Over the past decades, water-soluble polymers1-6 have been found to carry drugs preferentially to cancerous tissues, resulting in drug concentrations orders of magnitude higher than that in healthy tissues and thus significantly enhanced therapeutic efficacy while greatly reduced drug side effects.7, 8 The cancer-targeted drug delivery results from the enhanced permeation and retention (EPR) effect in cancerous tissues due to the leaky blood capillaries and an impaired lymphatic drainage.
Drugs bound to water-soluble polymers, namely, polymer drugs or polymer-drug conjugates,1-6, 9 exhibit much longer circulation times in the bloodstream for passive accumulation in cancerous tissues, lower toxicity to healthy tissues, wider dose windows,10 and much higher antitumor activity, and they can bypass cancer cells' membrane-associated multidrug resistance.11-14 Various water-soluble polymers have been explored as drug carriers, including polyglutamates, albumin, poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA), polyacetals, and dendrimers. Of the various available polymers for polymer-drug conjugates, PEG is most widely used due to its low toxicity and low interaction with proteins and cells. Many PEG-anticancer drug conjugates such as PEG-camptothecin.15, 16 PEG-doxorubicin,17-19 PEG-paclitaxel,20 and PEG-methotrexate have been developed and some of them are in clinical trials.21
In the PEG-drug conjugates, the PEG molecular weight plays a major role in cancer targeting and cellular uptake. Passive accumulation of the conjugates in cancerous tissues via the EPR effect requires the PEG carrier to have long circulation time, and therefore, slow renal clearance.1-6 Yamaoka reported that the renal clearance rate of PEG decreased with increasing its molecular weight, with the most dramatic decrease at 30,000.22 Thus, higher molecular weight PEG has a longer plasma residence time and consequently a greater tumor targeting.19 However, the in vitro cytotoxicity of the conjugates decreases with increasing the PEG molecular weight due to the decreased cellular uptake rate.6, 19, 21 Furthermore, nondegradable PEG with the molecular weight higher than its renal threshold may be retained in the body and may cause serious kidney damage and lysosomal storage disease syndrome upon repeated application.23 In addition, linear PEG only has one or two terminal groups available for drug and targeting group conjugations.
Therefore, one objective of this invention is to develop a degradable linear PEG (DPEG) with multiple functional groups as drug carriers. Such a DPEG can be made to have high molecular weight for effective tumor targeting by the EPR effect, but degrade into shorter polymer chains in the acidic extracellular fluid of solid tumors (pH <724, 25) for fast cellular internalization, and further degrade in lysosomes (pH 4-526) for efficient renal clearance. The multifunctional groups in the DPEG can be used for conjugation of drugs and targeting groups, such as folic acid targeting groups. These DPEGs are also targeted to be used for pegylation.
Another objective of this invention is to make such DPEGs thermoresponsive, if needed, that is to make them precipitate from an aqueous solution upon heating. Synthetic thermoresponsive polymers are mainly poly(N-alkyl acrylamide)s, poly(vinyl ether)s, poly(N-vinylcaprolactam), polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymers, and poly(ethylene glycol) (PEG) brushes.27-31 These polymers, however, are nondegradable and may not be used in vivo. Thermoresponsive DPEGs will be useful for in vivo applications
A new class of poly(ethylene glycol) (PEG)-derived materials, degradable PEG analogues (DPEGs) are synthesized by condensation polymerization by either Michael Addition of PEG-di(meth)acrylates or di(meth)acrylamides with dithiols or PEG-diols or PEG-diamines with dianhydrides. DPEGs can be made to be fast degradable through hydrolysis, carry multiple functional groups such as thiol, (meth)acrylates, hydroxy and carboxylic acid groups. DPEGs can have lower critical solubility temperatures (LCSTs) tunable from 0 to 50° C. These DPEGs are useful as multifunctional water-soluble drug delivery carriers, for pegylation of biomolecules, biopolymers and colloidal particles. DPEGs can be used to develop a new class of thermoresponsive drug carriers. Crosslinked DPEGs are thermoresponsive hydrogels.
1H-NMR spectra of PEGDA258-DET (Mn: 36,900, PDI: 1.58) with terminal diacrylates (a), dithiols (b) and the (b) after D2O exchange (c).
Poly(PEG-diacrylate-dithiothreitol)s (PEGDA-DTT), poly(PEG-diacrylate-ethanedithiol)s (PEGDA-DET), poly(PEG-diacrylate-propanedithiol)s (PEGDA-DPT), poly(PEG-diacrylate-butanedithiol)s (PEGDA-DBT), poly(PEG-dimethacrylate-dithiothreitols (PEGDMA-DTT), poly(PEG-dimethacrylate-ethanedithiol)s (PEGDMA-DET) were prepared by Michael-type polyaddition of poly(ethylene glycol) diacrylate (PEGDA), or dimethacrylate (PEGDMA) with D, L-dithiothreitol (DTT), 1,2-ethanedithiol (DET), 1,3-propanedithiol (DPT), or 1,4-butanedithiol (DBT), respectively (Schemes 1 and 2). The synthesized DPEGs are listed in Table 1. A typical procedure is as follows. DTT (0.4830 g, 3.1313 mmol) was dissolved in 3 mL of dimethyl sulfoxide (DMSO) at room temperature. PEGDA575 (1.8000 g, 3.1310 mmol) was added to the DMSO solution. Triethylamine (TEA) (0.05 mL, 0.3587 mmol) was added dropwise to the above mixture and the polymerization was continued at room temperature for 72 h. The polymer was precipitated in ether and purified by repeated precipitations. The precipitant was dried in vacuum at 70° C. overnight. The polymer PEGDA575-DTT was characterized by GPC (Table 1) and NMR.
Synthesis of Example DPEGs by the Condensation Reaction of PEG-Diol or PEG-Diamine with Dianhydride
A typical procedure is as follows: CBDA (0.4365 g, 2.2258 mmol) and PEG200 (0.4452 g, 2.2258 mmol) were dissolved in 3 mL of anhydrous DMSO at 60° C. for 72 h. The polymer was precipitated in ether and purified by repeated precipitation. The polymer was dried in vacuum oven at 70° C. overnight. Yield=92%.
Synthesis of DPEG with Terminal Dithiols (Scheme 3 b) or Diacrylates (Scheme 3 c)
An example is shown as follows: PEGDA258 (0.8207 g, 3.1810 mmol) and DET (0.2996 g, 3.1811 mmol) were dissolved in 3 mL of DMSO and stirred at room temperature. TEA (0.05 mL, 0.3587 mmol) was added dropwise to the above mixture as catalyst. After 72 h, additional DET (0.27 g, 2.87 mmol) or PEGDA258 (0.53 g, 2.05 mmol) was added to the polymerization solution and stirred at room temperature for another 30 h. The polymer was precipitated in ether for three times and dried under vacuum overnight (Mn: 36,900, PDI: 1.58). The polymers with terminal diacrylates (PEGDA258-DET-diacrylates) or dithiols (PEGDA258-DET-dithiols) were analyzed by 1H-NMR. To confirm the terminal dithiol groups, deuterium oxide (D2O) exchange experiment was carried out by the following procedure: D2O (0.2 mL) was added into 0.6 mL of PEGDA258-DET-dithiols CDCl3 solution and mixed well. After centrifuged at 2,500 rpm, PEGDA258-DET-dithiols CDCl3 solution was collected for 1H-NMR measurement.
Synthesis of DPEG with Terminal Dipyridyl Disulfides (Scheme 3 d)
The DPEG with terminal dipyridyl disulfide groups (PEGDA258-DET-dipyridyl disulfides) was synthesized as follows: PEGDA258-DET-dithiols (Mn: 36,900, PDI: 1.58, 2.47 g, 0.067 mmol) and 2,2-dipyridyl disulfide (0.059 g, 0.27 mmol) were dissolved in 20 mL of methanol and stirred at room temperature for 12 h. The mixture solution was precipitated in ether for three times. The precipitate was dried under a vacuum overnight.
Introducing folic acid targeting groups to the DPEG is as follows: folic acid (2.45 g, 5.55 mmol), NHS (1.28 g, 11.12 mmol), DCC (1.37 g, 6.64 mmol) and TEA (1.86 mL, 13.34 mmol) were dissolved in 30 mL of anhydrous DMSO and stirred at room temperature overnight. The mixture was precipitated in ether for three times to isolate folate-NHS ester. Folate-NHS ester (1.21 g, 2.25 mmol) and cysteamine (0.21 g, 2.70 mmol) were dissolved in 10 mL of anhydrous DMSO. TEA (0.32 mL, 2.29 mmol) was added to the reaction mixture. The reaction was stirred for 12 h and the solution was precipitated in water for three times to obtain folate-cysteamide. PEGDA258-DET-dipyridyl disulfides (Mn: 36,900, PDI: 1.58, 2.03 g, 0.055 mmol) and folate-cysteamide (0.11 g, 0.22 mmol) were dissolved in 20 mL of DMSO and stirred at room temperature for 48 h. The polymer was repeatedly precipitated in ether until TLC (solvent system: n-propanol: water: ammonium hydroxide=8:1:2, by volume) showed no sign of free folate cysteamide. PEGDA258-DET-difolates was obtained in a yield of 81%.
Conjugation of CPT to the DPEG with pendant hydroxyl groups is shown in Scheme 4. A typical procedure is as follows: The PEGDA700-DTT (Mn=10,900, 5.24 g, 0.48 mmol) and succinic anhydride (2.50 g, 24.98 mmol) were dissolved in 50 mL of dry DMF and stirred at 60° C. for 72 h until all hydroxyl groups were reacted. The resulting PEGDA700-DTT functionalized with pendant carboxylic acid groups (PEGDA700-DTT-acid) was isolated in ether and dried under high vacuum at 60° C. overnight.
The PEGDA700-DTT-acid reacted with CPT catalyzed by DCC/DMAP at different carboxylic acid/CPT molar ratios produced DPEG carrying different amounts of CPT molecules per chain. A typical example is as follows: the PEGDA700-DTT-acid (1.42 g, 0.11 mmol), DCC (0.35 g, 1.65 mmol), DMAP (17.1 mg, 0.14 mmol) and CPT (0.50 g, 1.43 mmol) were dissolved in 20 mL of DMSO and stirred at room temperature for 48 h. The polymer was repeatedly precipitated in ether until the thin layer chromatograph (TLC) (solvent system: chloroform: acetone=2:1, by volume) showed no sign of free CPT in the PEGDA700-DTT-CPT conjugate. Yield=86%. 1H-NMR analysis showed that the DPEG-CPT conjugate had 12 CPT molecules per chain (PEGDA700-DTT-12CPT). The conjugate with one CPT molecule per chain (PEGDA700-DTT-1CPT) was also prepared by the same procedure by adding less CPT.
Generally, all tested dithiols (DTT, DET, DPT, and DBT) could react with PEGDA to produce high molecular weight DPEGs in high yields. Only DTT and DET, however, reacted with PEGDMA to produce high molecular weight DPEGs (Schemes 1 and 2). The molecular weights of the obtained DPEGs ranged from 10,000 to 90,000, depending on the dithiols and the di(meth)acrylates (Table 1). The polydispersity was about 1.7 to 2, which is typical for polymers obtained from condensation polymerization. Low polydispersed polymers could be easily obtained by repeated fractionation. For example, with CHCl3 as solvent and ether as precipitant, 3-step fractionations of PEGDMA750-DET with Mn of 49,000 and PDI of 1.83 produced fractions with lower PDIs (Table 2).
DPEG's are degradable because they are hydrolysable. Specifically, DPEG backbone contains β-thioester (—SCH2CH2COO— or —SCH2CH(CH3)COO—) groups that promote hydrolysis. The hydrolysis of DPEGs was tested at pH 7.4, 6.0 and 5.0 and monitored by measuring the decrease of the ester bonds using 1H-NMR.
In addition to the functional groups introduced by using dithiols having functional groups, such as DTT, the DPEGs could easily be functionalized with terminal (meth)acrylate or thiol groups (Scheme 3). The ratio of di(meth)acrylate monomer to dithiol monomer was first kept at 1/1 molar ratio to make a high molecular weight polymer. After a desirable molecular weight was reached (e.g., PEGDA258-DET, Mn: 36,900, PDI: 1.58), an excess of dithiol or di(meth)acrylate monomer was added to the reaction solution to cap the polymer ends with either thiol or (meth)acrylate. Typical 1H-NMR spectra are shown in
The use of terminal thiol groups for conjugation was demonstrated by introducing folic acid targeting groups (Scheme 3 d and e). The PEGDA258-DET with terminal 2-pyridyldisulfides reacted with folic acid-cysteamide prepared from folic acid and cysteamine and formed the disulfide bonds, anchoring the folic acid moieties to the DPEG (PEGDA258-DET-difolates). The presence of folic acid moieties was confirmed by NMR (experimental section) and was about 2 folic acid groups per chain.
The DPEG hydrogels were synthesized by an in-situ copolymerization method or an end-capping method using crosslinking agents of pentaerythritol tetraacrylate (TEAC) or trimethylolpropane ethoxylate triacrylate (TRIAC) with molecular weight of 428 (TRIAC428), 604 (TRIAC604), 912 (TRIAC912) (Scheme 5).
In the in-situ copolymerization method, PEGDA700, DTT and a crosslinking agent were copolymerized to form gels. TRIAC428 at 5, 10 or 15 wt-% of PEGDA700 were used. The corresponding molar ratios of the acrylate from PEGDA700 to that from TRIAC428 were 8, 4, and 3 respectively. The amounts of other crosslinking agents in the copolymerization were calculated according to the molar ratios. A typical procedure is as follows. PEGDA700 (2.1479 g, 3.0685 mmol), TRIAC912 (0.2289 g, 0.2510 mmol) and DTT (0.5314 g, 3.445 mmol) were dissolved in 3 mL of DMSO at room temperature. TEA (0.05 mL, 0.3587 mmol) was added dropwise to the above mixture and the crosslinking polymerization was continued at room temperature for 72 h. The solids were extracted for 24 h with 250 ml of acetone using a Soxhlet extractor. The insoluble solid in a yield of 92% was dried in vacuum at 70° C. overnight.
In the end-capping method, the DPEG with terminal thiol groups at the both ends (DPEG-dithiols) was first synthesized as the precursor. A crosslinking agent and TEA were then added to form the gels (Scheme 6). The molar ratio of the acrylate in the crosslinking agent to the thiol group in the DPEG-dithiols was kept close to 1/1. A typical procedure is as follows. DET (0.3353 g, 3.5606 mmol) and PEGDA700 (2.4924 g, 3.5606 mmol) were dissolved in 3 mL of DMSO and stirred at room temperature. TEA (0.05 mL, 0.3587 mmol) was added dropwise to the mixture as catalyst. After 72 h, additional DET (0.31 g, 3.29 mmol) was added to the polymerization solution and stirred at room temperature for another 30 h. The polymer was precipitated in ether for three times and dried under vacuum overnight. PEGDA700-DET with terminal thiol groups at both ends (PEGDA700-DET-dithiols, Mn: 22,900, PDI: 1.62) was obtained. PEGDA700-DET-dithiols (1.6450 g, 0.0718 mmol) and TEAC (12.6490 mg, 0.0359 mmol) were dissolved in 10 mL of DMSO at room temperature. TEA (2.84, 0.02 mmol) was added dropwise to the above mixture and the polymerization was continued at 35° C. for 96 h. The resulting soft solid was extracted for 24 h with 250 ml of acetone using a Soxhlet extractor. The insoluble solid in a yield of 83% was dried in vacuum at 70° C. overnight.
The DPEG gels resulted from the both methods are summarized in Tables 3 and 4.
Ionic strength and pH effects on the phase transition temperature were tested by measuring the cloud points of the DPEG (1 wt %) in NaCl solutions at 0.15, 0.5, 1.0, and 2.0 mol/L or at pH 6.0, 7.0, and 8.0.
The swelling ratio (%) of the hydrogels was measured in terms of the percent of absorbed water by the dry gels. The gel particles were equilibrated in water for 24 h. The hydrated particles were carefully taken out from the solution, wiped with a filter paper to remove the free water on the surface and then weighted. Swelling ratio (%) of a sample was calculated by:
where w is the hydrogel weight at equilibrium and w0 is the weight of the dry gel.
All tested dithiols (DTT, DET, DPT, and DBT) could react with PEGDA to produce high molecular weight DPEGs in high yields. Only DTT and DET, however, reacted with PEGDMA to produce high molecular weight DPEGs (Schemes 1 and 2). The molecular weights of the obtained DPEGs ranged from 10,000 to 90,000, depending on the dithiols and the di(meth)acrylates (Table 1). The polydispersity was about 1.7 to 2, which is typical for polymers obtained from condensation polymerization. Low polydispersed polymers could be easily obtained by repeated fractionation. For example, with CHCl3 as solvent and ether as precipitant, 3-step fractionations of PEGDMA750-DET with Mn of 49,000 and PDI of 1.83 produced fractions with lower PDIs (Table 2). Their degradation was confirmed by the hydrolysis experiments. DPEG is stable at the neutral pH but hydrolyzes quickly at acidic pHs.
DPEGs can be made to carry multifunctional groups. In addition to the functional groups introduced by using dithiols having functional groups, such as hydroxyl groups (DTT) and carboxylic acid groups (DMSA), the DPEGs could easily be functionalized with terminal (meth)acrylate or thiol groups (Scheme 3). The ratio of di(meth)acrylate monomer to dithiol monomer was first kept at 1/1 molar ratio to make a high molecular weight polymer. After a desirable molecular weight was reached (e.g., PEGDA258-DET, Mn: 36,900, PDI: 1.58), an excess of dithiol or di(meth)acrylate monomer was added to the reaction solution to cap the polymer ends with either thiol or (meth)acrylate. Typical 1H-NMR spectra are shown in
The use of terminal thiol groups for conjugation was demonstrated by introducing folic acid targeting groups (Scheme 3 d and e). The PEGDA258-DET with terminal 2-pyridyldisulfides reacted with folic acid-cysteamide prepared from folic acid and cysteamine and formed the disulfide bonds, anchoring the folic acid moieties to the DPEG (PEGDA258-DET-difolates). The presence of folic acid moieties was confirmed by NMR (experimental section) and was about 2 folic acid groups per chain.
The use of the hydroxyl groups in DTT-based DPEG was demonstrated by conjugation of CPT (Scheme 4). PEGDA700-DTT was first reacted with succinic anhydride to convert the hydroxyl groups into acid groups (PEGDA700-DTT). It is important to ensure all the hydroxyl groups reacted; otherwise, crosslinking would occur in the next step of CPT conjugation. CPT was anchored to the chains using conventional DCC/DMAP catalyzed reaction. The amount of CPT per chain was controlled by CPT/carboxylic acid ratio. The resulting PEGDA700-DTT-CPT was analyzed by NMR (Experimental section). PEGDA700-DTT-CPT samples having 12 CPT/chain and 1 CPT/chain were prepared.
These DPEGs were found to have thermosensitive properties. A clear solution of the DPEG became cloudy upon heating. A typical optical transmittance of the solution of PEGDA575-DTT as a function of temperature is shown in
The influences of molecular weight and structure of the PEG-di(meth)acrylate macromonomers on the DPEG's LCST are shown in
The phase transitions of DPEGs obtained from PEGDA700 with different dithiols are shown in
The effects of ionic strength on the LCSTs of DPEGs were tested by measuring the LCSTs in the presence of varied concentrations of NaCl (
DPEG gels were first prepared by in-situ polymerization of PEGDA700 and DTT in the presence of a crosslinking agent TRIAC or TEAC. The copolymerization with 5% or more crosslinking agent produced gels in high yields (Table 1). The gels swelled at low temperatures but deswelled at elevated temperatures. The thermoresponsive property in terms of the swelling ratio as a function temperature of the hydrogels is shown in
As expected, the swelling ratio of the hydrogels decreased as the TRIAC428 content in the gel increased from 5% to 15% (
The cocondensation polymerization in the presence of crosslinking agents produced thermoresponsive hydrogels, but their phase transitions were broad due to the random distribution of the crosslinking agents in the DPEG chains. Thus, an end-capping method was used to synthesize the gels. In this method, the DPEG chains with terminal thiol groups at the both ends were first synthesized and then reacted with a crosslinker agent TRIAC or TEAC (Scheme 6). The DPEG chains were thus minimally disturbed to retain their thermoresponsive properties.
The hydrogels made by the end-capping method had much higher swelling ratios than those made by the copolymerization method (
The foregoing description and drawings comprise illustrative embodiments of the present inventions. The foregoing embodiments and the methods described herein may vary based on the ability, experience, and preference of those skilled in the art. Merely listing the steps of the method in a certain order does not constitute any limitation on the order of the steps of the method. The foregoing description and drawings merely explain and illustrate the invention, and the invention is not limited thereto, except insofar as the claims are so limited. Those skilled in the art that have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.
This application claims priority to U.S. Patent Application Ser. No. 60/932,203 filed May 30, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/65287 | 5/30/2008 | WO | 00 | 3/27/2012 |
Number | Date | Country | |
---|---|---|---|
60932203 | May 2007 | US |