it in a cross plane transverse to the antero-posterior dimension (the major axis). This preserves the remodeling effect while permitting some flexing in the antero-posterior dimension.
A “set of annuloplasty rings” has a specific meaning of a commercial set of rings that are intentionally manufactured to have differing proportional sizes or shapes. That is, the set of rings would be marketed and/or sold together, and the definition of a set of rings excludes the forcible deformation of an individual ring by a surgeon to change its proportional shape relative to other rings in that particular commercial set. That would not be a “set” of rings with differing proportions, but instead a set of rings of the same proportion that have been sold and modified after the fact. Also, a “set of annuloplasty rings” excludes the random combination of rings of different sizes from different lines or sets of rings. For instance, a set of Carpentier-Edwards Physio® semi-flexible annuloplasty rings described above are available in sizes 24-40 mm from Edwards Lifesciences of Irvine, Calif. Each of these rings has the same size proportions across the commercial set.
As mentioned above, various annuloplasty rings of the prior art are known for providing the correction to normal mitral annulus shape. For instance,
In some instances, annuloplasty rings of the prior art can be modified or bent to lessen some of the side-effects described above.
Mitral valves remain competent (non-regurgitant) for a long time despite a severely abnormal valve morphology and structure, including with symptoms of Barlow's disease which creates the most pronounced abnormal valve morphology. Valve regurgitation occurs only when a leaflet dysfunction develops, as categorized by Carpentier in the literature, and as described above with reference to
The present invention therefore encompasses specifically-shaped rings to conform to abnormal mitral annuluses. The particular shapes of the abnormal annuluses can be obtained from morphometric studies by echocardiography, magnetic resonance imaging (MRI), ultrasound, and direct physical measurements in the operating room. Numerous careful measurements that may be vetted with statistical analysis provide the surgeon with definitions of annulus shape for different degenerative valvular diseases, and for different annulus sizes. Indeed, another aspect recognized by the present inventor is that the annuluses of different sized patients often present differently for the same degenerative valvular disease. The goal in creating specific ring shapes for all the anticipated sizes is to remodel the annulus and restore leaflet co-optation without creating SAM. As explained above, it has been found that, contrary to other diseases, a ring annuloplasty for degenerative valvular disease should restore not the shape of a normal mitral annulus, but the annular shape specific of each type of degenerative valve. One goal of the rings defines herein is to select a mitral annuloplasty ring with a long or major axis and a short or minor axis to have a size and shape symmetric about the minor axis and that preserves or restores full leaflet mobility. The size and shape of the annuloplasty ring desirably addresses the problems of excess tissue and related valve dysfunction commonly seen in degenerative valvular diseases.
The present invention therefore contemplates a set of rings of different identified or labeled sizes each having a structural ring body able to resist deformation when subjected to the stress imparted thereon by the mitral valve annulus. Each ring body is arranged around a flow axis having an upward direction and a downward direction, the downward direction corresponding to the direction of blood flow through the valve annulus when the annuloplasty ring is implanted. For different orifice sizes, the proportional shapes of the ring bodies in the set change, depending on the particular degenerative valvular disease at issue. By predicting the shape of the mitral annulus for that disease and that annulus size, a set of rings that will match most patients can therefore be provided. Exemplary ring shapes are shown and described below.
As seen in
The exemplary ring 70 in the plan view of
Table I below indicates exemplary values of the heights above a datum plane of the anterior segment C and the center of the posterior segment D of an exemplary ring 70. These magnitudes may vary by ±20%, while maintaining the approximate relative sizes across the ring set.
It should be noted that the ratio of the heights of the opposite sides, anterior and posterior, changes with increasing orifice size. The smallest ring, 24 mm, has a C/D ratio of 3.0/1.0, or about 3.0, while a mid-size ring, 34 mm, has a C/D ratio of 4.8/1.4, or about 3.4. The C/D ratio thus varies as the ring size increases. Although this ratio change may appear slight, the inventors contemplate more significant C/D ratio changes for certain degenerative conditions. The trend may be such that the larger rings have a greater or lesser C/D ratio than smaller rings, or in other words the anterior height relative to the posterior height becomes greater or lesser in larger rings. Therefore, not only can the proportional plan view shape of the rings change, but the three-dimensional shape of the rings can also change.
Two general formulas for anterior and posterior heights are given below for the exemplary ring sets, though those of skill in the art will see that not all rings heights in Table I comport with these formulas. Therefore, they should be viewed as guides only.
C=(A−10)/5
D=(C−2)/2
The interior body 74 is desirably made of material(s) that are “generally rigid” and will initially resist deformation when subjected to the stress imparted thereon by the mitral valve annulus of an operating human heart. In this sense, “deformation” means substantial permanent deformation from a predetermined or manufactured shape; the opposite concept of which is “elastic” meaning the ability to recover the ring shape in the absence of an external force. A number of “generally rigid” materials can be utilized that will perform this function, including various bio-compatible polymers and metals and/or alloys. Certain polyesters that resist deformation and also rapid degradation within the body may be used (a material that degrades slowly may provide the required initial support). In a preferred embodiment, at least an inner core or body of the annuloplasty ring of the present invention is made of a suitable metal, such as titanium or its alloys, or ELGILOY made by Elgiloy, L.P. of Elgin, Ill., U.S.A. The core or ring body may be one piece, or may include a plurality of concentric or otherwise cooperating elements.
The interface 76 is a molded silicone tube or band around the ring body 74 and the fabric covering on the exterior of the ring is desirably Dacron (polyethylene terephthalate). The tubular fabric covering around the silicone sleeve provide an interface for securing the annuloplasty ring to the mitral annulus, although other interfaces are contemplated. For example, rings having outward hooks or barbs are known in the art.
Typical mitral annuloplasty support rings have a long or major dimension and a short or minor dimension, with the conventional ratio of the minor to major dimension being at most 3:4 (75%), and typically less. The annuloplasty rings described here have a gradually increasing minor axis dimension B to major axis dimension A ratio. The dimensions A and B are measured to the inner edge of the body 74. This increasing dimensional ratio provides rings in the larger sizes that are more suited to correcting conditions where the mitral leaflet is floppy, such as the conditions shown in
Table II below indicates the approximate values of the major and minor axes as measured across the interior of an exemplary ring body 74 (dimensions A and B, respectively, in
To clarify, an exemplary 40 mm ring will have a major axis dimension A of about 40 mm and a minor axis dimension B of about 28.7 mm. The B/A ratio of the larger rings, such as 34 mm or larger, preferably ranges between 0.69 and 0.73, and the approximation “about” encompasses ring sizes within that ratio range. For instance, a 40 mm ring that has a major axis dimension A of exactly 40 mm, may have a minor axis dimension B of between 27.6 mm (0.69×40) and 29.2 mm (0.73×40). Further exemplary dimensions will be provided below for sets of rings in accordance with the present invention. Certain curvatures around the ring in plan view are particularly shaped to correct for degenerative valvular diseases.
From a surgical point of view, whatever the type of degenerative valvular disease, ring selection can be based on measurement of the intercommissural distance and the height of the anterior leaflet. As mentioned above, the particular shapes of the abnormal annuluses can be obtained from morphometric studies by echocardiography, magnetic resonance imaging (MRI), ultrasound, and direct physical measurements in the operating room. The complex morphology of the degenerative mitral valve renders particularly difficult the selection of the ring. Therefore, in addition to the classic measurements for determining ring size—the intercommissural dimension and the surface area of the anterior leaflet—at least two other measurements may be useful: the height of the anterior leaflet (AL) and the height of the three segments P1, P2, P3 of the posterior leaflet (PL). The antero-posterior diameter of the ring should, preferably, be approximately equivalent to the height of the anterior leaflet measured by appropriate sizers.
This band structure is held within a fabric sheath 110 in a manner similar to the previously described embodiments. The fabric sheath 110 is a knitted structure with optimal tension to avoid irregularities and wrinkles. Marks are typically placed on the fabric to clearly identify the commissures, and a circular mark provided (e.g., with a green suture) to delineate the enhanced sewing cuff. The longitudinal rigidity of the core, the regular contour and optimal profile of the silicone band together with the extreme thinness and optimal stretching of the fabric together comprise a unique combination of structural features which minimizes platelet deposit, fibrous proliferation, and thrombus formation.
Preferably, in order to reduce friction between adjacent bands 104, an elastomeric material such as silicone is placed between the individual band layers, such as seen at 112 in
The elastomeric material 112 also surrounds the outside of the band structure 102. As seen in
As seen in
The radial cross-sectional profile of the rings is preferably reduced as much as possible to minimize turbulence and adverse consequences such as thrombus formation and fibrous proliferation. Consequently, in the embodiment the maximum cross-section of the wire band structure 102 is limited to about 1.5 mm width and 2.5 mm height, ±10%.
The flexibility of the band structure 102 and thus the ring 100 varies in a direction away from an anterior side. That is, preferably a ratio of the stiffness of the band structure 102, as defined by the bands 104 in the longitudinal direction over the stiffness in the lateral direction is from about 1.15 to about 2.77. In the illustrated embodiment, the band structure 102 includes closely-spaced bands 104 at the anterior side seen in
The precise number of band windings forming the body element is dependent upon the materials used for the bands 104, as well as the thickness of the individual band layers forming the multi-layered structure. Generally, from about 1 to about 6 layers or individual bands 104 are used, while the thickness of each layer or band 104 may be from about 0.002 to about 0.008 of an inch.
The use of a layered structure prepared by the overlaying of one or more bands 104 ensures that the force applied against the prosthesis 100 is better distributed over the various layers of the bands. The result is a more even application of load to the entire ring prosthesis 100 in both the longitudinal and lateral directions. Additionally, the layered band structure 102 provides a unique selective flexibility which is predominant in the anterior-posterior (AP) dimension than in the transverse dimension. In other words, the layered band structure 102 has varying degrees of stiffness across different oblique planes as measured by force per unit deflection.
For large ring sizes, which may be more circular as described above, the selective flexibility may be increased to reduce the stress on the degenerative annulus and, therefore, minimize the incidence of ring dehiscence. Thus, the relative flexibility around each ring across a set of rings may differ. Stated generally, rings across a set of differently-sized rings may differ in their proportional size, shape, or physically characteristics such as flexibility. For example, in smaller rings the posterior side may be more flexible than the anterior side, as in the prior art, but for larger ring sizes in the same set of rings the posterior flexibility may be even greater relative to the anterior side. The aforementioned structure can be modified to change the flexibility around the ring. More particularly, the axial height of the bands determines their flexibility at any one point, and thus the height of the bands on the posterior side can be less than on the anterior side for greater flexibility on the posterior side. In relative terms, the axial height of the bands on the posterior side of larger rings may be less than the axial height on the anterior side for smaller rings. At the same time, the axially-oriented band structure provides enough transverse rigidity to avoid complication of the ring.
The stiffness of the rings of the present invention may be calculated as a gram force (gf) required to deflect the ring 1 mm. One exemplary range of stiffness in the antero-posterior direction is about 44.27-75.33 gf/mm, depending on the size of the ring. A 20% variance on this range is contemplated.
The rings described herein can be designed using geometric and mathematical formula.
First, as seen in
B′=(0.3125·A)−0.8(all dimensions in mm)
Still with reference to
Now with reference to
As seen in
Table III below provides values for some of the dimensions illustrated in
Table IV below indicates the approximate values of the major and minor axes (A, B) of the exemplary inner band 156 of the ring body 152 of
While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.
The present application is a continuation of U.S. application Ser. No. 12/857,113, filed Aug. 16, 2010, which is a divisional of U.S. application Ser. No. 12/209,148, filed Sep. 11, 2008, now U.S. Pat. No. 7,959,673, which is a continuation-in-part of U.S. application Ser. No. 12/028,714, filed Feb. 8, 2008, now abandoned, which in turn claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/889,178, filed Feb. 9, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3656185 | Carpentier | Apr 1972 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4275469 | Gabbay | Jun 1981 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4790844 | Ovil | Dec 1988 | A |
4917097 | Proudian et al. | Apr 1990 | A |
4993428 | Arms | Feb 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5041130 | Cosgrove et al. | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258021 | Duran | Nov 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5316016 | Adams et al. | May 1994 | A |
5344442 | Deac | Sep 1994 | A |
5396887 | Imran | Mar 1995 | A |
5397348 | Campbell et al. | Mar 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5480424 | Cox | Jan 1996 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5662704 | Gross | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5728064 | Burns et al. | Mar 1998 | A |
5733331 | Peredo | Mar 1998 | A |
5752522 | Murphy | May 1998 | A |
5776189 | Khalid | Jul 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5824069 | Lemole | Oct 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5902308 | Murphy | May 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5931868 | Gross | Aug 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6019739 | Rhee et al. | Feb 2000 | A |
6024918 | Hendriks et al. | Feb 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6183512 | Howanec, Jr. et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6258122 | Tweden et al. | Jul 2001 | B1 |
6312464 | Navia | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6391054 | Carpentier et al. | May 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6409759 | Peredo | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6802860 | Cosgrove et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6830586 | Quijano et al. | Dec 2004 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6942694 | Liddicoat et al. | Sep 2005 | B2 |
6945996 | Sedransk | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6966924 | Holmberg | Nov 2005 | B2 |
6977950 | Krishnamoorthy | Dec 2005 | B1 |
6986775 | Morales et al. | Jan 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7066954 | Ryan et al. | Jun 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166126 | Spence et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7361190 | Shaoulian et al. | Apr 2008 | B2 |
7527647 | Spence | May 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7959673 | Carpentier et al. | Jun 2011 | B2 |
7993395 | Vanermen et al. | Aug 2011 | B2 |
20010034551 | Cox | Oct 2001 | A1 |
20020129820 | Ryan et al. | Sep 2002 | A1 |
20020133180 | Ryan et al. | Sep 2002 | A1 |
20020169504 | Alferness et al. | Nov 2002 | A1 |
20020173844 | Alfieri et al. | Nov 2002 | A1 |
20030033009 | Gabbay | Feb 2003 | A1 |
20030040793 | Marquez | Feb 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20040006384 | McCarthy | Jan 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040122513 | Navia et al. | Jun 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20050004666 | Alfieri et al. | Jan 2005 | A1 |
20050043791 | McCarthy et al. | Feb 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050182487 | McCarthy et al. | Aug 2005 | A1 |
20050192666 | McCarthy | Sep 2005 | A1 |
20050197696 | Gomez Duran | Sep 2005 | A1 |
20050246014 | McCarthy | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050256568 | Lim et al. | Nov 2005 | A1 |
20050256569 | Lim et al. | Nov 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20050278022 | Lim | Dec 2005 | A1 |
20050288776 | Shaoulian et al. | Dec 2005 | A1 |
20050288777 | Rhee et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20050288780 | Rhee et al. | Dec 2005 | A1 |
20050288782 | Moaddeb et al. | Dec 2005 | A1 |
20050288783 | Shaoulian et al. | Dec 2005 | A1 |
20060015178 | Moaddeb et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025856 | Ryan et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060129236 | McCarthy | Jun 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20070038294 | Navia | Feb 2007 | A1 |
20070049952 | Weiss | Mar 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070123979 | Perier et al. | May 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173930 | Sogard et al. | Jul 2007 | A1 |
20070213582 | Zollinger et al. | Sep 2007 | A1 |
20070255396 | Douk et al. | Nov 2007 | A1 |
20090177276 | Carpentier et al. | Jul 2009 | A1 |
20090177278 | Spence | Jul 2009 | A1 |
20090192602 | Kuehn | Jul 2009 | A1 |
20090192603 | Ryan | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20090192605 | Gloss et al. | Jul 2009 | A1 |
20090192606 | Gloss et al. | Jul 2009 | A1 |
20090287303 | Carpentier | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0338994 | Oct 1989 | EP |
0595791 | May 1994 | EP |
0860151 | Aug 1998 | EP |
1034753 | Sep 2000 | EP |
2708458 | Feb 1995 | FR |
9119456 | Dec 1991 | WO |
9503757 | Feb 1995 | WO |
9640006 | Dec 1996 | WO |
9741801 | Nov 1997 | WO |
9742871 | Nov 1997 | WO |
9806329 | Feb 1998 | WO |
9911201 | Mar 1999 | WO |
9951169 | Oct 1999 | WO |
9965423 | Dec 1999 | WO |
0032105 | Jun 2000 | WO |
0119292 | Mar 2001 | WO |
0126586 | Apr 2001 | WO |
0147438 | Jul 2001 | WO |
0187191 | Nov 2001 | WO |
0203892 | Jan 2002 | WO |
03020178 | Mar 2003 | WO |
03041617 | May 2003 | WO |
2004004607 | Jan 2004 | WO |
2005004753 | Jan 2005 | WO |
2005034813 | Apr 2005 | WO |
2005082278 | Sep 2005 | WO |
2005110290 | Nov 2005 | WO |
2006041877 | Apr 2006 | WO |
2006133186 | Dec 2006 | WO |
2007-050506 | May 2007 | WO |
2007100408 | Sep 2007 | WO |
2007131513 | Nov 2007 | WO |
2008058940 | May 2008 | WO |
2008063537 | May 2008 | WO |
2008094469 | Aug 2008 | WO |
2008098226 | Aug 2008 | WO |
Entry |
---|
Adams, David, et al., “Large Annuloplasty Rings Facilitate Mitral Valve Repair in Barlow's Disease,” Society of Thoracic Surgeons 42.sup.ndAnnual Meeting, Jan. 30-Feb. 1, 2006. |
Alonso-Lei, M.D., et al., Adjustable Annuloplasty for Tricuspid Insufficiency, The annals of Thoracic Surgery, vol. 46, No. 3, pp. 368-369, Sep. 1988. |
Bolling, Mitral Valve Reconstruction in the Patient With Heart Failure, Heart Failure Reviews, 6, pp. 177-185, 2001. |
Bolling, et al., Surgical Alternatives for Heart Failure, The Journal of Heart and Lung Transplantation, vol. 20, No. 7, pp. 729-733, 2001. |
Carpentier, et al. “The ‘Physio-Ring’: An Advanced Concept in Mitral Valve Annuloplasty,” Society of Thoracic Surgeons 31.sup.st Annual meeting, Jan. 30-Feb. 2, 1995. |
Carpentier-Edwards Classic Annuloplasty Ring With Duraflo Treatment Models 4425 and 4525 for Mitral and Tricuspid Valvuloplsty, Baxter Healthcare Corporation, 1998. |
Carpentier-Edwards Pyshio Annuloplasty Ring, Edwards Lifesciences Corporation, 2003. |
Cochran, et al., Effect of Papillary Muscle Position on Mitral Valve Function: Relationship to Homografts, The Society of Thoracic Surgeons, pp. 5155-5161, 1998. |
D.C. Miller, IMR Redux—To Repair or Replace?, Journal of Thoracic & Cardiovascular Surgery, pp. 1-8, 2001. |
Flachskampf, Frank A., et al. “Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction,” American Society of Echocardiography 0894-7317/2000. |
Gatti, et al., Preliminary Experience in Mitral Valve Repair Using the Cosgrove-Edwards Annuloplasty Ring, Interactive Cardiovascular and Thoracic Surgery, vol. 2(3), pp. 256-261, 2003. |
Melo, et al., Atrioventricular Valve Repair Using Externally Adjustable Flexible Rings: The Journal of Thoracic Cardiovascular Surgery, vol. 110, No. 5, 1995. |
MGH Study Shows Mitral Valve Prolapse Not a Stroke Risk Factor, Massachusetts General Hospital, pp. 1-3, Jun. 1999. |
Salgo, et al. Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet, American Heart Association, Circulation 200; pp. 106-711. |
Seguin, et al., Advance in Mitral Valve Repair Using a Device Flexible in Three Dimensions, The St. Jude Medical-Seguin Annuloplasty Ring, ASAIO Journal, vol. 42, No. 6, pp. 368-371, 1996. |
Smolens, et al., Mitral Valve Repair in Heart Failure, The European Journal of Heart Failure 2, pp. 365-371, 2000. |
Techniques for 3D Quantitative Echocardiography, University of Washington Cardiovascular Research & Training Center Cardiac Imaging Research Lab, pp. 1-5, Oct. 2003. |
Watanabe, Nozomi, et al. “Mitral Annulus Flattens in Ischemic Mitral Regurgitation: Geometric Differences Between Inferior and Anterior Myocardial Infarction: A Real-Time 3-Dimensional Echocardiographic Study,” American Heart Association .COPYRGT.2005; ISSN: 1524-4539. |
Number | Date | Country | |
---|---|---|---|
20120215304 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
60889178 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12209148 | Sep 2008 | US |
Child | 12857113 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12857113 | Aug 2010 | US |
Child | 13422706 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12028714 | Feb 2008 | US |
Child | 12209148 | US |