The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations. In particular, the engineered degradable metal matrix composite of the present invention includes a core material and a degradable binder matrix, and which composite includes the following properties: A) repeating ceramic particle core material of 20-90 vol. %, B) degradable metallic binder/matrix, C) galvanically-active phases formed in situ from a melt and/or added as solid particles, D) degradation rate of 5-800 mg/cm2/hr., or equivalent surface regression rates of 0.05-5 mm/hr. (and all values and ranges therebetween) in selected fluid environments such as, but not limited to, freshwater, brines and/or fracking liquids at a temperature of 35-200° C., and E) hardness exceeding 22 Rockwell C (ASTM E 18-07). The method of manufacturing the composite in accordance with the present invention includes the preparation of a plurality of ceramic particles, with or without galvanically-active materials such as, but not limited to, iron, nickel, copper, titanium, or cobalt, and infiltrating the ceramic particles with a degradable metal such as, but not limited to, magnesium, aluminum, magnesium alloy or aluminum alloy.
The preparation of magnesium and aluminum degradable metal compositions, as well as degradable polymer compositions, has resulted in rapid commercialization of interventionless tools, including plugs, balls, valves, retainers, centralizers, and other applications. Generally, these products consist of materials that are engineered to dissolve or to corrode. Dissolving polymers and some powder metallurgy metals have been used in the oil and gas recovery industry.
While these prior art degradable systems have enjoyed success in reducing well completion costs, their ability to withstand deformation and to resist erosion in flowing fluid or to embed in steel casing are not suitable for a number of desired applications. For example, in the production of dissolving frac plugs, ceramic or steel inserts are currently used for gripping surfaces (to set the plug into the steel casing). Requirements for these grips include: a hardness higher than the steel casing; mechanical properties, including compression strength, deformation resistance (to retain a sharp edge); and fracture toughness that must be sufficient to withstand the setting operation where they are embedded slightly into the steel casing. Other applications such as 1) pump down seats currently fabricated from grey cast iron need to be milled out, and 2) frac balls or cones having very small overlaps with the seat ( 1/16″ or less) currently have limited pressure ratings with dissolvable materials due to limited swaging or deformation resistance of current materials.
For applications such as seats and valve components and other sealing surfaces that are subjected to sand or proppant flow, existing magnesium, aluminum, or polymer alloy degradables have insufficient hardness and erosion resistance. In frac ball applications, metallic and polymer degradable balls deform, swage, and shear in such conditions, thereby limiting their pressure rating in small overlap (e.g., below ⅛″ overlap) applications.
Sintered and cast products of metal matrix ceramic (MMC) plus metallic composites have been used in structural parts, wear parts, semiconductor substrates, printed circuit boards, high hardness and high precision machining materials (such as cutting tools, dies, bearings), and precision sinter molding materials, among other applications. These materials have found particular use in wear and high temperature highly loaded applications such as bearing sleeves, brake rotors, cutting tools, forming dies, and aerospace parts. Generally, these materials are selected from non-reactive components and are designed to not degrade, and the MMC and the cermets are formulated to resist all forms of corrosion/degradation, including wear and dissimilar metal corrosion.
To overcome the limitations of current degradable materials, a new material is required that has high strength, controlled degradation, and high hardness. Ideally, these high hardness degradable components and materials would also be able to be manufactured by a method that is low cost, scalable, and results in a controlled corrosion rate in a composite or alloy with similar or increased strength compared to traditional engineering alloys such as aluminum, magnesium, and iron and with hardnesses higher than cast iron. Ideally, traditional heat treatments, deformation processing and machining techniques could be used without impacting the dissolution rate and reliability of such components.
The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations. In one non-limiting embodiment of the invention, the engineered degradable metal matrix composite includes a core material and a degradable binder matrix, and which composite includes the following properties: A) a repeating ceramic particle core material of 20-90 vol. % (and all values and arranges therebetween), B) a degradable metallic binder/matrix of 10-75 vol. % (and all values and arranges therebetween), C) galvanically-active phases formed in-situ from a melt or added as solid particles, D) a degradation rate being controlled to rates of 5-800 mg/cm2/hr. (and all values and ranges therebetween), or equivalent surface regression rates of 0.05-5 mm/hr. (and all values and ranges therebetween) at a temperature of 35-200° C. (and all values and ranges therebetween) in 100-100,000 ppm (and all values and ranges therebetween) water or brines, and E) a hardness exceeding 22 (e.g., 22.01-60 Rockwell C and all values and ranges therebetween). Fluids seen in completion operations and which the composite of the present invention can be used in include 1) freshwater (generally 300-5000 ppm salt content), 2) drilling and completion brines including seawater which are generally chlorides and bromides of potassium, calcium, sodium, cesium, and zinc from about 5000 ppm to as high as 500,000 ppm or more, 3) some formates and acidic fluids, or 4) fluid produced or flowed back from the well formation which can include chlorides and carbonate salts. As can be appreciated, in some cases special fluids can be run in the well formation to cause or trigger the dissolution of the composite of the present invention, or a salt or chemical pills can be added to the fluid to cause or trigger the dissolution of the composite of the present invention. The present inventions also relates to the method of manufacturing the engineered degradable metal matrix composite of the present invention, which method includes the preparation of a plurality of ceramic particles, with or without galvanically-active materials such as, but not limited to, iron, nickel, copper, titanium, or cobalt, and infiltrating the ceramic particles with a degradable metal such as, but not limited to, magnesium or aluminum alloy.
In one non-limiting aspect of the invention, the invention relates to the formation of high hardness, wear-, deformation-, and erosion-resistant metal matrix composite materials that exhibit controlled degradation rates in aqueous media at temperatures that are at least 35° C., and typically about 35-200° C. (and all values and ranges therebetween) conditions. The ability to control the dissolution of a down hole well component in a variety of solutions is very important to the utilization of interventionless drilling, production, and completion tools such as sleeves, frac balls, hydraulic actuated tooling, scrapers, valves, screens, perforators and penetrators, knives, grips/slips, and the like. Reactive materials useful in this invention that dissolve or corrode when exposed to acid, salt, or other wellbore conditions have been proposed for some time. Incorporated by reference are U.S. Pat. Nos. 9,903,010; 9,757,796, and US Publication No. 2015/0239795 which describe techniques for creating and manufacturing dissolvable magnesium alloys through the addition of galvanically-active phases.
To obtain resistance to one type of degradation such as wear, but also to have high susceptibility to another type of corrosion such as aqueous corrosion, a composite containing two distinct phases was found to be required. One phase, being a high hardness phase, is present in large amounts (greater than 30 vol. %, and typically greater than 50 vol. %) of the composite. This high hardness phase provides resistance to wear and erosion and increases the hardness and deformation resistance of the composite. Useful deformation resistance is achieved by a second ceramic phase present in an amount of at least 10 vol. % in the composite. The deformation resistance can be enhanced by use of a higher aspect ratio ceramic phase. Useful hardness increases in the composite can be achieved with greater than 35% volumetric loading of the second ceramic phase, and can be further increased with increasing the loading. By selecting the right materials and controlling their percentages, distribution, and surface areas, novel composites can be fabricated that resist one type of degradation (namely wear or erosion) but are highly susceptible to other types of degradation (aqueous corrosion).
To achieve the desired degradation, galvanically-active phase(s) are required. This is achieved by adding a second phase either as a separate powder blended with the ceramic powder, a coating on the ceramic particles, and/or in situ by solidification or precipitation for the melt or solid solution. For example, when magnesium is selected as a degradable matrix alloy, the galvanically active phase in the magnesium matrix alloy can be formed of 1) iron and/or carbon (graphite) particle additions or coatings on ceramic particles, and/or 2) through the formation of Mg2M (where M is nickel, copper, or cobalt) -active intermetallics created during solidification from a highly alloyed melt. In terms of effectiveness for increasing corrosion rates, the following ranking can be used: Fe>Ni>Co>Cu, with carbon falling between nickel and copper depending on its structure. In another example, when aluminum or aluminum alloys are selected as the degradable matrix alloy, additions of gallium and/or indium are effective for managing corrosion, and such metals can be added as a coating on the ceramic particles, as intermetallic particles, and/or by adding as a solid solution from an aluminum alloy melt. Additional strengthening phases and solid solution material can be used to accelerate or inhibit corrosion rates. In general, aluminum and magnesium decrease corrosion rates, while zinc is neutral or can enhance corrosion rates. Corrosion rates of 0.02-5 mm/hr. (and all values and ranges therebetween) at a temperature of 35-200° C. for the composite can be achieved in freshwater or brine environments.
When the ceramic content is significant (greater than about 20 vol. %), the ceramic particles begin to block the corrosion process and inhibit the access of the aqueous solution to the degradable metal matrix. A 10-20 times decrease in degradation rates has been observed in a composite that includes 50 vol. % ceramic content. As such, the addition of ceramic content that is greater than about 20 vol. % has been found to result in a non-linear decrease in degradation rates. The decrease is generally more substantial with very fine particles of ceramic material (e.g., less than 100 micron). To compensate for a lower surface area exposed for dissolution due to a large inert loading of ceramic, a much higher dissolution rate in the matrix must be used to generate useful degradation rates. This can be accomplished by substituting more active catalysts (e.g., iron for nickel, nickel for copper), and by reducing the content of inhibiting phases (aluminum or other more cathodic metals). This may be done by moving to a ZK series alloy in magnesium from a WE or AZ series, for example. In general, the degradable matrix alloy and catalyst (galvanically-active phase) is selected to be 5-25 times as active (faster rate) than an equivalent non-composite system.
By selecting the right alloy chemistry and catalyst phase and its content (primarily exposed surface area), degradable MMCs are possible over temperatures ranging from 35-200° C., in low salinity (less than 1000 ppm dissolved solids, and typically 1-5 vol. % dissolved solids, normally KCl, NaCl), and heavy brines (CaCl2, CaBr2, ZnBr2, carbonates, etc.). By reducing galvanically-active phases and adding inhibiting phases, materials having suitable corrosion/degradation rates in acidic media (such as 5 vol. % HCl or formic acid) can also be created.
In summary, the present invention relates to a degradable high hardness composite material that includes 1) plurality of ceramic particles having a hardness greater than 50 HRC and up to 10,000 VHN that forms 20-90 vol. % of the composite, 2) degradable alloy matrix selected from magnesium, aluminum, zinc, or their alloys that forms 10-75 vol. % of the composite, 3) plurality of degradation catalyst particles, zones, and/or regions that are galvanically-active (wherein such particles, zones, and/or regions contain one or more galvanically-active elements such as, but not limited to, iron, nickel, copper, cobalt, silver, gold, gallium, bismuth, lead, carbon or indium metals) and whose content is engineered to control degradation rates of 5-800 mg/cm2/hr. (and all values and ranges therebetween), or equivalent surface regression rates of 0.05-5 mm/hr. (and all values and ranges therebetween) at a temperature of 35-200° C. (and all values and ranges therebetween) in 100-100,000 ppm (and all values and ranges therebetween) water or brines, and 4) ceramic particle content is 25-90 vol. % (and all values and ranges therebetween); to create a composite having a hardness of greater than 22 Rockwell C (ASTM E-18), and typically greater than 30 Rockwell C, and typically up to 70 Rockwell C (and all values and ranges therebetween).
The ceramic or intermetallic particles in the degradable high hardness composite material can be selected from metal carbides, borides, oxides, silicides, or nitrides such as, but not limited to, SiC, B4C, TiB2, TiC, Al2O3, MgO, SiC, Si3N4, ZrO2, ZrSiO4, SiB6, SiAlON, WC, or other high hardness ceramic or intermetallic phases. The particles can be hollow or solid.
The ceramic or intermetallic particles in the degradable high hardness composite material can have a particle size of 0.1-1000 microns (and all values and ranges therebetween), and typically 5-100 microns, and may optionally have a broad or multimodal distribution of sizes to increase ceramic content.
Some or all of the ceramic or intermetallic particles in the degradable high hardness composite material can be shards, fragments, preformed or machined shapes, flakes, or other large particles with dimensions of 0.1-4 mm (and all values and ranges therebetween).
The surface coating on the ceramic or intermetallic particles can include nickel, iron, cobalt, titanium, nickel and/or copper to control dissolution and wetting as well as provide some or all of the galvanic activation. The surface coating on the ceramic or intermetallic particles can include magnesium, zinc, aluminum, tin, titanium, nickel, copper and/or other wetting agent to facilitate melt infiltration and/or particle distribution. The surface coating thickness is generally at least 60 nm and typically up to about 100 microns (and all values and ranges therebetween). The surface coating generally constitutes at least 0.1 wt. % of the coated ceramic or intermetallic particle, and typically constitutes up to 15 wt. % of the coated ceramic or intermetallic particle (and all values and ranges therebetween). The ceramic or intermetallic particles can be coated by a variety of coating techniques (e.g., chemical vapor deposition, wurster coating, physical vapor deposition, hydrometallurgy processes and other chemical or physical methods.
The particle surface of the ceramic or intermetallic particles can be modified with metal particles or other techniques to control the spacing of the ceramic particles, such as through the addition of titanium, zirconium, niobium, vanadium, and/or chromium active metal particles. Generally, these metal particles constitute about 0.1-15 wt. % (and all values and ranges therebetween) of the coated ceramic or intermetallic particles. It has been found that by coating the ceramic or intermetallic particles with such metals prior to adding the matrix metal, the metal coating facilitates in the building of a metal layer on the ceramic or intermetallic particles to create a boundary between the ceramic or intermetallic particles in the final composite, thereby effectively separating the ceramic or intermetallic particles in the final composite by at least 1.2 and typically at least 2× the coating thickness of the metal coating on the ceramic or intermetallic particles that exist on the ceramic or intermetallic particles prior to the addition of the matrix metal.
The degradable alloy matrix includes magnesium, aluminum, zinc, and their combinations and alloys which forms 10-75 vol. % of the composite, and the composite may optionally contain one or more active metals such as calcium, barium, indium, gallium, lithium, sodium, or potassium. Such active metals, when used, constitute about 0.05-10 wt. % (and all values and ranges therebetween) of the metal matrix material.
The degradation rate of the degradable high hardness composite material can be 0.01-5 mm/hr. (and all values and ranges therebetween) in fresh water or brines at a temperature of 35-200° C. (and all values and ranges therebetween).
The degradation rate of the degradable high hardness composite material can be engineered to be 0.05-5 mm/hr. (and all values and ranges therebetween) in a selected brine composition with a total dissolved solids of 300-300,000 ppm (and all values and ranges therebetween) of chloride, bromide, formate, or carbonate brines at selected temperatures of 35-200° C. (and all values and ranges therebetween).
The degradable high hardness composite material can have a compression strength of greater than 40 ksi, and typically greater than 80 ksi, and more typically greater than 100 ksi.
The degradable high hardness composite material can be fabricated by powder metallurgy, melt infiltration, squeeze casting, or other metallurgical process to create a greater than 92% pore-free structure, and typically greater than 98% pore-free structure.
The degradable high hardness composite material can be deformed and/or heat treated to develop improved mechanical properties, reduce porosity, or to form net shape or near net shape dimensions.
The degradable high hardness composite material can be useful in oil and gas or other subterranean operations, including a seat, seal, ball, sleeve, grip, slip, valve, valve component, spring, retainer, scraper, poppet, penetrator, perforator, shear, blade, insert, or other component requiring wear, erosion, or deformation resistance, edge retention, or high hardness.
The degradable high hardness composite material can be used as a portion of a component or structure, such as a surface coating or cladding, an insert, sleeve, ring, or other limited volume portion of a component or system
The degradable high hardness composite material can be applied to a component surface through a cold spray, thermal spray, or plasma spray process
The degradable high hardness composite material can be fabricated using pressure-assisted or pressureless infiltration of a bed of ceramic particles, wherein the galvanic catalyst, dopant, or phase is formed in situ (from solidification and precipitation of the melt), ex situ (from addition of particles or coatings in the powder bed or preform) sources, and/or formed in situ prior to or during infiltration or composite preparation.
The degradable high hardness composite material can be fabricated through powder metallurgy processes, including mixing of powders, compacting, and sintering, or alternate isostatic pressing, spark plasma sintering, powder forging, injection molding, or similar processes to produce the desired composite.
The degradable high hardness composite material can have a ceramic phase that contains flakes, platelets, whiskers, or short fibers with an aspect ratio of at least 4:1, and typically 10:1 or more.
These and other advantages of the present invention will become more apparent to those skilled in the art from a review of the figures and the description of the embodiments and claims.
The present invention relates to the composition and production of an engineered degradable metal matrix composite that is useful in constructing temporary systems requiring wear resistance, high hardness, and/or high resistance to deformation in water-bearing applications such as, but not limited to, oil and gas completion operations. In one non-limiting embodiment of the invention, the engineered degradable metal matrix composite includes a core material and a degradable binder matrix, and which composite includes the following properties: A) repeating ceramic particle core material of 20-90 vol. % of the composite; B) degradable metallic binder/matrix of 10-75 vol. % of the composite; C) galvanically-active phases formed in situ from a melt and/or added as solid particles that form 0.03-10 vol. % (and all values and ranges therebetween) of the composite; D) degradation rate being controlled to 0.1-5 mm/hr. in selected fluid environments including freshwater and brines at 35-200° C.; and E) hardness of the composite that exceeds 25 Rockwell C. The present inventions also relates to the method of manufacturing the engineered degradable metal matrix composite, which method includes the preparation of a plurality of ceramic particles, with or without galvanically-active materials such as, but not limited to, iron, nickel, copper, or cobalt, and infiltrating the ceramic particles with a degradable metal such as, but not limited to, magnesium or aluminum alloy. The invention also relates to the formation of high hardness, wear-, deformation-, and erosion-resistant metal matrix composite materials that exhibit controlled degradation rates in aqueous media at a temperature of at least 35° C., and typically about 35-200° C. (and all values and ranges therebetween) conditions. The ability to control the dissolution of a down hole well component in a variety of solutions is very important to the utilization of interventionless drilling, production, and completion tools such as sleeves, frac balls, hydraulic actuated tooling, scrapers, valves, screens, perforators and penetrators, knives, grips/slips, and the like.
The invention combines corrodible materials that include highly electronegative metals of magnesium, zinc, and/or aluminum, combined with a high hardness, generally inert phase such as SiC, B4C, WC, TiB2, Si3N4, TiC, Al2O3, ZrO2, high carbon ferrochrome, Cr2O3, chrome carbide, or other high hardness ceramic, and a more electropositive, conductive phase generally selected from copper, nickel, iron, silver, lead, gallium, indium, tin, titanium, and/or carbon and their alloys or compounds. Tool steel, hard amorphous or semi-amorphous steel, and/or stellite alloy-type shards, shavings or particles can offer both galvanic and wear resistance. Other electronegative and electropositive combinations can be envisioned, but are generally less attractive due to cost or toxicity. The more electropositive phase should be able to sustain current, e.g., it should be conductive to drive the galvanic current. The ceramic phase is generally dispersed particles which are fine enough to be able to be easily removed by fluid flow and to not plug devices or form restrictions in a wellbore. It is generally accepted that particles having a size that is less than ⅛″ are sufficient for this purpose, although most composites of the present invention utilize much finer particles, generally in the 100 mesh, and very often 200 or 325 mesh sizes, down to 2500 mesh (5 micron and below for increase hardness).
The ceramic or intermetallic, high hardness particles are dispersed in an electronegative metal or metal alloy matrix at concentrations at least 25 vol. %, and typically greater than 50 vol. % of the composite. Very high compressive strength and hardness can be achieved when sufficient ceramic volume has been obtained to limit the effects of the electropositive metal matrix on mechanical properties. This property can be obtained at lower ceramic content when using high aspect ratio particles, such as whiskers, flakes, platelets, or fibers, and substantial deformation resistance can be obtained with higher aspect ratio particles.
Because the generally inert ceramic phase (inert primarily due to low conductivity) inhibits corrosion rates, higher corrosion rate electronegative-electropositive alloy couples are generally used. For example, in a magnesium system, eliminating the addition of aluminum from the alloy (to make the matrix more electronegative), or shifting from copper additions to nickel or even iron (with carbon) additions can be used to increase corrosion rates. For example, using a freshwater or low temperature combination metal matrix (such as Terves FW) instead of a higher temperature brine dissolvable (such as TervAlloy™ TAx-100E and TAx-50E) can be used to sufficiently boost the corrosion rate of a 50 vol. % B4C—Mg containing composite to reach 35 mg/cm2/hr. at 70-90° C. The addition of carbonyl iron particles to the magnesium alloy matrix can be used to form a useful lower temperature brine, or freshwater dissolvable metal matrix composite. Terves FW, TervAlloy™ TAx-100E and TAx-50E are magnesium or magnesium alloys with 0.05-5 wt. % nickel, and/or 0.5-10 wt. % copper additions. In one non-limiting embodiment, magnesium alloy includes over 50 wt. % magnesium and one or more metals selected from the group consisting of aluminum, boron, bismuth, zinc, zirconium, and manganese, and optionally 0.05-35 wt. % nickel, copper and/or cobalt. In another non-limiting embodiment, the magnesium alloy includes over 50 wt. % magnesium and one or more metals selected from the group consisting of aluminum in an amount of about 0.5-10 wt. %, zinc in amount of about 0.1-6 wt. %, zirconium in an amount of about 0.01-3 wt. %, manganese in an amount of about 0.15-2 wt. %; boron in amount of about 0.0002-0.04 wt. %, and bismuth in amount of about 0.4-0.7 wt. %, and optionally 0.05-35 wt. % nickel, copper and/or cobalt. In another non-limiting embodiment, the magnesium alloy includes over 50 wt. % magnesium and one or more metals selected from the group consisting of aluminum in an amount of about 0.5-10 wt. %, zinc in amount of about 0.1-3 wt. %, zirconium in an amount of about 0.01-1 wt. %, manganese in an amount of about 0.15-2 wt. %; boron in amount of about 0.0002-0.04 wt. %, and bismuth in amount of about 0.4-0.7 wt. %, and optionally 0.05-35 wt. % nickel, copper and/or cobalt. In another non-limiting embodiment, the magnesium alloy comprises at least 85 wt. % magnesium; one or more metals selected from the group consisting of 0.5-10 wt. % aluminum, 0.05-6 wt. % zinc, 0.01-3 wt. % zirconium, and 0.15-2 wt. % manganese; and optionally about 0.05-45 wt. % of a secondary metal selected from the group consisting of copper, nickel, cobalt, titanium and iron. In another non-limiting embodiment, the magnesium alloy composite comprises 60-95 wt. % magnesium; 0.01-1 wt. % zirconium; and optionally about 0.05-45 wt. % copper, nickel, cobalt, titanium and/or iron. In another non-limiting embodiment, the magnesium alloy comprises 60-95 wt. % magnesium; 0.5-10 wt. % aluminum; 0.05-6 wt. % zinc; 0.15-2 wt. % manganese; and optionally about 0.05-45 wt. % of copper, nickel, cobalt, titanium and/or iron. In another non-limiting embodiment, the magnesium alloy comprising 60-95 wt. % magnesium; 0.05-6 wt. % zinc; 0.01-1 wt. % zirconium; and optionally about 0.05-45 wt. % of copper, nickel, cobalt, titanium and/or iron. In another non-limiting embodiment, the magnesium alloy comprises over 50 wt. % magnesium; one or more metals selected from the group consisting of 0.5-10 wt. % aluminum, 0.1-2 wt. % zinc, 0.01-1 wt. % zirconium, and 0.15-2 wt. % manganese; and optionally about 0.05-45 wt. % of copper, nickel and/or cobalt. In another non-limiting embodiment, the magnesium alloy comprises over 50 wt. % magnesium; one or more metals selected from the group consisting of 0.1-3 wt. % zinc, 0.01-1 wt. % zirconium, 0.05-1 wt. % manganese, 0.0002-0.04 wt. % boron and 0.4-0.7 wt. % bismuth; and optionally about 0.05-45 wt. % of copper, nickel, and/or cobalt. In another non-limiting embodiment, the magnesium alloy comprises 60-95 wt. % magnesium and 0.01-1 wt. % zirconium. In another non-limiting embodiment, the magnesium alloy comprises over 50 wt. % magnesium and one or more metals selected from the group consisting of aluminum in an amount of about 0.5-10 wt. %, zinc in amount of about 0.1-3 wt. %, zirconium in an amount of about 0.01-1 wt. %, manganese in an amount of about 0.15-2 wt. %, boron in amount of about 0.0002-0.04 wt. %, and bismuth in amount of about 0.4-0.7 wt. %.
The electropositive driving phase can be added by adding soluble or insoluble electropositive particles to the ceramic powder prior to melt infiltration or mixing into a melt by adding the electropositive material as a coating or cladding to the inert ceramic phase, or by adding as an alloying element that forms a fully liquid phase with the electropositive metal or alloy. In the liquid phase, generally an electropositive metal that forms a eutectic with the electronegative metal and an intermetallic of the electropositive metal can be used. Non-limiting examples of such coatings or claddings are Mg—Ni, Mg—Cu, Mg—Co, and Mg—Ag.
The electropositive driving phase can also be added to electropositive metal powders, along with the ceramic phase, and the dissolvable MMC fabricated from powder metallurgy or spray consolidation techniques such as press and sinter, hot isostatic pressing, spark plasma sintering, powder sinter-forging, direct powder extrusion, thermal spray, cold spray, plasma spray, or other powder consolidation techniques.
For melt infiltration of a ceramic preform or powder bed, techniques that can be used include pressureless infiltration (when the ceramic and electronegative metal wet each other, or when the ceramic has been coated with a wetting phase such as a eutectic forming or other easily wet metal), or pressure-assisted infiltration technique such as squeeze casting, high pressure die casting (into the ceramic preform), vacuum casting, or pressure-assisted casting techniques, among others. Particularly at lower ceramic volumes (25-50 vol. %), the particles can be stir-cast, thixocast, or slurry cast by mixing the ceramic (and electropositive material, if in powder form) and formed in the liquid plus ceramic or semi-solid state. Net shape or near net shape fabrication techniques are preferred due to machining cost of precision grinding of the high hardness materials. Active wetting metals such as titanium, zirconium, vanadium, niobium, silicon, boron, and palladium can be added to the melt system to enhance wetting. Surface wetting coatings, often eutectic liquid formers such as niobium, zirconium, magnesium, aluminum, silicon, and/or bismuth can provide strong wetting ability to enhance pressureless infiltration.
After consolidation, the compact can be further formed by forging, extrusion, or rolling. The compact can also be taken back to an elevated temperature, normally in the semi-solid region between the electropositive alloy liquidus and solidus, and formed using closed die forming, squeeze casting, thixocasting, or other semi-solid forming technique.
The cast or formed part can be machined to close tolerances using grinding or electrode discharge machining (EDM). Diamond, CBN, and other high hardness tools can also be used.
The degradable metal matrix composite can be applied as a coating, such as by cold spray, to a separate part, to impart wear-, erosion-, or deformation-resistance, or to slow initial dissolution rates to give added life. A higher degradation rate core is generally desired. In one embodiment, the MMC can be created by surface alloying the higher degradation rate, or lower hardness core, with the ceramic phase by such techniques as friction stir surfacing, supersonic particle spray, or reactive heat treatments (such as boronizing). Other routes to a dual structured component include overcasting or overmolding, or physical assembly with or without an adhesive or bonding step such as forging, hot pressing, friction welding, or use of adhesives.
After machining, parts may be further coated or modified to control initiation of dissolution or to further increase hardness or ceramic content. Techniques such as cold spray, thermal spray, friction surfacing, powder coating, anodizing, painting, dip coating, e-coating, etc. may be used to add a surface coating or otherwise modify the surface.
The degradable MMCs of the present invention are particularly useful in the construction of downhole tools for oil and gas, geothermal, and in situ resource extraction applications. The higher hardness enables tools such as reamers, valve seats, ball seats, and grips to be engineered to be fully degradable, eliminating debris as well as the need to retrieve or drill-out the tools. The degradable MMC is a useful, degradable substitute for hardened cast iron in applications such as plug seats and gripping devices for bridge and frac plugs. The degradable MMC is also useful for the design and production of cement plugs, reamers, scrapers, and other devices.
The deformation resistance of the degradable MMCs allows the construction of higher pressure rating valve and plug systems than non-MMC degradable products. For example, a degradable MMC frac ball can withstand 15,000 psi across a 1/16″ seat overlap compared to less than 7,000 psi for a conventional degradable magnesium alloy or polymer ball.
The composite material is formed by 1) providing ceramic particles, 2) providing a galvanically-active material such as iron, nickel, copper, titanium, and/or cobalt, 3) combining the ceramic particles and galvanically-active material with molten matrix material such as molten magnesium, molten aluminum, molten magnesium alloy or molten aluminum alloy, and 4) cooling the mixture to form the composite material. The cooled and solid dissolvable metallic matrix generally includes over 50 wt. % magnesium or aluminum. The ceramic material is generally coated with the galvanically-active material prior to adding the motel matrix material; however, this is not required.
The galvanically-active material coating on the ceramic material, when precoated, can be applied by any number of techniques (e.g., vapor deposition, dipping in molten metal, spray coating, dry coated and then heated, sintering, melt coating technique, etc.). Generally, each of the coated ceramic particles are formed of 30-98 wt. % ceramic material (and all values and ranges therebetween), and typically greater than 50 wt. % ceramic material. The thickness of the galvanically-active material coating is generally less than 1 mm, and typically less than 0.5 mm.
After the composite is formed, the ceramic material constitutes about 10-85 wt. % (and all values and arranges therebetween) of the composite, the galvanically-active material constitutes about 0.5-30 wt. % (and all values and arranges therebetween) of the composite, and the molten matrix material constitutes about 10-85 wt. % (and all values and arranges therebetween) of the composite.
The dissolution rate of the composite is at least 5-800 mg/cm2/hr., or equivalent surface regression rates of 0.05-5 mm/hr. at a temperature of 35-200° C. in 100-100,000 ppm water or brines, and typically at least 45 mg/cm2/hr. in 3 wt. % KCl water mixture at 90° C., more typically up to 325 mg/cm2/hr. in 3 wt. % KCl water mixture at 90° C.
In one embodiment, the reactivity of an electrolytically activated reactive composite of magnesium or zinc and iron with ceramic reinforcements is controlled to produce a dissolution rate of 1-10 mm/day (and all values and ranges therebetween), or 0.5-800 mg/cm2/hr. (and all values and ranges therebetween) (depending on density) by controlling the relative phase amounts and interfacial surface area of the two galvanically-active phases. In one example, a mechanical mixture of iron or graphite and magnesium is prepared by mechanical milling of magnesium or magnesium alloy powder and 40 vol. % of 30-200 micron iron graphite (and all values and ranges therebetween) graphite or 10 wt. % nickel-coated graphite particles, followed by consolidation using spark plasma sintering or powder forging at a temperature below the magnesium or zinc melting point. The resultant structure has an accelerated rate of reaction due to the high exposed surface area of the iron or graphite cathode phase, but low relative area of the anodic (zinc or magnesium) reactive binder.
The degradable MMC can be used for powder metallurgical processing.
In general, larger ceramic particles, typically above 40 mesh, including flake, impart great impingement erosion resistance at higher angels, while smaller particles, typically below 200 mesh, provide higher sliding wear resistance. Larger particles can also facilitate gripping (in frac plug grips/slips, to facilitate locking a device to a mating surface), such as when mm-sized crushed carbides are added to a dissolvable matrix. Such embedded metal matrix composites can also be used in reamer-type applications as abrasives, such as by adding larger chunks or even preformed shapes, such as crushed, machined, or formed carbides or tool steel discreet elements.
Boron carbide powder with an average particle size of 325 mesh is surface modified by the addition of zinc by blending 200 grams of B4C powder with 15 grams of zinc powder and heated in a sealed, evacuated container to 700° C. to distribute the zinc to the particle surfaces. The zinc-coated B4C powder is placed into a graphite crucible and heated to 500° C. with an inert gas cover. In a separate steel crucible, 500 grams of Terves FW low temperature dissolvable degradable magnesium alloy is melted to a temperature of 720° C. The degradable magnesium alloy is poured into the 8-inch deep graphite crucible containing the zinc-coated B4C particles sufficient to cover the particles by at least two inches and allowed to solidify.
The material had a hardness 52 Rockwell C, and a measured dissolution rate of 35 mg/cm2/hr. in 3 vol. % KCl at 90° C.
300 g of 600 mesh boron carbide powder was placed to a depth of 4″×2″ diameter by ten-inch deep graphite crucible containing a two inch layer of ¼″ steel balls (600 g of steel) covered by a 325 mesh steel screen and heated to 500° C. under inert gas. The graphite crucible was heated inside of a steel tube, which was heated with the crucible. Five pounds of Terves FW degradable magnesium alloy were melted in a steel crucible to a temperature of 730° C. and poured into the graphite crucible sufficient to cover the B4C and steel balls to reach within two inches of the top of the graphite crucible. The crucible was removed from the furnace and transferred to a 12-ton carver press, where a die was rammed into the crucible forcing the magnesium into and through the powder bed. The crucible was removed from the press and allowed to cool.
The MMC section was separated from the non-MMC material and showed a dissolution rate of 45 gm/cm2/hr. at 90° C. in 3 vol. % KCl solution. The measured hardness was 32 Rockwell C.
125 grams of 325 mesh B4C powder was blended with 4 grams of 100 mesh titanium powder and sintered at 500° C. to form a rigid preform. A 500 gram ingot of TAx-50E dissolvable metal alloy was placed on top of the preform in a graphite crucible. The crucible was placed in the inert gas furnace and heated to 850° C. for 90 minutes to allow for infiltration of the preform. The infiltrated preform had a hardness of 24 Rockwell C.
Degradable MMC from Example 3 was machined into a frac ball. A 3″ ball (3.000+/−0.002), when tested against a cast iron seat with a 45° seat angle and inner diameter of 2.896″, was shown to hold greater than 15,000 psig pressure at room temperature. The degradable magnesium frac ball was machined from a high dissolution rate dissolving alloy having a dissolution rate of greater than 100 mg/cm2/hr. at 90° C. The frac ball was undermachined by 0.010″, to 2.980+/−0.002, and the degradable MMC was applied using cold spray application from a powder generated by ball milling 400 grams of standard degradable alloy machine chips with 600 grams 325 mesh of B4C powder using a centerline Windsor SST cold spray system and nitrogen gas as the carrier gas. The ball was then machined to 3″+/−0.002″. The ball held >10,000 psig against a 45° cast iron seat at 2.875″ inner diameter. The frac ball was designed to give two hours of operating time, before dissolving rapidly in less than 48 hours at 90° C. in 3% KCl brine solution.
Degradable MMC from Example 3 was machined into a frac ball except that TAx-100E was used instead of TAx-50E. The TAx-100E included trace amounts of iron to form a composite having a hardness of 74HRB and a dissolution rate of 34 mg/cm2/hr. in 3% vol. % KCl at 90° C. during a six-hour test. 125 grams of 325 mesh B4C powder was blended with 4 grams of 100 mesh titanium powder and sintered at 500° C. to form a rigid preform. A 500 gram ingot of TAx-100E with 0.1% iron was placed on top of the preform in a steel crucible. The crucible was placed in the inert gas furnace and heated to 850° C. for 90 minutes to allow for infiltration of the preform. The infiltrated preform had a hardness of 74HRB and a dissolution rate of 34 mg/cm2/hr. in 3% KCl at 90° C. during six hours of brine exposure.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in the constructions set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. The invention has been described with reference to preferred and alternate embodiments. Modifications and alterations will become apparent to those skilled in the art upon reading and understanding the detailed discussion of the invention provided herein. This invention is intended to include all such modifications and alterations insofar as they come within the scope of the present invention. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention, which, as a matter of language, might be said to fall there between. The invention has been described with reference to the preferred embodiments. These and other modifications of the preferred embodiments as well as other embodiments of the invention will be obvious from the disclosure herein, whereby the foregoing descriptive matter is to be interpreted merely as illustrative of the invention and not as a limitation. It is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims.
The present invention is a continuation application of U.S. patent application Ser. No. 16/045,924 filed Jul. 26, 2018, which in turn claims priority on U.S. Provisional Application Ser. No. 62/537,707 filed Jul. 27, 2017, which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1468905 | Herman | Jul 1923 | A |
1558066 | Veazey et al. | Oct 1925 | A |
1880614 | Wetherill et al. | Oct 1932 | A |
2352993 | Albertson | Jul 1933 | A |
2011613 | Brown et al. | Aug 1935 | A |
2094578 | Blumenthal et al. | Oct 1937 | A |
2189697 | Baker | Feb 1940 | A |
2222233 | Mize | Nov 1940 | A |
2225143 | Baker et al. | Dec 1940 | A |
2238895 | Gage | Apr 1941 | A |
2261292 | Salnikov | Nov 1941 | A |
2294648 | Ansel et al. | Sep 1942 | A |
2301624 | Holt | Nov 1942 | A |
2394843 | Cook et al. | Feb 1946 | A |
2672199 | McKenna | Mar 1954 | A |
2753941 | Hebard et al. | Jul 1956 | A |
2754910 | Derrick et al. | Jul 1956 | A |
2933136 | Ayers et al. | Apr 1960 | A |
2983634 | Budininkas et al. | May 1961 | A |
3057405 | Mallinger | Oct 1962 | A |
3066391 | Vordahl et al. | Dec 1962 | A |
3106959 | Huitt et al. | Oct 1963 | A |
3142338 | Brown | Jul 1964 | A |
3152009 | DeLong | Oct 1964 | A |
3180728 | Pryor et al. | Apr 1965 | A |
3180778 | Rinderspacher et al. | Apr 1965 | A |
3196949 | Thomas | Jul 1965 | A |
3226314 | Wellington et al. | Dec 1965 | A |
3242988 | McGuire, Jr. et al. | Mar 1966 | A |
3295935 | Pflumm et al. | Jan 1967 | A |
3298440 | Current | Jan 1967 | A |
3316748 | Lang et al. | May 1967 | A |
3326291 | Zandemer | Jun 1967 | A |
3347714 | Broverman et al. | Oct 1967 | A |
3385696 | Hitchcock et al. | May 1968 | A |
3390724 | Caldwell | Jul 1968 | A |
3395758 | Kelly et al. | Aug 1968 | A |
3406101 | Kilpatrick | Oct 1968 | A |
3416918 | Roberts | Dec 1968 | A |
3434539 | Merritt | Mar 1969 | A |
3445148 | Harris et al. | May 1969 | A |
3445731 | Saeki et al. | May 1969 | A |
3465181 | Colby et al. | Sep 1969 | A |
3489218 | Means | Jan 1970 | A |
3513230 | Rhees et al. | May 1970 | A |
3600163 | Badia et al. | Aug 1971 | A |
3602305 | Kisling | Aug 1971 | A |
3637446 | Elliott et al. | Jan 1972 | A |
3645331 | Maurer et al. | Feb 1972 | A |
3660049 | Benjamin | May 1972 | A |
3765484 | Hamby, Jr. et al. | Oct 1973 | A |
3768563 | Blount | Oct 1973 | A |
3775823 | Adolph et al. | Dec 1973 | A |
3816080 | Bomford et al. | Jun 1974 | A |
3823045 | Hielema | Jul 1974 | A |
3878889 | Seabourne | Apr 1975 | A |
3894850 | Kovalchuk et al. | Jul 1975 | A |
3924677 | Prenner et al. | Dec 1975 | A |
3957483 | Suzuki | May 1976 | A |
4010583 | Highberg | Mar 1977 | A |
4039717 | Titus | Aug 1977 | A |
4050529 | Tagirov et al. | Sep 1977 | A |
4157732 | Fonner | Jun 1979 | A |
4248307 | Silberman et al. | Feb 1981 | A |
4264362 | Serveg et al. | Apr 1981 | A |
4284137 | Taylor | Aug 1981 | A |
4292377 | Petersen et al. | Sep 1981 | A |
4368788 | Drake | Jan 1983 | A |
4372384 | Kinney | Feb 1983 | A |
4373584 | Silberman et al. | Feb 1983 | A |
4373952 | Parent | Feb 1983 | A |
4374543 | Richardson | Feb 1983 | A |
4384616 | Dellinger | May 1983 | A |
4395440 | Abe et al. | Jul 1983 | A |
4399871 | Adkins et al. | Aug 1983 | A |
4407368 | Erbstoesser | Oct 1983 | A |
4422508 | Rutledge, Jr. et al. | Dec 1983 | A |
4450136 | Dudek et al. | May 1984 | A |
4452311 | Speegle et al. | Jun 1984 | A |
4475729 | Costigan | Oct 1984 | A |
4498543 | Pye et al. | Feb 1985 | A |
4499048 | Hanejko | Feb 1985 | A |
4499049 | Hanejko | Feb 1985 | A |
4524825 | Fore | Jun 1985 | A |
4526840 | Jerabek | Jul 1985 | A |
4534414 | Pringle | Aug 1985 | A |
4539175 | Lichti et al. | Sep 1985 | A |
4554986 | Jones | Nov 1985 | A |
4619699 | Petkovic-Luton et al. | Oct 1986 | A |
4640354 | Boisson | Feb 1987 | A |
4648901 | Murray et al. | Mar 1987 | A |
4655852 | Rallis | Apr 1987 | A |
4664962 | DesMarais, Jr. | May 1987 | A |
4668470 | Gilman et al. | May 1987 | A |
4673549 | Ecer | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4678037 | Smith | Jul 1987 | A |
4681133 | Weston | Jul 1987 | A |
4688641 | Knieriemen | Aug 1987 | A |
4690796 | Paliwal | Sep 1987 | A |
4693863 | Del Corso et al. | Sep 1987 | A |
4703807 | Weston | Nov 1987 | A |
4706753 | Ohkochi et al. | Nov 1987 | A |
4708202 | Sukup et al. | Nov 1987 | A |
4708208 | Halbardier | Nov 1987 | A |
4709761 | Setterberg, Jr. | Dec 1987 | A |
4714116 | Brunner | Dec 1987 | A |
4716964 | Erbstoesser et al. | Jan 1988 | A |
4719971 | Owens | Jan 1988 | A |
4721159 | Ohkochi et al. | Jan 1988 | A |
4738599 | Shilling | Apr 1988 | A |
4741973 | Condit et al. | May 1988 | A |
4768588 | Kupsa | Sep 1988 | A |
4775598 | Jaeckel | Oct 1988 | A |
4784226 | Wyatt | Nov 1988 | A |
4805699 | Halbardier | Feb 1989 | A |
4817725 | Jenkins | Apr 1989 | A |
4834184 | Streich et al. | May 1989 | A |
H635 | Johnson et al. | Jun 1989 | H |
4853056 | Hoffman | Aug 1989 | A |
4869324 | Holder | Sep 1989 | A |
4869325 | Halbardier | Sep 1989 | A |
4875948 | Vernecker | Oct 1989 | A |
4880059 | Brandell et al. | Nov 1989 | A |
4889187 | Terrell et al. | Dec 1989 | A |
4890675 | Dew | Jan 1990 | A |
4901794 | Baugh et al. | Feb 1990 | A |
4909320 | Hebert et al. | Mar 1990 | A |
4916029 | Nagle et al. | Apr 1990 | A |
4917966 | Wilde et al. | Apr 1990 | A |
4921664 | Couper | May 1990 | A |
4929415 | Okazaki | May 1990 | A |
4932474 | Schroeder, Jr. et al. | Jun 1990 | A |
4934459 | Baugh et al. | Jun 1990 | A |
4938309 | Emdy | Jul 1990 | A |
4938809 | Das et al. | Jul 1990 | A |
4944351 | Eriksen et al. | Jul 1990 | A |
4949788 | Szarka et al. | Aug 1990 | A |
4952902 | Kawaguchi et al. | Aug 1990 | A |
4975412 | Okazaki et al. | Dec 1990 | A |
4977958 | Miller | Dec 1990 | A |
4981177 | Carmody et al. | Jan 1991 | A |
4986361 | Muuller et al. | Jan 1991 | A |
4997622 | Regazzoni et al. | Mar 1991 | A |
5006044 | Walker, Sr. et al. | Apr 1991 | A |
5010955 | Springer | Apr 1991 | A |
5036921 | Pittard et al. | Aug 1991 | A |
5048611 | Cochran | Sep 1991 | A |
5049165 | Tselesin | Sep 1991 | A |
5061323 | DeLuccia | Oct 1991 | A |
5063775 | Walker, Sr. et al. | Nov 1991 | A |
5073207 | Faure et al. | Dec 1991 | A |
5074361 | Brisco et al. | Dec 1991 | A |
5076869 | Bourell et al. | Dec 1991 | A |
5084088 | Okazaki | Jan 1992 | A |
5087304 | Chang et al. | Feb 1992 | A |
5090480 | Pittard et al. | Feb 1992 | A |
5095988 | Bode | Mar 1992 | A |
5103911 | Heijnen | Apr 1992 | A |
5106702 | Walker et al. | Apr 1992 | A |
5117915 | Mueller et al. | Jun 1992 | A |
5143795 | Das et al. | Sep 1992 | A |
5161614 | Wu et al. | Nov 1992 | A |
5171734 | Sanjurjo et al. | Dec 1992 | A |
5178216 | Giroux et al. | Jan 1993 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5183631 | Kugimiya et al. | Feb 1993 | A |
5188182 | Echols, III et al. | Feb 1993 | A |
5188183 | Hopmann et al. | Feb 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5222867 | Walker, Sr. et al. | Jun 1993 | A |
5226483 | Williamson, Jr. | Jul 1993 | A |
5228518 | Wilson et al. | Jul 1993 | A |
5234055 | Cornette | Aug 1993 | A |
5238646 | Tarcy et al. | Aug 1993 | A |
5240495 | Dieckmann et al. | Aug 1993 | A |
5240742 | Johnson et al. | Aug 1993 | A |
5252365 | White | Oct 1993 | A |
5253714 | Davis et al. | Oct 1993 | A |
5271468 | Streich et al. | Dec 1993 | A |
5273569 | Gilman et al. | Dec 1993 | A |
5282509 | Schurr, III | Feb 1994 | A |
5285798 | Banerjee et al. | Feb 1994 | A |
5292478 | Scorey | Mar 1994 | A |
5293940 | Hromas et al. | Mar 1994 | A |
5304260 | Aikawa et al. | Apr 1994 | A |
5304588 | Boysen et al. | Apr 1994 | A |
5309874 | Willermet et al. | May 1994 | A |
5310000 | Arterbury et al. | May 1994 | A |
5316598 | Chang et al. | May 1994 | A |
5318746 | Lashmore et al. | Jun 1994 | A |
5336466 | Iba | Aug 1994 | A |
5342576 | Whitehead | Aug 1994 | A |
5352522 | Kugimiya et al. | Oct 1994 | A |
5380473 | Bogue et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5392860 | Ross | Feb 1995 | A |
5394236 | Murnick | Feb 1995 | A |
5394941 | Venditto et al. | Mar 1995 | A |
5398754 | Dinhoble | Mar 1995 | A |
5407011 | Layton | Apr 1995 | A |
5409555 | Fujita et al. | Apr 1995 | A |
5411082 | Kennedy | May 1995 | A |
5417285 | Van Buskirk et al. | May 1995 | A |
5425424 | Reinhardt et al. | Jun 1995 | A |
5427177 | Jordan, Jr. et al. | Jun 1995 | A |
5435392 | Kennedy | Jul 1995 | A |
5439051 | Kennedy et al. | Aug 1995 | A |
5454430 | Kennedy et al. | Oct 1995 | A |
5456317 | Hood, III et al. | Oct 1995 | A |
5456327 | Denton et al. | Oct 1995 | A |
5464062 | Blizzard, Jr. | Nov 1995 | A |
5472048 | Kennedy | Dec 1995 | A |
5474131 | Jordan, Jr. et al. | Dec 1995 | A |
5476632 | Shivanath et al. | Dec 1995 | A |
5477923 | Jordan, Jr. et al. | Dec 1995 | A |
5479986 | Gano et al. | Jan 1996 | A |
5494538 | Kirillov et al. | Feb 1996 | A |
5506055 | Dorfman et al. | Apr 1996 | A |
5507439 | Story | Apr 1996 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5524699 | Cook | Jun 1996 | A |
5526880 | Jordan, Jr. et al. | Jun 1996 | A |
5526881 | Martin et al. | Jun 1996 | A |
5529746 | Knoss et al. | Jun 1996 | A |
5531735 | Thompson | Jul 1996 | A |
5533573 | Jordan, Jr. et al. | Jul 1996 | A |
5536485 | Kume et al. | Jul 1996 | A |
5552110 | Iba | Sep 1996 | A |
5558153 | Holcombe et al. | Sep 1996 | A |
5601924 | Beane et al. | Feb 1997 | A |
5607017 | Owens et al. | Mar 1997 | A |
5623993 | Van Buskirk et al. | Apr 1997 | A |
5623994 | Robinson | Apr 1997 | A |
5641023 | Ross et al. | Jun 1997 | A |
5636691 | Hendrickson et al. | Jul 1997 | A |
5647444 | Williams | Jul 1997 | A |
5665289 | Chung et al. | Sep 1997 | A |
5677372 | Yamamoto et al. | Oct 1997 | A |
5685372 | Gano | Nov 1997 | A |
5701576 | Fujita et al. | Dec 1997 | A |
5707214 | Schmidt | Jan 1998 | A |
5709269 | Head | Jan 1998 | A |
5720344 | Newman | Feb 1998 | A |
5722033 | Carden | Feb 1998 | A |
5728195 | Eastman et al. | Mar 1998 | A |
5765639 | Muth | Jun 1998 | A |
5767562 | Yamashita | Jun 1998 | A |
5772735 | Sehgal et al. | Jun 1998 | A |
5782305 | Hicks | Jul 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5820608 | Luzio et al. | Oct 1998 | A |
5826652 | Tapp | Oct 1998 | A |
5826661 | Parker et al. | Oct 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5836396 | Norman | Nov 1998 | A |
5857521 | Ross et al. | Jan 1999 | A |
5881816 | Wright | Mar 1999 | A |
5896819 | Turila et al. | Apr 1999 | A |
5902424 | Fujita et al. | May 1999 | A |
5934372 | Muth | Aug 1999 | A |
5941309 | Appleton | Aug 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5964965 | Schulz et al. | Oct 1999 | A |
5894007 | Yuan et al. | Nov 1999 | A |
5980602 | Carden | Nov 1999 | A |
5985466 | Atarashi et al. | Nov 1999 | A |
5988287 | Jordan, Jr. et al. | Nov 1999 | A |
5990051 | Ischy et al. | Nov 1999 | A |
5992452 | Nelson, II | Nov 1999 | A |
5992520 | Schultz et al. | Nov 1999 | A |
6007314 | Nelson, II | Dec 1999 | A |
6024915 | Kume et al. | Feb 2000 | A |
6030637 | Whitehead | Feb 2000 | A |
6032735 | Echols | Mar 2000 | A |
6033622 | Maruyama | Mar 2000 | A |
6036777 | Sachs | Mar 2000 | A |
6036792 | Chu et al. | Mar 2000 | A |
6040087 | Kawakami | Mar 2000 | A |
6047773 | Zeltmann et al. | Apr 2000 | A |
6050340 | Scott | Apr 2000 | A |
6069313 | Kay | May 2000 | A |
6076600 | Vick, Jr. et al. | Jun 2000 | A |
6079496 | Hirth | Jun 2000 | A |
6085837 | Massinon et al. | Jul 2000 | A |
6095247 | Streich et al. | Aug 2000 | A |
6119783 | Parker et al. | Sep 2000 | A |
6126898 | Butler | Oct 2000 | A |
6142237 | Christmas et al. | Nov 2000 | A |
6161622 | Robb et al. | Dec 2000 | A |
6167970 | Stout et al. | Jan 2001 | B1 |
6170583 | Boyce | Jan 2001 | B1 |
6171359 | Levinski et al. | Jan 2001 | B1 |
6173779 | Smith | Jan 2001 | B1 |
6176323 | Weirich et al. | Jan 2001 | B1 |
6189616 | Gano et al. | Feb 2001 | B1 |
6189618 | Beeman et al. | Feb 2001 | B1 |
6213202 | Read, Jr. | Apr 2001 | B1 |
6220349 | Vargus et al. | Apr 2001 | B1 |
6220350 | Brothers et al. | Apr 2001 | B1 |
6220357 | Carmichael et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6230799 | Slaughter et al. | May 2001 | B1 |
6237688 | Burleson et al. | May 2001 | B1 |
6238280 | Ritt et al. | May 2001 | B1 |
6241021 | Bowling | Jun 2001 | B1 |
6248399 | Hehmann | Jun 2001 | B1 |
6250392 | Muth | Jun 2001 | B1 |
6261432 | Huber et al. | Jul 2001 | B1 |
6265205 | Hitchens et al. | Jul 2001 | B1 |
6273187 | Voisin, Jr. et al. | Aug 2001 | B1 |
6276452 | Davis et al. | Aug 2001 | B1 |
6276457 | Moffatt et al. | Aug 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6287445 | Lashmore et al. | Sep 2001 | B1 |
6302205 | Ryll | Oct 2001 | B1 |
6315041 | Carlisle et al. | Nov 2001 | B1 |
6315050 | Vaylnshteyn et al. | Nov 2001 | B2 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328110 | Joubert | Dec 2001 | B1 |
6341653 | Fermaniuk et al. | Jan 2002 | B1 |
6341747 | Schmidt et al. | Jan 2002 | B1 |
6349766 | Bussear et al. | Feb 2002 | B1 |
6354372 | Carisell et al. | Mar 2002 | B1 |
6354379 | Miszewski et al. | Mar 2002 | B2 |
6371206 | Mills | Apr 2002 | B1 |
6372346 | Toth | Apr 2002 | B1 |
6382244 | Vann | May 2002 | B2 |
6390195 | Nguyen et al. | May 2002 | B1 |
6390200 | Allamon et al. | May 2002 | B1 |
6394180 | Berscheidt et al. | May 2002 | B1 |
6394185 | Constien | May 2002 | B1 |
6395402 | Lambert et al. | May 2002 | B1 |
6397950 | Streich et al. | Jun 2002 | B1 |
6401547 | Hatfield et al. | Jun 2002 | B1 |
6403210 | Stuivinga et al. | Jun 2002 | B1 |
6408946 | Marshall et al. | Jun 2002 | B1 |
6419023 | George et al. | Jul 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6439313 | Thomeer et al. | Aug 2002 | B1 |
6444316 | Reddy et al. | Sep 2002 | B1 |
6446717 | White et al. | Sep 2002 | B1 |
6457525 | Scott | Oct 2002 | B1 |
6467546 | Allamon et al. | Oct 2002 | B2 |
6470965 | Winzer | Oct 2002 | B1 |
6491097 | Oneal et al. | Dec 2002 | B1 |
6491116 | Berscheidt et al. | Dec 2002 | B2 |
6513598 | Moore et al. | Feb 2003 | B2 |
6513600 | Ross | Feb 2003 | B2 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6540033 | Sullivan et al. | Apr 2003 | B1 |
6543543 | Muth | Apr 2003 | B2 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6561275 | Glass et al. | May 2003 | B2 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6588507 | Dusterhoft et al. | Jul 2003 | B2 |
6591915 | Burris et al. | Jul 2003 | B2 |
6601648 | Ebinger | Aug 2003 | B2 |
6601650 | Sundararajan | Aug 2003 | B2 |
6609569 | Towlett et al. | Aug 2003 | B2 |
6612826 | Bauer et al. | Sep 2003 | B1 |
6613383 | George et al. | Sep 2003 | B1 |
6619400 | Brunet | Sep 2003 | B2 |
6630008 | Meeks, III et al. | Oct 2003 | B1 |
6634428 | Krauss et al. | Oct 2003 | B2 |
6662886 | Russell | Dec 2003 | B2 |
6675889 | Mullins et al. | Jan 2004 | B1 |
6699305 | Myrick | Mar 2004 | B2 |
6712153 | Turley et al. | Mar 2004 | B2 |
6712797 | Southern, Jr. | Mar 2004 | B1 |
6713177 | George et al. | Mar 2004 | B2 |
6715541 | Pedersen et al. | Apr 2004 | B2 |
6737385 | Todd et al. | May 2004 | B2 |
6779599 | Mullins et al. | Aug 2004 | B2 |
6799638 | Butterfield, Jr. | Oct 2004 | B2 |
6810960 | Pia | Nov 2004 | B2 |
6817414 | Lee | Nov 2004 | B2 |
6831044 | Constien | Dec 2004 | B2 |
6883611 | Smith et al. | Apr 2005 | B2 |
6887297 | Winter et al. | May 2005 | B2 |
6896049 | Moyes | May 2005 | B2 |
6896061 | Hriscu et al. | May 2005 | B2 |
6899777 | Vaidyanathan et al. | May 2005 | B2 |
6908516 | Hehmann et al. | Jun 2005 | B2 |
6913827 | Georget et al. | Jul 2005 | B2 |
6926086 | Patterson et al. | Aug 2005 | B2 |
6932159 | Hovem | Aug 2005 | B2 |
6939388 | Angeliu | Sep 2005 | B2 |
6945331 | Patel | Sep 2005 | B2 |
6951331 | Haughom et al. | Oct 2005 | B2 |
6959759 | Doane et al. | Nov 2005 | B2 |
6973970 | Johnston et al. | Dec 2005 | B2 |
6973973 | Howard et al. | Dec 2005 | B2 |
6983796 | Bayne et al. | Jan 2006 | B2 |
6986390 | Doane et al. | Jan 2006 | B2 |
7013989 | Hammond et al. | Mar 2006 | B2 |
7013998 | Ray et al. | Mar 2006 | B2 |
7017664 | Walker et al. | Mar 2006 | B2 |
7017677 | Keshavan et al. | Mar 2006 | B2 |
7021389 | Bishop et al. | Apr 2006 | B2 |
7025146 | King et al. | Apr 2006 | B2 |
7028778 | Krywitsky | Apr 2006 | B2 |
7044230 | Starr et al. | May 2006 | B2 |
7048812 | Bettles et al. | May 2006 | B2 |
7049272 | Sinclair et al. | May 2006 | B2 |
7051805 | Doane et al. | May 2006 | B2 |
7059410 | Bousche et al. | Jun 2006 | B2 |
7063748 | Talton | Jun 2006 | B2 |
7090027 | Williams | Aug 2006 | B1 |
7093664 | Todd et al. | Aug 2006 | B2 |
7096945 | Richards et al. | Aug 2006 | B2 |
7096946 | Jasser et al. | Aug 2006 | B2 |
7097807 | Meeks, III et al. | Aug 2006 | B1 |
7097906 | Gardner | Aug 2006 | B2 |
7108080 | Tessari et al. | Sep 2006 | B2 |
7111682 | Blaisdell | Sep 2006 | B2 |
7128145 | Mickey | Oct 2006 | B2 |
7141207 | Jandeska, Jr. et al. | Nov 2006 | B2 |
7150326 | Bishop et al. | Dec 2006 | B2 |
7163066 | Lehr | Jan 2007 | B2 |
7165622 | Hirth et al. | Jan 2007 | B2 |
7168494 | Starr et al. | Jan 2007 | B2 |
7174963 | Bertelsen | Feb 2007 | B2 |
7182135 | Szarka | Feb 2007 | B2 |
7188559 | Vecchio | Mar 2007 | B1 |
7210527 | Walker et al. | May 2007 | B2 |
7210533 | Starr et al. | May 2007 | B2 |
7217311 | Hong et al. | May 2007 | B2 |
7234530 | Gass | Jun 2007 | B2 |
7250188 | Dodelet et al. | Jul 2007 | B2 |
7252162 | Akinlade et al. | Aug 2007 | B2 |
7255172 | Johnson | Aug 2007 | B2 |
7255178 | Slup et al. | Aug 2007 | B2 |
7264060 | Wills | Sep 2007 | B2 |
7267172 | Hofman | Sep 2007 | B2 |
7267178 | Krywitsky | Sep 2007 | B2 |
7270186 | Johnson | Sep 2007 | B2 |
7287592 | Surjaatmadja et al. | Oct 2007 | B2 |
7311152 | Howard et al. | Dec 2007 | B2 |
7316274 | Xu et al. | Jan 2008 | B2 |
7320365 | Pia | Jan 2008 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7322417 | Rytlewski et al. | Jan 2008 | B2 |
7325617 | Murray | Feb 2008 | B2 |
7328750 | Swor et al. | Feb 2008 | B2 |
7331388 | Vilela et al. | Feb 2008 | B2 |
7337854 | Horn et al. | Mar 2008 | B2 |
7346456 | Le Bemadjiel | Mar 2008 | B2 |
7350582 | McKeachnie et al. | Apr 2008 | B2 |
7353867 | Carter et al. | Apr 2008 | B2 |
7353879 | Todd et al. | Apr 2008 | B2 |
7360593 | Constien | Apr 2008 | B2 |
7360597 | Blaisdell | Apr 2008 | B2 |
7363970 | Corre et al. | Apr 2008 | B2 |
7373978 | Barry et al. | May 2008 | B2 |
7380600 | Willberg et al. | Jun 2008 | B2 |
7384443 | Mirchandani | Jun 2008 | B2 |
7387158 | Murray et al. | Jun 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7392841 | Murray et al. | Jul 2008 | B2 |
7401648 | Richard | Jul 2008 | B2 |
7416029 | Telfer et al. | Aug 2008 | B2 |
7422058 | O'Malley | Sep 2008 | B2 |
7426964 | Lynde et al. | Sep 2008 | B2 |
7441596 | Wood et al. | Oct 2008 | B2 |
7445049 | Howard et al. | Nov 2008 | B2 |
7451815 | Hailey, Jr. | Nov 2008 | B2 |
7451817 | Reddy et al. | Nov 2008 | B2 |
7461699 | Richard et al. | Dec 2008 | B2 |
7464752 | Dale et al. | Dec 2008 | B2 |
7464764 | Xu | Dec 2008 | B2 |
7472750 | Walker et al. | Jan 2009 | B2 |
7478676 | East, Jr. et al. | Jan 2009 | B2 |
7491444 | Smith et al. | Feb 2009 | B2 |
7503390 | Gomez | Mar 2009 | B2 |
7503392 | King et al. | Mar 2009 | B2 |
7503399 | Badalamenti et al. | Mar 2009 | B2 |
7509993 | Turng et al. | Mar 2009 | B1 |
7510018 | Williamson et al. | Mar 2009 | B2 |
7513311 | Gramstad et al. | Apr 2009 | B2 |
7516791 | Bryant et al. | Apr 2009 | B2 |
7520944 | Johnson | Apr 2009 | B2 |
7527103 | Huang et al. | May 2009 | B2 |
7531020 | Woodfield et al. | May 2009 | B2 |
7531021 | Woodfield et al. | May 2009 | B2 |
7537825 | Wardle et al. | May 2009 | B1 |
7552777 | Murray et al. | Jun 2009 | B2 |
7552779 | Murray | Jun 2009 | B2 |
7559357 | Clem | Jul 2009 | B2 |
7575062 | East, Jr. | Aug 2009 | B2 |
7579087 | Maloney et al. | Aug 2009 | B2 |
7591318 | Tilghman | Sep 2009 | B2 |
7600572 | Slup et al. | Oct 2009 | B2 |
7604049 | Vaidya et al. | Oct 2009 | B2 |
7604055 | Richard et al. | Oct 2009 | B2 |
7607476 | Tom et al. | Oct 2009 | B2 |
7617871 | Surjaatmadja et al. | Nov 2009 | B2 |
7635023 | Goldberg et al. | Dec 2009 | B2 |
7640988 | Phi et al. | Jan 2010 | B2 |
7647964 | Akbar et al. | Jan 2010 | B2 |
7661480 | Al-Anazi | Feb 2010 | B2 |
7661481 | Todd et al. | Feb 2010 | B2 |
7665537 | Patel et al. | Feb 2010 | B2 |
7686082 | Marsh | Mar 2010 | B2 |
7690436 | Turley et al. | Apr 2010 | B2 |
7699101 | Fripp et al. | Apr 2010 | B2 |
7700038 | Soran et al. | Apr 2010 | B2 |
7703511 | Buyers et al. | Apr 2010 | B2 |
7708078 | Stoesz | May 2010 | B2 |
7709421 | Jones et al. | May 2010 | B2 |
7712541 | Loretz et al. | May 2010 | B2 |
7723272 | Crews et al. | May 2010 | B2 |
7726406 | Xu | Jun 2010 | B2 |
7735578 | Loehr et al. | Jun 2010 | B2 |
7743836 | Cook et al. | Jun 2010 | B2 |
7752971 | Loehr | Jul 2010 | B2 |
7757773 | Rytlewski | Jul 2010 | B2 |
7762342 | Richard et al. | Jul 2010 | B2 |
7770652 | Barnett | Aug 2010 | B2 |
7771289 | Palumbo et al. | Aug 2010 | B2 |
7771547 | Bieler et al. | Aug 2010 | B2 |
7775284 | Richard et al. | Aug 2010 | B2 |
7775285 | Surjaatmadja et al. | Aug 2010 | B2 |
7775286 | Duphorne | Aug 2010 | B2 |
7784543 | Johnson | Aug 2010 | B2 |
7793714 | Johnson | Sep 2010 | B2 |
7793820 | Hirano et al. | Sep 2010 | B2 |
7794520 | Murty et al. | Sep 2010 | B2 |
7798225 | Giroux et al. | Sep 2010 | B2 |
7798226 | Themig | Sep 2010 | B2 |
7798236 | McKeachnie et al. | Sep 2010 | B2 |
7806189 | Frazier | Oct 2010 | B2 |
7806192 | Foster et al. | Oct 2010 | B2 |
7810553 | Cruickshank et al. | Oct 2010 | B2 |
7810567 | Daniels et al. | Oct 2010 | B2 |
7819198 | Birckhead et al. | Oct 2010 | B2 |
7828055 | Willauer et al. | Nov 2010 | B2 |
7833944 | Munoz et al. | Nov 2010 | B2 |
7849927 | Herrera | Dec 2010 | B2 |
7851016 | Arbab et al. | Dec 2010 | B2 |
7855168 | Fuller et al. | Dec 2010 | B2 |
7861779 | Vestavik | Jan 2011 | B2 |
7861781 | D'Arcy | Jan 2011 | B2 |
7874365 | East, Jr. et al. | Jan 2011 | B2 |
7878253 | Stowe et al. | Feb 2011 | B2 |
7879162 | Pandey | Feb 2011 | B2 |
7879367 | Heublein et al. | Feb 2011 | B2 |
7896091 | Williamson et al. | Mar 2011 | B2 |
7897063 | Perry et al. | Mar 2011 | B1 |
7900696 | Nish et al. | Mar 2011 | B1 |
7900703 | Clark et al. | Mar 2011 | B2 |
7909096 | Clarke et al. | Mar 2011 | B2 |
7909104 | Bjorgum | Mar 2011 | B2 |
7909110 | Sharma et al. | Mar 2011 | B2 |
7909115 | Grove et al. | Mar 2011 | B2 |
7913765 | Crow et al. | Mar 2011 | B2 |
7918275 | Clem | Apr 2011 | B2 |
7931093 | Foster et al. | Apr 2011 | B2 |
7938191 | Vaidya | May 2011 | B2 |
7946335 | Bewlay et al. | May 2011 | B2 |
7946340 | Surjattmadja et al. | May 2011 | B2 |
7958940 | Jameson | Jun 2011 | B2 |
7963331 | Surjattmadja et al. | Jun 2011 | B2 |
7963340 | Gramstad et al. | Jun 2011 | B2 |
7963342 | George | Jun 2011 | B2 |
7980300 | Roberts et al. | Jul 2011 | B2 |
7987906 | Troy | Aug 2011 | B1 |
7992763 | Vecchio et al. | Aug 2011 | B2 |
7999987 | Dellinger et al. | Aug 2011 | B2 |
8002821 | Stinson | Aug 2011 | B2 |
8020619 | Robertson et al. | Sep 2011 | B1 |
8020620 | Daniels et al. | Sep 2011 | B2 |
8025104 | Cooke, Jr. | Sep 2011 | B2 |
8028767 | Radford et al. | Oct 2011 | B2 |
8033331 | Themig | Oct 2011 | B2 |
8034152 | Westin et al. | Oct 2011 | B2 |
8039422 | Al-Zahrani | Oct 2011 | B1 |
8056628 | Whitsitt et al. | Nov 2011 | B2 |
8056638 | Clayton et al. | Nov 2011 | B2 |
8109340 | Doane et al. | Feb 2012 | B2 |
8114148 | Atanasoska et al. | Feb 2012 | B2 |
8119713 | Dubois et al. | Feb 2012 | B2 |
8127856 | Nish et al. | Mar 2012 | B1 |
8153052 | Jackson et al. | Apr 2012 | B2 |
8163060 | Manishi et al. | Apr 2012 | B2 |
8167043 | Willberg et al. | May 2012 | B2 |
8211247 | Marya et al. | Jul 2012 | B2 |
8211248 | Marya | Jul 2012 | B2 |
8211331 | Jorgensen et al. | Jul 2012 | B2 |
8220554 | Jordan et al. | Jul 2012 | B2 |
8226740 | Chaumonnot et al. | Jul 2012 | B2 |
8230731 | Dyer et al. | Jul 2012 | B2 |
8231947 | Vaidya et al. | Jul 2012 | B2 |
8263178 | Boulos et al. | Sep 2012 | B2 |
8267177 | Vogel et al. | Sep 2012 | B1 |
8276670 | Patel | Oct 2012 | B2 |
8277974 | Kumar et al. | Oct 2012 | B2 |
8297364 | Agrawal et al. | Oct 2012 | B2 |
8327931 | Agrawal et al. | Dec 2012 | B2 |
8403037 | Agrawal et al. | Mar 2013 | B2 |
8413727 | Holmes | Apr 2013 | B2 |
8425651 | Xu et al. | Apr 2013 | B2 |
8459347 | Stout | Jun 2013 | B2 |
RE44385 | Johnson | Jul 2013 | E |
8485265 | Marya et al. | Jul 2013 | B2 |
8486329 | Shikai et al. | Jul 2013 | B2 |
8490674 | Stevens et al. | Jul 2013 | B2 |
8490689 | McClinton et al. | Jul 2013 | B1 |
8506733 | Enami et al. | Aug 2013 | B2 |
8528633 | Agrawal et al. | Sep 2013 | B2 |
8535604 | Baker et al. | Sep 2013 | B1 |
8573295 | Johnson et al. | Nov 2013 | B2 |
8579023 | Nish et al. | Nov 2013 | B1 |
8613789 | Han et al. | Dec 2013 | B2 |
8631876 | Xu et al. | Jan 2014 | B2 |
8663401 | Marya et al. | Mar 2014 | B2 |
8668762 | Kim et al. | Mar 2014 | B2 |
8695684 | Chen et al. | Apr 2014 | B2 |
8695714 | Xu | Apr 2014 | B2 |
8714268 | Agrawal et al. | May 2014 | B2 |
8715339 | Atanasoska et al. | May 2014 | B2 |
8723564 | Kim et al. | May 2014 | B2 |
8734564 | Kim et al. | May 2014 | B2 |
8734602 | Li et al. | May 2014 | B2 |
8746342 | Nish et al. | Jun 2014 | B1 |
8770261 | Marya | Jul 2014 | B2 |
8776884 | Xu | Jul 2014 | B2 |
8789610 | Oxford | Jul 2014 | B2 |
8808423 | Kim et al. | Aug 2014 | B2 |
8852363 | Numano et al. | Oct 2014 | B2 |
8905147 | Fripp et al. | Dec 2014 | B2 |
8950504 | Xu et al. | Feb 2015 | B2 |
8956660 | Launag et al. | Feb 2015 | B2 |
8967275 | Crews | Mar 2015 | B2 |
8978734 | Stevens | Mar 2015 | B2 |
8991485 | Chenault et al. | Mar 2015 | B2 |
8998978 | Wang | Apr 2015 | B2 |
9010416 | Xu et al. | Apr 2015 | B2 |
9016363 | Xu et al. | Apr 2015 | B2 |
9016384 | Xu | Apr 2015 | B2 |
9022107 | Agrawal et al. | May 2015 | B2 |
9027655 | Xu | May 2015 | B2 |
9033041 | Baihly et al. | May 2015 | B2 |
9033060 | Xu et al. | May 2015 | B2 |
9044397 | Choi et al. | Jun 2015 | B2 |
9057117 | Harrison et al. | Jun 2015 | B2 |
9057242 | Mazyar et al. | Jun 2015 | B2 |
9068428 | Mazyar et al. | Jun 2015 | B2 |
9010424 | Xu | Jul 2015 | B2 |
9079246 | Xu et al. | Jul 2015 | B2 |
9080098 | Xu et al. | Jul 2015 | B2 |
9080403 | Xu et al. | Jul 2015 | B2 |
9080439 | O'Malley | Jul 2015 | B2 |
9089408 | Xu | Jul 2015 | B2 |
9090955 | Xu et al. | Jul 2015 | B2 |
9090956 | Xu | Jul 2015 | B2 |
9101978 | Xu | Aug 2015 | B2 |
9109429 | Xu et al. | Aug 2015 | B2 |
9119906 | Tomantschager et al. | Sep 2015 | B2 |
9127515 | Xu et al. | Sep 2015 | B2 |
9163467 | Gaudette et al. | Oct 2015 | B2 |
9181088 | Sibuet et al. | Nov 2015 | B2 |
9187686 | Crews | Nov 2015 | B2 |
9211586 | Avernia et al. | Dec 2015 | B1 |
9217319 | Frazier et al. | Dec 2015 | B2 |
9227243 | Xu et al. | Jan 2016 | B2 |
9243475 | Xu | Jan 2016 | B2 |
9260935 | Murphree et al. | Feb 2016 | B2 |
9284803 | Stone et al. | Mar 2016 | B2 |
9309733 | Xu et al. | Apr 2016 | B2 |
9309744 | Frazier | Apr 2016 | B2 |
9366106 | Xu et al. | Jun 2016 | B2 |
9447482 | Kim et al. | Sep 2016 | B2 |
9458692 | Fripp et al. | Oct 2016 | B2 |
9500061 | Frazier et al. | Nov 2016 | B2 |
9528343 | Jordan et al. | Dec 2016 | B2 |
9587156 | Crews | Mar 2017 | B2 |
9605508 | Xu | Mar 2017 | B2 |
9643250 | Mazyar et al. | May 2017 | B2 |
9682425 | Xu et al. | Jun 2017 | B2 |
9689227 | Fripp et al. | Jun 2017 | B2 |
9689231 | Fripp et al. | Jun 2017 | B2 |
9789663 | Zhang et al. | Oct 2017 | B2 |
9790763 | Fripp et al. | Oct 2017 | B2 |
9802250 | Xu | Oct 2017 | B2 |
9803439 | Xu et al. | Oct 2017 | B2 |
9833838 | Mazyar et al. | Dec 2017 | B2 |
9835016 | Zhang et al. | Dec 2017 | B2 |
9863201 | Fripp et al. | Jan 2018 | B2 |
9925589 | Xu | Mar 2018 | B2 |
9926763 | Mazyar et al. | Mar 2018 | B2 |
9938451 | Crews | Apr 2018 | B2 |
9970249 | Zhang et al. | May 2018 | B2 |
10016810 | Salinas et al. | Jul 2018 | B2 |
10059092 | Welch et al. | Aug 2018 | B2 |
10059867 | Crews | Aug 2018 | B2 |
10081853 | Wilks et al. | Sep 2018 | B2 |
10082008 | Robey et al. | Sep 2018 | B2 |
10092953 | Mazyar et al. | Oct 2018 | B2 |
10119358 | Walton et al. | Nov 2018 | B2 |
10119359 | Frazier | Nov 2018 | B2 |
10125565 | Fripp et al. | Nov 2018 | B2 |
10167691 | Zhang et al. | Jan 2019 | B2 |
10174578 | Walton et al. | Jan 2019 | B2 |
10202820 | Xu et al. | Feb 2019 | B2 |
10221637 | Xu et al. | Mar 2019 | B2 |
10221641 | Zhang et al. | Mar 2019 | B2 |
10221642 | Zhang et al. | Mar 2019 | B2 |
10221643 | Zhang et al. | Mar 2019 | B2 |
10227841 | Fripp et al. | Mar 2019 | B2 |
10253590 | Xu et al. | Apr 2019 | B2 |
10266923 | Wilks et al. | Apr 2019 | B2 |
10316601 | Walton et al. | Jun 2019 | B2 |
10329643 | Wilks et al. | Jun 2019 | B2 |
10335855 | Welch et al. | Jul 2019 | B2 |
10337086 | Wilks et al. | Jul 2019 | B2 |
10344568 | Murphree et al. | Jul 2019 | B2 |
10364630 | Xu et al. | Jul 2019 | B2 |
10364631 | Xu et al. | Jul 2019 | B2 |
10364632 | Xu et al. | Jul 2019 | B2 |
10450840 | Xu | Oct 2019 | B2 |
10472909 | Xu et al. | Nov 2019 | B2 |
10533392 | Walton et al. | Jan 2020 | B2 |
10544652 | Fripp et al. | Jan 2020 | B2 |
10597965 | Allen | Mar 2020 | B2 |
10612659 | Xu et al. | Apr 2020 | B2 |
10619438 | Fripp et al. | Apr 2020 | B2 |
10619445 | Murphree et al. | Apr 2020 | B2 |
10626695 | Fripp et al. | Apr 2020 | B2 |
10633947 | Fripp et al. | Apr 2020 | B2 |
10655411 | Fripp et al. | May 2020 | B2 |
10669797 | Johnson et al. | Jun 2020 | B2 |
10724321 | Leonard et al. | Jul 2020 | B2 |
10737321 | Xu | Aug 2020 | B2 |
10781658 | Kumar et al. | Sep 2020 | B1 |
10807355 | Welch et al. | Oct 2020 | B2 |
20020020527 | Kilaas et al. | Feb 2002 | A1 |
20020047058 | Verhoff et al. | Apr 2002 | A1 |
20020092654 | Coronado et al. | Jul 2002 | A1 |
20020104616 | De et al. | Aug 2002 | A1 |
20020108756 | Harrall et al. | Aug 2002 | A1 |
20020121081 | Cesaroni et al. | Sep 2002 | A1 |
20020139541 | Sheffield et al. | Oct 2002 | A1 |
20020197181 | Osawa et al. | Dec 2002 | A1 |
20030019639 | Mackay | Jan 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030104147 | Bretschneider et al. | Jun 2003 | A1 |
20030111728 | Thai et al. | Jun 2003 | A1 |
20030127013 | Zavitsanos et al. | Jul 2003 | A1 |
20030141060 | Hailey, Jr. et al. | Jul 2003 | A1 |
20030150614 | Brown et al. | Aug 2003 | A1 |
20030155114 | Pedersen et al. | Aug 2003 | A1 |
20030173005 | Higashi | Sep 2003 | A1 |
20040005483 | Lin | Jan 2004 | A1 |
20040055758 | Brezinski et al. | Mar 2004 | A1 |
20040069502 | Luke | Apr 2004 | A1 |
20040089449 | Walton et al. | May 2004 | A1 |
20040094297 | Malone et al. | May 2004 | A1 |
20040154806 | Bode et al. | Aug 2004 | A1 |
20040159446 | Haugen et al. | Aug 2004 | A1 |
20040216868 | Owens, Sr. | Nov 2004 | A1 |
20040231845 | Cooke, Jr. | Nov 2004 | A1 |
20040244968 | Cook et al. | Dec 2004 | A1 |
20040256109 | Johnson | Dec 2004 | A1 |
20040261993 | Nguyen | Dec 2004 | A1 |
20040261994 | Nguyen et al. | Dec 2004 | A1 |
20050064247 | Sane et al. | Mar 2005 | A1 |
20050074612 | Eklund et al. | Apr 2005 | A1 |
20050098313 | Atkins et al. | May 2005 | A1 |
20050102255 | Bultman | May 2005 | A1 |
20050106316 | Rigney et al. | May 2005 | A1 |
20050161212 | Leismer et al. | Jul 2005 | A1 |
20050165149 | Chanak et al. | Jul 2005 | A1 |
20050194141 | Sinclair et al. | Sep 2005 | A1 |
20050235757 | De Jonge et al. | Oct 2005 | A1 |
20050241824 | Burris, II et al. | Nov 2005 | A1 |
20050241825 | Burris, II et al. | Nov 2005 | A1 |
20050268746 | Abkowitz et al. | Dec 2005 | A1 |
20050269097 | Towler | Dec 2005 | A1 |
20050275143 | Toth | Dec 2005 | A1 |
20050279427 | Park et al. | Dec 2005 | A1 |
20050279501 | Surjaatmadja et al. | Dec 2005 | A1 |
20060012087 | Matsuda et al. | Jan 2006 | A1 |
20060013350 | Akers | Jan 2006 | A1 |
20060057479 | Niimi et al. | Mar 2006 | A1 |
20060102871 | Wang et al. | May 2006 | A1 |
20060108114 | Johnson | May 2006 | A1 |
20060110615 | Karim et al. | May 2006 | A1 |
20060113077 | Willberg et al. | Jun 2006 | A1 |
20060116696 | Odermatt et al. | Jun 2006 | A1 |
20060131031 | McKeachnie | Jun 2006 | A1 |
20060131081 | Mirchandani et al. | Jun 2006 | A1 |
20060144515 | Tada et al. | Jul 2006 | A1 |
20060150770 | Freim, III et al. | Jul 2006 | A1 |
20060153728 | Schoenung et al. | Jul 2006 | A1 |
20060169453 | Savery et al. | Aug 2006 | A1 |
20060175059 | Sinclair et al. | Aug 2006 | A1 |
20060186602 | Martin et al. | Aug 2006 | A1 |
20060207387 | Soran et al. | Sep 2006 | A1 |
20060269437 | Pandey | Nov 2006 | A1 |
20060278405 | Turley | Dec 2006 | A1 |
20060283592 | Sierra et al. | Dec 2006 | A1 |
20070017675 | Hammami et al. | Jan 2007 | A1 |
20070134496 | Katagiri et al. | Jan 2007 | A1 |
20070039161 | Garcia | Feb 2007 | A1 |
20070044958 | Rytlewski et al. | Mar 2007 | A1 |
20070044966 | Davies et al. | Mar 2007 | A1 |
20070051521 | Fike et al. | Mar 2007 | A1 |
20070053785 | Hetz et al. | Mar 2007 | A1 |
20070054101 | Sigalas et al. | Mar 2007 | A1 |
20070057415 | Katagiri et al. | Mar 2007 | A1 |
20070062644 | Nakamura et al. | Mar 2007 | A1 |
20070102199 | Smith et al. | May 2007 | A1 |
20070107899 | Werner et al. | May 2007 | A1 |
20070108060 | Park | May 2007 | A1 |
20070131912 | Simone et al. | Jun 2007 | A1 |
20070151009 | Conrad, III et al. | Jul 2007 | A1 |
20070151769 | Slutz et al. | Jul 2007 | A1 |
20070181224 | Marya et al. | Aug 2007 | A1 |
20070187095 | Walker et al. | Aug 2007 | A1 |
20070207182 | Weber et al. | Sep 2007 | A1 |
20070221373 | Murray | Sep 2007 | A1 |
20070227745 | Roberts et al. | Oct 2007 | A1 |
20070259994 | Tour et al. | Nov 2007 | A1 |
20070270942 | Thomas | Nov 2007 | A1 |
20070284112 | Magne et al. | Dec 2007 | A1 |
20070299510 | Venkatraman et al. | Dec 2007 | A1 |
20080011473 | Wood et al. | Jan 2008 | A1 |
20080020923 | Debe et al. | Jan 2008 | A1 |
20080041500 | Bronfin | Feb 2008 | A1 |
20080047707 | Boney et al. | Feb 2008 | A1 |
20080060810 | Nguyen et al. | Mar 2008 | A9 |
20080081866 | Gong et al. | Apr 2008 | A1 |
20080093073 | Bustos et al. | Apr 2008 | A1 |
20080121436 | Slay et al. | May 2008 | A1 |
20080127475 | Griffo | Jun 2008 | A1 |
20080149325 | Crawford | Jun 2008 | A1 |
20080149345 | Marya et al. | Jun 2008 | A1 |
20080149351 | Marya et al. | Jun 2008 | A1 |
20080169130 | Norman et al. | Jul 2008 | A1 |
20080175744 | Motegi | Jul 2008 | A1 |
20080179104 | Zhang et al. | Jul 2008 | A1 |
20080196801 | Zhao et al. | Aug 2008 | A1 |
20080202764 | Clayton et al. | Aug 2008 | A1 |
20080202814 | Lyons et al. | Aug 2008 | A1 |
20080210473 | Zhang et al. | Sep 2008 | A1 |
20080216383 | Pierick et al. | Sep 2008 | A1 |
20080220991 | Slay et al. | Sep 2008 | A1 |
20080223587 | Cherewyk | Sep 2008 | A1 |
20080236829 | Lynde | Oct 2008 | A1 |
20080236842 | Bhavsar et al. | Oct 2008 | A1 |
20080248205 | Blanchet et al. | Oct 2008 | A1 |
20080248413 | Ishii et al. | Oct 2008 | A1 |
20080264205 | Zeng et al. | Oct 2008 | A1 |
20080264594 | Lohmueller et al. | Oct 2008 | A1 |
20080277980 | Koda et al. | Nov 2008 | A1 |
20080282924 | Saenger et al. | Nov 2008 | A1 |
20080296024 | Huang et al. | Dec 2008 | A1 |
20080302538 | Hofman | Dec 2008 | A1 |
20080314581 | Brown | Dec 2008 | A1 |
20080314588 | Langlais et al. | Dec 2008 | A1 |
20090038858 | Griffo et al. | Feb 2009 | A1 |
20090044946 | Shasteen et al. | Feb 2009 | A1 |
20090044955 | King et al. | Feb 2009 | A1 |
20090050334 | Marya et al. | Feb 2009 | A1 |
20090056934 | Xu | Mar 2009 | A1 |
20090065216 | Frazier | Mar 2009 | A1 |
20090068051 | Gross | Mar 2009 | A1 |
20090074603 | Chan et al. | Mar 2009 | A1 |
20090084600 | Severance | Apr 2009 | A1 |
20090090440 | Kellett | Apr 2009 | A1 |
20090107684 | Cooke, Jr. | Apr 2009 | A1 |
20090114381 | Stroobants | May 2009 | A1 |
20090116992 | Lee | May 2009 | A1 |
20090126436 | Fly et al. | May 2009 | A1 |
20090151949 | Marya et al. | Jun 2009 | A1 |
20090152009 | Slay et al. | Jun 2009 | A1 |
20090155616 | Thamida | Jun 2009 | A1 |
20090159289 | Avant et al. | Jun 2009 | A1 |
20090194745 | Tanaka | Aug 2009 | A1 |
20090205841 | Kluge et al. | Aug 2009 | A1 |
20090211770 | Nutley et al. | Aug 2009 | A1 |
20090226340 | Marya | Sep 2009 | A1 |
20090226704 | Kauppinen et al. | Sep 2009 | A1 |
20090242202 | Rispler et al. | Oct 2009 | A1 |
20090242208 | Bolding | Oct 2009 | A1 |
20090255667 | Clem et al. | Oct 2009 | A1 |
20090255684 | Bolding | Oct 2009 | A1 |
20090255686 | Richard et al. | Oct 2009 | A1 |
20090260817 | Gambier et al. | Oct 2009 | A1 |
20090266548 | Olsen et al. | Oct 2009 | A1 |
20090272544 | Giroux et al. | Nov 2009 | A1 |
20090283270 | Langeslag | Nov 2009 | A1 |
20090293672 | Mirchandani et al. | Dec 2009 | A1 |
20090301730 | Gweily | Dec 2009 | A1 |
20090308588 | Howell et al. | Dec 2009 | A1 |
20090317556 | Macary | Dec 2009 | A1 |
20090317622 | Huang et al. | Dec 2009 | A1 |
20100003536 | Smith et al. | Jan 2010 | A1 |
20100012385 | Drivdahl et al. | Jan 2010 | A1 |
20100015002 | Barrera et al. | Jan 2010 | A1 |
20100015469 | Romanowski | Jan 2010 | A1 |
20100025255 | Su et al. | Feb 2010 | A1 |
20100038076 | Spray et al. | Feb 2010 | A1 |
20100038595 | Imholt et al. | Feb 2010 | A1 |
20100040180 | Kim et al. | Feb 2010 | A1 |
20100044041 | Smith et al. | Feb 2010 | A1 |
20100051278 | Mytopher et al. | Mar 2010 | A1 |
20100055492 | Baroum et al. | Mar 2010 | A1 |
20100089583 | Xu et al. | Apr 2010 | A1 |
20100116495 | Spray | May 2010 | A1 |
20100119405 | Okamoto et al. | May 2010 | A1 |
20100139930 | Patel et al. | Jun 2010 | A1 |
20100161031 | Papirov et al. | Jun 2010 | A1 |
20100200230 | East, Jr. et al. | Aug 2010 | A1 |
20100236793 | Bjorgum | Sep 2010 | A1 |
20100236794 | Duan et al. | Sep 2010 | A1 |
20100243254 | Murphy et al. | Sep 2010 | A1 |
20100252273 | Duphorne | Oct 2010 | A1 |
20100252280 | Swor et al. | Oct 2010 | A1 |
20100270031 | Patel | Oct 2010 | A1 |
20100276136 | Evans et al. | Nov 2010 | A1 |
20100276159 | Mailand et al. | Nov 2010 | A1 |
20100282338 | Gerrard et al. | Nov 2010 | A1 |
20100282469 | Richard et al. | Nov 2010 | A1 |
20100297432 | Sherman et al. | Nov 2010 | A1 |
20100304178 | Dirscherl | Dec 2010 | A1 |
20100304182 | Facchini et al. | Dec 2010 | A1 |
20100314105 | Rose | Dec 2010 | A1 |
20100314127 | Swor et al. | Dec 2010 | A1 |
20100319427 | Lohbeck et al. | Dec 2010 | A1 |
20100326650 | Tran et al. | Dec 2010 | A1 |
20110005773 | Dusterhoft et al. | Jan 2011 | A1 |
20110036592 | Fay | Feb 2011 | A1 |
20110048743 | Stafford et al. | Mar 2011 | A1 |
20110052805 | Bordere et al. | Mar 2011 | A1 |
20110067872 | Agrawal | Mar 2011 | A1 |
20110067889 | Marya et al. | Mar 2011 | A1 |
20110091660 | Dirscherl | Apr 2011 | A1 |
20110094406 | Marya et al. | Apr 2011 | A1 |
20110135530 | Xu et al. | Jun 2011 | A1 |
20110135805 | Doucet et al. | Jun 2011 | A1 |
20110139465 | Tibbles et al. | Jun 2011 | A1 |
20110147014 | Chen et al. | Jun 2011 | A1 |
20110186306 | Marya et al. | Aug 2011 | A1 |
20110192613 | Garcia et al. | Aug 2011 | A1 |
20110214881 | Newton et al. | Sep 2011 | A1 |
20110221137 | Obi et al. | Sep 2011 | A1 |
20110236249 | Kim et al. | Sep 2011 | A1 |
20110247833 | Todd et al. | Oct 2011 | A1 |
20110253387 | Ervin | Oct 2011 | A1 |
20110259610 | Shkurti et al. | Oct 2011 | A1 |
20110277987 | Frazier | Nov 2011 | A1 |
20110277989 | Frazier | Nov 2011 | A1 |
20110277996 | Cullick et al. | Nov 2011 | A1 |
20110284232 | Huang | Nov 2011 | A1 |
20110284240 | Chen et al. | Nov 2011 | A1 |
20110284243 | Frazier | Nov 2011 | A1 |
20110300403 | Vecchio et al. | Dec 2011 | A1 |
20110314881 | Hatcher et al. | Dec 2011 | A1 |
20120046732 | Sillekens et al. | Feb 2012 | A1 |
20120067426 | Soni et al. | Mar 2012 | A1 |
20120080189 | Marya et al. | Apr 2012 | A1 |
20120090839 | Rudic | Apr 2012 | A1 |
20120097384 | Valencia et al. | Apr 2012 | A1 |
20120103135 | Xu et al. | May 2012 | A1 |
20120125642 | Chenault | May 2012 | A1 |
20120130470 | Agnew et al. | May 2012 | A1 |
20120145378 | Frazier | Jun 2012 | A1 |
20120145389 | Fitzpatrick, Jr. | Jun 2012 | A1 |
20120156087 | Kawabata | Jun 2012 | A1 |
20120168152 | Casciaro | Jul 2012 | A1 |
20120177905 | Seals et al. | Jul 2012 | A1 |
20120190593 | Soane et al. | Jul 2012 | A1 |
20120205120 | Howell | Aug 2012 | A1 |
20120205872 | Reinhardt et al. | Aug 2012 | A1 |
20120211239 | Kritzler et al. | Aug 2012 | A1 |
20120234546 | Xu | Sep 2012 | A1 |
20120234547 | O'Malley et al. | Sep 2012 | A1 |
20120247765 | Agrawal et al. | Oct 2012 | A1 |
20120267101 | Cooke, Jr. | Oct 2012 | A1 |
20120269673 | Koo et al. | Oct 2012 | A1 |
20120273229 | Xu et al. | Nov 2012 | A1 |
20120318513 | Mazyar et al. | Dec 2012 | A1 |
20130000985 | Agrawal et al. | Jan 2013 | A1 |
20130008671 | Booth | Jan 2013 | A1 |
20130017610 | Roberts et al. | Jan 2013 | A1 |
20130022816 | Smith et al. | Jan 2013 | A1 |
20130029886 | Mazyar et al. | Jan 2013 | A1 |
20130032357 | Mazyar et al. | Feb 2013 | A1 |
20130043041 | McCoy et al. | Feb 2013 | A1 |
20130047785 | Xu | Feb 2013 | A1 |
20130052472 | Xu | Feb 2013 | A1 |
20130056215 | Crews | Mar 2013 | A1 |
20130068411 | Forde et al. | Mar 2013 | A1 |
20130068461 | Maerz et al. | Mar 2013 | A1 |
20130084643 | Commarieu et al. | Apr 2013 | A1 |
20130105159 | Alvarez et al. | May 2013 | A1 |
20130112429 | Crews | May 2013 | A1 |
20130126190 | Mazyar et al. | May 2013 | A1 |
20130133897 | Bailhly et al. | May 2013 | A1 |
20130144290 | Schiffl et al. | Jun 2013 | A1 |
20130146144 | Joseph et al. | Jun 2013 | A1 |
20130160992 | Agrawal et al. | Jun 2013 | A1 |
20130167502 | Wilson et al. | Jul 2013 | A1 |
20130168257 | Mazyar et al. | Jul 2013 | A1 |
20130186626 | Aitken et al. | Jul 2013 | A1 |
20130199800 | Kellner et al. | Aug 2013 | A1 |
20130209308 | Mazyar et al. | Aug 2013 | A1 |
20130220496 | Noue et al. | Aug 2013 | A1 |
20130240200 | Frazier | Sep 2013 | A1 |
20130240203 | Frazier | Sep 2013 | A1 |
20130261735 | Pacetti et al. | Oct 2013 | A1 |
20130277044 | King et al. | Oct 2013 | A1 |
20130310961 | Velez | Nov 2013 | A1 |
20130048289 | Mazyar | Dec 2013 | A1 |
20130319668 | Tschetter et al. | Dec 2013 | A1 |
20130327540 | Hamid et al. | Dec 2013 | A1 |
20140018489 | Johnson | Jan 2014 | A1 |
20140020712 | Benson | Jan 2014 | A1 |
20140027128 | Johnson | Jan 2014 | A1 |
20140060834 | Quintero | Mar 2014 | A1 |
20140093417 | Liu | Apr 2014 | A1 |
20140110112 | Jordan, Jr. | Apr 2014 | A1 |
20140116711 | Tang | May 2014 | A1 |
20140124216 | Fripp et al. | May 2014 | A1 |
20140154341 | Manuel et al. | Jun 2014 | A1 |
20140186207 | Bae et al. | Jul 2014 | A1 |
20140190705 | Fripp | Jul 2014 | A1 |
20140196889 | Jordan et al. | Jul 2014 | A1 |
20140202284 | Kim | Jul 2014 | A1 |
20140202708 | Jacob et al. | Jul 2014 | A1 |
20140219861 | Han | Aug 2014 | A1 |
20140224477 | Wiese et al. | Aug 2014 | A1 |
20140236284 | Stinson | Aug 2014 | A1 |
20140271333 | Kim et al. | Sep 2014 | A1 |
20140286810 | Marya | Sep 2014 | A1 |
20140305627 | Manke | Oct 2014 | A1 |
20140311731 | Smith | Oct 2014 | A1 |
20140311752 | Streich et al. | Oct 2014 | A1 |
20140360728 | Tashiro et al. | Dec 2014 | A1 |
20140374086 | Agrawal et al. | Dec 2014 | A1 |
20150060085 | Xu | Mar 2015 | A1 |
20150065401 | Xu et al. | Mar 2015 | A1 |
20150102179 | McHenry et al. | Apr 2015 | A1 |
20150184485 | Xu et al. | Jul 2015 | A1 |
20150240337 | Sherman et al. | Aug 2015 | A1 |
20150247376 | Tolman et al. | Sep 2015 | A1 |
20150299838 | Doud | Oct 2015 | A1 |
20150354311 | Okura et al. | Dec 2015 | A1 |
20160024619 | Wilks | Jan 2016 | A1 |
20160128849 | Yan et al. | May 2016 | A1 |
20160201425 | Walton | Jul 2016 | A1 |
20160201427 | Fripp | Jul 2016 | A1 |
20160201435 | Fripp et al. | Jul 2016 | A1 |
20160209391 | Zhang et al. | Jul 2016 | A1 |
20160230494 | Fripp et al. | Aug 2016 | A1 |
20160251934 | Walton | Sep 2016 | A1 |
20160258242 | Hayter et al. | Sep 2016 | A1 |
20160265091 | Walton et al. | Sep 2016 | A1 |
20160272882 | Stray et al. | Sep 2016 | A1 |
20160279709 | Xu et al. | Sep 2016 | A1 |
20170050159 | Xu et al. | Feb 2017 | A1 |
20170266923 | Guest et al. | Sep 2017 | A1 |
20170356266 | Arackakudiyil et al. | Dec 2017 | A1 |
20180010217 | Wilks et al. | Jan 2018 | A1 |
20180023359 | Xu | Jan 2018 | A1 |
20180178289 | Xu et al. | Jun 2018 | A1 |
20180187510 | Xu et al. | Jul 2018 | A1 |
20180216431 | Walton et al. | Aug 2018 | A1 |
20180274317 | Hall | Sep 2018 | A1 |
20190054523 | Wolf et al. | Feb 2019 | A1 |
20190093450 | Walton et al. | Mar 2019 | A1 |
20190203563 | Gano et al. | Jul 2019 | A1 |
20190249510 | Deng et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2783241 | Jun 2011 | CA |
2783346 | Jun 2011 | CA |
2886988 | Oct 2015 | CA |
1076968 | Oct 1993 | CN |
1079234 | Dec 1993 | CN |
1255879 | Jun 2000 | CN |
1668545 | Sep 2005 | CN |
1882759 | Dec 2006 | CN |
101050417 | Oct 2007 | CN |
101351523 | Jan 2009 | CN |
101381829 | Mar 2009 | CN |
101392345 | Mar 2009 | CN |
101454074 | Jun 2009 | CN |
101457321 | Jun 2009 | CN |
101605963 | Dec 2009 | CN |
101720378 | Jun 2010 | CN |
102517489 | Jun 2012 | CN |
102796928 | Nov 2012 | CN |
103343271 | Oct 2013 | CN |
103602865 | Feb 2014 | CN |
103898384 | Jul 2014 | CN |
104004950 | Aug 2014 | CN |
104152775 | Nov 2014 | CN |
104480354 | Apr 2015 | CN |
201532089 | Apr 2015 | CN |
104651692 | May 2015 | CN |
10577976 | Jul 2016 | CN |
106086559 | Nov 2016 | CN |
200600343 | Jun 2006 | EA |
200870227 | Feb 2009 | EA |
0033625 | Aug 1981 | EP |
0400574 | May 1990 | EP |
0470599 | Feb 1998 | EP |
1006258 | Jan 2000 | EP |
1174385 | Jan 2002 | EP |
1412175 | Apr 2004 | EP |
1493517 | Jan 2005 | EP |
1798301 | Jun 2007 | EP |
1857570 | Nov 2007 | EP |
2088217 | Aug 2009 | EP |
912956 | Dec 1962 | GB |
1046330 | Oct 1966 | GB |
1280833 | Jul 1972 | GB |
1357065 | Jun 1974 | GB |
2095288 | Sep 1982 | GB |
2529062 | Feb 2016 | GB |
H10147830 | Jun 1998 | JP |
2000073152 | Mar 2000 | JP |
2000185725 | Jul 2000 | JP |
2002053902 | Feb 2002 | JP |
2004154837 | Jun 2004 | JP |
2004225084 | Aug 2004 | JP |
2004225765 | Aug 2004 | JP |
2005076052 | Mar 2005 | JP |
2008266734 | Nov 2008 | JP |
2008280565 | Nov 2008 | JP |
2009144207 | Jul 2009 | JP |
2010502840 | Jan 2010 | JP |
2012197491 | Oct 2012 | JP |
2013019030 | Jan 2013 | JP |
2014043601 | Mar 2014 | JP |
20130023707 | Mar 2013 | KR |
2013109287 | Jul 2013 | NO |
2373375 | Jul 2006 | RU |
9111587 | Aug 1881 | WO |
1990002655 | Mar 1990 | WO |
9200961 | Jan 1992 | WO |
1992013978 | Aug 1992 | WO |
9857347 | Dec 1998 | WO |
9909227 | Feb 1999 | WO |
1999027146 | Jun 1999 | WO |
9947726 | Sep 1999 | WO |
2001001087 | Jan 2001 | WO |
2004001087 | Dec 2003 | WO |
2004073889 | Sep 2004 | WO |
2005065281 | Jul 2005 | WO |
2007044635 | Apr 2007 | WO |
2007095376 | Aug 2007 | WO |
2008017156 | Feb 2008 | WO |
2008034042 | Mar 2008 | WO |
2008057045 | May 2008 | WO |
2008079485 | Jul 2008 | WO |
2008079777 | Jul 2008 | WO |
2008142129 | Nov 2008 | WO |
2009055354 | Apr 2009 | WO |
2009079745 | Jul 2009 | WO |
2009093420 | Jul 2009 | WO |
2010012184 | Feb 2010 | WO |
2010038016 | Apr 2010 | WO |
2010083826 | Jul 2010 | WO |
2010110505 | Sep 2010 | WO |
2011071902 | Jun 2011 | WO |
2011071907 | Jun 2011 | WO |
2011071910 | Jun 2011 | WO |
2011130063 | Oct 2011 | WO |
2012015567 | Feb 2012 | WO |
2012071449 | May 2012 | WO |
2012091984 | Jul 2012 | WO |
2012149007 | Nov 2012 | WO |
2012164236 | Dec 2012 | WO |
2012174101 | Dec 2012 | WO |
2012175665 | Dec 2012 | WO |
2013019410 | Feb 2013 | WO |
2013019421 | Feb 2013 | WO |
2013053057 | Apr 2013 | WO |
2013078031 | May 2013 | WO |
2013122712 | Aug 2013 | WO |
2013154634 | Oct 2013 | WO |
2014100141 | Jun 2014 | WO |
2014113058 | Jul 2014 | WO |
2014121384 | Aug 2014 | WO |
2014210283 | Dec 2014 | WO |
2015127177 | Aug 2015 | WO |
2015142862 | Sep 2015 | WO |
2015161171 | Oct 2015 | WO |
2015171126 | Nov 2015 | WO |
2015171585 | Nov 2015 | WO |
2016024974 | Feb 2016 | WO |
2016032490 | Mar 2016 | WO |
2016032493 | Mar 2016 | WO |
2016032619 | Mar 2016 | WO |
2016032620 | Mar 2016 | WO |
2016032621 | Mar 2016 | WO |
2016032758 | Mar 2016 | WO |
2016032761 | Mar 2016 | WO |
2016036371 | Mar 2016 | WO |
2016085798 | Jun 2016 | WO |
2016165041 | Oct 2016 | WO |
2020018110 | Jan 2020 | WO |
2020109770 | Jun 2020 | WO |
Entry |
---|
Scharf et al., “Corrosion of AX 91 Secondary Magnesium Alloy”, Advanced Engineering Materials, vol. 7, No. 12, pp. 1134-1142 (2005). |
Hillis et al., “High Purity Magnesium AM60 Alloy: The Critical Contaminant Limits and the Salt Water Corrosion Performance”, SAE Technical Paper Series (1986). |
Pawar, S.G., “Influence of Microstructure on the Corrosion Behaviour of Magnesium Alloys”, PhD Dissertation, University of Manchester (2011). |
Czerwinski, “Magnesium Injection Molding”; Technology & Engineering; Springer Science + Media, LLC, pp. 107-108, (Dec. 2007). |
Metals Handbook, Desk Edition, edited by J.R. David, published by ASM International, pp. 559-574 (1998). |
Hassan et al., “Development of high strength magnesium based composites using elemental nickel particulates as reinforcement”, Journal of Materials Science, vol. 37, pp. 2467-2474 (2002). |
Machine Translation of CN103898384 (originally submitted in Information Disclosure Statement filed Sep. 24, 2020). |
Machine Translation of KR 20130023707 (originally cited in Information Disclosure Statement filed Sep. 24, 2020). |
Machine Translation of CN103602865 (originally cited in Information Disclosure Statement filed Sep. 24, 2020). |
Machine Translation of CN101381829 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of CN102518489 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of CN 103343271 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of CN102796928 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of JP2008266734 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of JP2012197491 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of JP2013019030 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of JP2014043601 (originally cited in Information Disclosure Statement filed Sep. 11, 2020). |
Machine Translation of CN104004950 (See Foreign Patent Document # 2). |
Machine Translation of CN104651691 (See Foreign Patent Document # 3). |
United States District Court / Western District of Oklahoma, Case No. 5:21-cv-1115, Magnesium Machine LLC v. Terves LLC, Docket Report (Jan. 24, 2023). |
United States District Court/ Northern District of Ohio, Case No. 1:19-cv-1611, Terves LLC v. Yueyang Aerospace New Materials Co. Ltd., Partial Docket Report (Jan. 24, 2023). |
U.S. Court of Appeals / Federal District, Terves LLC v. Yueyang Aerospace New Materials Co. Ltd., Docket Report (Jan. 24, 2023). |
United States District Court / West District of Oklahoma, Case No. 5:21-cv-1115, Magnesium Machine, LLC v. Terves LLC, “Complaint for Declaration Judgment of Non-Infringment, Invalidity, and Unenforceability of Patents, Tortious Interference Contract and Prospective Economic Advantage and Unfair Competition” (Nov. 23, 2021). |
United States District Court / Northern District of Ohio, Eastern Division, Case No. 1:19-cv-1611, Terves LLC v. Yueyang Aerospace New Materials Co. Ltd., “Memorandum in Support of Defendants' Motion for Summary Judgment” (Nov. 18, 2021). |
Patent Trial and Appeal Board / Federal District, Chongqing Yanmei Technology Co., LTD v. Terves LLC; Declaration Under 37 CFR 1.68 of Dr. Juan C. Nava, Ph.D. (filed Jan. 24, 2023). |
Curriculum Vitae of Dr. Juan C. Nava, Ph.D. |
Patent Trial and Appeal Board / Federal District, Chongqing Yanmei Technology Co., LTD v. Terves LLC; “Petition for Inter Partes Review of U.S. Pat. No. 10,689,740” (filed Jan. 24, 2023). |
Sigworth et al. “Grain Refinement of Aluminum Castings Alloys” American Foundry Society; Paper 07-67; pp. 5-7 (2007). |
Momentive, “Titanium Diborid Powder” condensed product brochure; retrieved from https:/www.momentive.com/WorkArea/DownloadAsset.aspx?id+27489.; p. 1 (2012). |
Durbin, “Modeling Dissolution in Aluminum Alloys” Dissertation for Georgia Institute of Technology; retrieved from https://smartech;gatech/edu/bitstream/handle/1853/6873/durbin_tracie_L_200505_phd.pdf> (2005). |
Pegeut et al.., “Influence of cold working on the pitting corrosion resistance of stainless steel” Corrosion Science, vol. 49, pp. 1933-1948 (2007). |
Elemental Charts from chemicalelements.com; retrieved Jul. 27, 2017. |
Song et al., “Corrosion Mechanisms of Magnesium Alloys” Advanced Engg Materials, vol. 1, No. 1 (1999). |
Zhou et al., “Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotubes . . . ” Journal of Nanomaterials, 2012; 2012:851862 (doi: 10.1155/2012/851862) Figs. 6 and 7. |
Trojanova et al., “Mechanical and Acoustic Properties of Magnesium Alloys . . . ” Light Metal Alloys Application, Chapter 8, Published Jun. 11, 2014 (doi: 10.5772/57454) p. 163, para. [0008], [0014-0015]; [0041-0043]. |
AZoNano “Silicon Carbide Nanoparticles-Properties, Applications” http://www.amazon.com/articles.aspx?ArticleD=3396) p. 2, Physical Properties, Thermal Properties (May 9, 2013). |
AZoM “Magnesium AZ91D-F Alloy” http://www.amazon.com/articles.aspx?ArticleD=8670) p. 1, Chemical Composition; p. 2 Physical Properties (Jul. 31, 2013. |
Elasser et al., “Silicon Carbide Benefits and Advantages . . . ” Proceedings of the IEEE, 2002; 906(6):969-986 (doi: 10.1109/JPROC.2002.1021562) p. 970, Table 1. |
Lan et al., “Microstructure and Microhardness of SiC Nanoparticles . . . ” Materials Science and Engineering A; 386:284-290 (2004). |
Casati et al., “Metal Matrix Composites Reinforced by Nanoparticles”, vol. 4:65-83 (2014). |
Hemanth, “Fracture Behavior of Cryogenically solidifed aluminum-alloy reinforced with Nano-ZrO2 Metal Matrix Composites (CNMMCs)”, Journal of Chemical Engineering and Materials Science, vol. 2(8), pp. 110-121 (Aug. 2011). |
United States District Court/Northern District of Ohio/Eastern Division, Supplemental Declaration of Dana J. Medlin, Ph.D. in Support of Opposition to Terves LLC'S Motion for Preliminary Injunction in related Case 1:19-CV-1611 (filed Oct. 15, 2020). |
United States District Court/Northern District of Ohio/Eastern Division, Declaration of Andrew Sherman in Support of Terves' Preliminary Injunction Motion in related Case 1:19-CV-1611 (filed May 1, 2020). |
Shimizu et al., “Multi-walled carbon nanotube-reinforced magnesium alloy composites”, Scripta Materialia, vol. 58, pp. 267-270 (2008). |
Zhan et al., “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites”, Nature Materials, vol. 2, pp. 38-42 (Jan. 2003). |
Curtin et al., “CNT-reinforced ceramics and metals”, Materials Today, vol. 7, pp. 44-49 (2004). |
Pardo et al., “Corrosion behavior of magnesium/aluminum alloys in 3.5 wt.% NaCl”, Corrosion Science, vol. 50, pp. 823-834 (2008). |
Song et L., “Influence of microstructure on the corrosion of diecast AZ91D”, Corrosion Science, vol. 41, pp. 249-273 (1999). |
Watarai, “Trend of Research and Development for Magnesium Alloys—Reducing the Weight of Structural Materials in Motor Vehicles”, Science & Technology Trends, Quarterly Review, No. 18, pp. 84-97 (Jan. 2006). |
Saravanan et al., “Mechanically Alloyed Carbon Nanotubes (CNT) Reinforced Nanocrystalline AA 4032: Synthesis and Characterization”, Journal of Minerals & Materials Characterization & Engineering, vol. 9, No. 11, pp. 1027-1035 (2010). |
Tsipas et al., “Effect of high energy ball milling on titanium-hydroxyapatite powders”, Powder Metallurgy, vol. 46, No. 1 pp. 73-77 (2003). |
Xie et al., “TEM Observation of Interfaces between Particles in Al—Mg Powder Compacts Prepared by Pulse Electric Current Sintering”, Materials Transactions, vol. 43, No. 9, pp. 2177-2180 (2002). |
Elsayed et al., “Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering”, Tranasctions of JWRI, vol. 38, No. 2, p. 31. |
Shigematsu et al., “Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating”, Journal of Materials Science Letters, vol. 19, pp. 473-475 (2000). |
Spencer et al., “Fluidized Bed Polymer Particle ALD Process for Producing HDPE/Alumina Nanocomposites”, 12th International Conference on Fluidization, vol. RP4 (2007). |
Maisano, “Cryomilling of Aluminum-Based and Magnesium-Based Metal Powders”, Thesis, Virginia Tech (Jan. 2006). |
Walters et al., “A Study of Jets from Unsintered-Powder Metal Lined Nonprecision Small-Caliber Shaped Charges”, Army Research Laboratory, Aberdeen Proving Group, MC 21005-5066 (Feb. 2001). |
National Physical Laboratory, “Bimetallic Corrosion” Crown (C) p. 1-14 (2000). |
Ye et al., “Review of recent studies in magnesium matrix composites”, Journal of Material Science, vol. 39, pp. 6153-6171 (2004). |
Hassan et al., “Development of a novel magnesium-copper based composite with improved mechanical properties”, Materials Research Bulletin, vol. 37, pp. 377-389 (2002). |
Ye et al., “Microstructure and tensile properties of Ti6A14V/AM60B magnesium matrix composite”, Journal of Alloys and Composites, vol. 402, pp. 162-169 (2005). |
Kumar et al., “Mechanical and Tribological Behavior of Particulate Reinforced Aluminum metal Matrix Composite”, Journal of Minerals & Materials Characterization and Engineering, vol. 10, pp. 59-91 (2011). |
Majumdar, “Micromechanics of Discontinuously Reinforced MMCs”, Engineering Mechanics and Analysis of Metal-Matrix Composites, vol. 21, pp. 395-406. |
United States District Court/Northern District of Ohio/Eastern Division, Memorandum Opinion and Order in related Case 1:19-CV-1611 (issued Mar. 29, 2021). |
United States District Court/Northern District of Ohio/Eastern Division, Second Rebuttal Rule 26 Report of Lee A. Swanger, Ph.D., P.E. in related Case 1:19-CV-1611 (filed Nov. 24, 2020). |
U.S. Patent and Trademark Office, Declaration of Dana J. Medlin in Support of Request for Ex Parte Reexamination of U.S. Pat. No. 10,329,653 (filed Jul. 6, 2021). |
Ashby, “Teach Yourself Phase Diagrams and Phase Transformations”, Cambridge, 5th Edition, pp. unknown (March 2009). |
Callister, Materials Science and Engineering an Introduction:, 6th Edition, New York, pp. unknown (2003). |
Hanson et al. Constitution of Binary Alloys:, McGraw-Hill Book Co. Inc., pp. unknown (1958). |
MSE 2090: Introduction to Materials Science, Chapter 9, pp. unknown (date unknown). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Aluminum-Magnesium, American Society For Metals, 8th Edition, vol. 8, pp. unknown (1973). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Magnesium-Nickel, American Society for Metals, 8th Edition, vol. 8, pp. unknown (1973). |
Principles and Prevention of Corrosion, “Volts versus saturated calomel reference electrobe”, D.A. Jones, p. 170 (1996). |
Medlin, “Mass Balance”, handwritten notes (Nov. 2020). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Aluminum-Iron, American Society for Metals, 8th Edition, vol. 8, p. 260 (1973). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Aluminum-Nickel, American Society for Metals, 8th Edition, vol. 8, p. 261 (1973). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Aluminum-Copper, American Society for Metals, 8th Edition, vol. 8, p. 259 (1973). |
Metals Handbook, “Metallography, Structures and Phase Diagrams”, Silver-Aluminum, American Society for Metals, 8th Edition, vol. 8, p. 252 (1973). |
Medlin, Declaration of Dona J. Medlin Ph.D., P.E., FASM Under 37 CFR Section 1.68 in Support of Petition For Inter Partes Review of U.S. Pat. No. 9,903,010 (Sep. 2020). |
Li, Qiang, “Translation Declaration and Translation of China Patent Publication No. 103343271” (Jun. 2020). |
Ho et al., The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates:, Materials Science and Engineering A369, pp. 302-308 (2004). |
Trojanova et al., “Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles”, Composites Science and Technology, vol. 69, pp. 2256-2264 (2009). |
Lin et al., “Formation of Magnesium Metal Matrix Composites Al2O3p/AZ91D and Their Mechanical Properties After Heat Treatment” Acta Metallurgica Slovaca, vol. 16, pp. 237-245 (2010). |
Saravanan et al., “Fabrication and characterization of pure magnesium-30 vol. SiCP particle composite”, Material Science and Eng., vol. 276, pp. 108-116 (2000). |
Song et al., “Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending”, Journal of Alloys and Compounds, vol. 489, pp. 475-481 (2010). |
Blawert et al., “Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities”, Corrosion Science, vol. 52, No. 7, pp. 2452-2468 (Jul. 1, 2010). |
Wang et al., “Effect of Ni on microstructures and mechanical properties of AZ1 02 magnesium alloys” Zhuzao Foundry, Shenyang Zhuzao Yanjiusuo, vol. 62, No. 1, pp. 315-318 (Jan. 1, 2013). |
Kim et al., “Effect of aluminum on the corrosions characteristics of Mg—4Ni—xAl alloys”, Corrosion, vol. 59, No. 3, pp. 228-237 (Jan. 1, 2003). |
Unsworth et al., “A new magnesium alloy system”, Light Metal Age, vol. 37, No. 7-8., pp. 29-32 (Jan. 1, 1979). |
Geng et al., “Enhanced age-hardening response of Mg—Zn alloys via Co additions”, Scripta Materialia, vol. 64, No. 6, pp. 506-509 (Mar. 1, 2011). |
Zhu et al., “Microstructure and mechanical properties of Mg6ZnCuO.6Zr (wt.%) alloys”, Journal of Alloys and Compounds, vol. 509, No. 8, pp. 3526-3531 (Dec. 22, 2010). |
International Search Authority, International Search Report and Written Opinion for PCT/GB2015/052169 (dated Feb. 17, 2016). |
Search and Examination Report for GB 1413327.6 (dated Jan. 21, 2015). |
Magnesium Elektron Test Report (Mar. 8, 2005). |
New England Fishery Management Counsel, “Fishery Management Plan for American Lobster Amendment 3” (Jul. 1989). |
Emly, E.F., “Principles of Magnesium Technology” Pergamon Press, Oxford (1966). |
Shaw, “Corrosion Resistance of Magnesium Alloys”, ASM Handbook, vol. 13A, pp. 692-696 (2003). |
Hanawalt et al., “Corrosion studies of magnesium and its alloys”, Metals Technology, Technical Paper 1353 (1941). |
The American Foundry Society, Magnesium alloys, casting source directory 8208, available at www.afsinc.org/files/magnes.pdf. |
Rokhlin, “Magnesium alloys containing rare earth metals structure and properties”, Advances in Metallic Alloys, vol. 3, Taylor & Francis (2003). |
Ghali, “Corrosion Resistance of Aluminum and Magnesium Alloys” pp. 382-389, Wiley Publishing (2010). |
Kim et al., “High Mechanical Strengths of Mg—Ni—Y and MG—Cu Amorphous Alloys with Significant Supercooled Liquid Region”, Materials Transactions, vol. 31, No. 11, pp. 929-934 (1990). |
Tekumalla et al., “Mehcanical Properties of Magnesium-Rare Earth Alloy Systems”, Metals, vol. 5, pp. 1-39 (2014). |
State Intellectual Property Office of People's Republic of China, First Office Action for corresponding China Patent Application No. 201580020103.7 (dated Aug. 11, 2017). |
Terves LLC, Response to First Office Action for China Patent Application No. 201580020103.7 (Official Translation dated Jul. 2, 2020). |
Medlin, Dana, “Expert Report of Dana J. Medlin, Phd, PE, FASM in the Matter of Terves LLC v. Yueyang Aerospace New Materials Co., Ltd., et al.”, US District Court for the Northern District Of Ohio, Eastern Division, Case No. 1:19-cv-1661 (Jul. 27, 2021. |
Medlin, Dana, “Expert Rebuttal Report of Dana J. Medlin, Phd, PE, FASM”, US District Court for the Northern District of Ohio, Eastern Division, Case No. 1:19-cv-1661 (Aug. 27, 2021). |
Yueyang Aerospace New Materials Co, Ltd, et al., “The Ecometal Defendant's Final Invalidity, Non-Infringement, and Unenforceability Contentions”, US District Court for the Northern District of Ohio, Eastern Division, Case No. 1:19-cv-1661 (Jul. 6, 2020). |
Ralston and Birbilis, “Effect of Grain Size on Corrosion: A Review”, Corrosion, vol. 66, No. 7, pp. 075005-01 thru 13 (2010). |
Sherman, Andrew, “Declaration of Andrew J. Sherman Under 37 CFR § 1.132” in Ex Parte Reexamination of U.S. Appl. No. 90/014,795 (Jan. 14, 2021). |
Swanger, Lee A., “Declaration of Lee A. Swanger, PhD, PE Under 37 CFR § 1.132” in Ex Parte Reexamination of U.S. Appl. No. 90/014,795 (Jan. 14, 2021). |
Number | Date | Country | |
---|---|---|---|
20200407822 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62537707 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16045924 | Jul 2018 | US |
Child | 17018547 | US |