This invention relates to drill bits, specifically drill bit assemblies for use in oil, gas and geothermal drilling. More particularly, the invention relates to cutting elements in drill bits comprised of a carbide substrate with an abrasion resistant layer of superhard material.
Such cutting elements are often subjected to intense forces, torques, vibration, high temperatures, and temperature differentials during operation. As a result, stresses within the structure begin to form. Drag bits, for example, may exhibit stresses aggravated by drilling anomalies during well boring operations such as bit whirl or bounce often resulting in spalling, delamination, or fracture of the superhard abrasive layer or the substrate thereby reducing or eliminating the cutting elements efficacy and decreasing overall drill bit wear life. The superhard material layer of a cutting element may delaminate from the carbide substrate after the sintering process in addition to during percussive and abrasive use. Damage typically found in drag bits may be a result of shear failures, although non-shear modes of failure are not uncommon. The interface between the super hard material layer and substrate is particularly susceptible to non-shear failure modes due to inherent residual stresses.
U.S. Pat. No. 6,332,503 to Pessier et al., which is herein incorporated by reference for all that it contains, discloses an array of chisel-shaped cutting elements mounted to the face of a fixed cutter bit. Each cutting element has a crest and an axis which is inclined relative to the borehole bottom. The chisel-shaped cutting elements may be arranged on a selected portion of the bit, such as the center of the bit, or across the entire cutting surface. In addition, the crest on the cutting elements may be oriented generally parallel or perpendicular to the borehole bottom.
U.S. Pat. No. 6,408,959 to Bertagnolli et al., which is herein incorporated by reference for all that it contains, discloses a cutting element, insert or compact which is provided for use with drills used in the drilling and boring of subterranean formations.
U.S. Pat. No. 6,484,826 to Anderson et al., which is herein incorporated by reference for all that it contains, discloses enhanced inserts formed having a cylindrical grip and a protrusion extending from the grip.
U.S. Pat. No. 5,848,657 byto Flood et al., which is herein incorporated by reference for all that it contains, discloses a domed polycrystalline diamond cutting element wherein a hemispherical diamond layer is bonded to a tungsten carbide substrate, commonly referred to as a tungsten carbide stud. Broadly, the inventive cutting element includes a metal carbide stud having a proximal end adapted to be placed into a drill bit and a distal end portion. A layer of cutting polycrystalline abrasive material disposed over said distal end portion such that an annulus of metal carbide adjacent and above said drill bit is not covered by said abrasive material layer.
U.S. Pat. No. 4,109,737 to Bovenkerk, which is herein incorporated by reference for all that it contains, discloses a rotary bit for rock drilling comprising a plurality of cutting elements mounted by interference-fit in recesses in the crown of the drill bit. Each cutting element comprises an elongated pin with a thin layer of polycrystalline diamond bonded to the free end of the pin.
U.S. Patent Application Serial No. 2001/0004946 by Jensen, although now abandoned, is herein incorporated by reference for all that it discloses. Jensen teaches a cutting element or insert with improved wear characteristics while maximizing the manufacturability and cost effectiveness of the insert. This insert employs a superabrasive diamond layer of increased depth by making use of a diamond layer surface that is generally convex.
In one aspect of the invention, a degradation assembly has a working portion with at least one impact tip brazed to a carbide extension. The carbide extension has a cavity formed in a base end and is adapted to interlock with a shank assembly of the cutting element assembly. The shank assembly has a locking mechanism adapted to interlock a first end of the shank assembly within the cavity. The locking mechanism has a radially extending catch formed in the first end of the shank assembly. The shank assembly has an outer surface at a second end of the shank assembly adapted to be press-fitted within a recess of a driving mechanism. The outer surface of the shank assembly has a coefficient of thermal expansion of 110 percent or more than a coefficient of thermal expansion of a material of the driving mechanism.
The cavity may have an inwardly protruding catch. The inwardly protruding catch may be adapted to interlock with the radially extending catch. An insert may be intermediate the inwardly protruding catch and the radially extending catch. The insert may be a ring, a snap ring, a split ring, or a flexible ring. The insert may also be a plurality of balls, wedges, shims or combinations thereof. The insert may be a spring.
The locking mechanism may have a locking shaft extending from the first end of the shank assembly towards the second end of the shank assembly. The locking mechanism of the shank assembly may be mechanically connected to the outer surface of the shank assembly. Mechanically connecting the locking mechanism to the outer surface may apply tension along a length of the locking shaft. The locking mechanism may have a coefficient of thermal expansion equal to or less than the coefficient of thermal expansion of the outer surface. The shank assembly may be formed of steel.
The tip may comprise a superhard material bonded to a cemented metal carbide substrate at a non-planar interface. The cemented metal carbide substrate may be brazed to the carbide extension. The cemented metal carbide substrate may have the same coefficient of thermal expansion as the carbide extension. The cemented metal carbide substrate may have a thickness of 0.30 to 0.65 times a thickness of the superhard material. At least two impact tips may be brazed to the carbide extension.
The assembly may be incorporated in drill bits, shear bits, percussion bits, roller cone bits or combinations thereof. The assembly may be incorporated in mining picks, trenching picks, asphalt picks, excavating picks or combinations thereof. The carbide extension may comprise a drill bit blade, a drill bit working surface, a pick bolster, or combinations thereof.
Referring now to the figures,
A bit body 201A is attached to the shank 200A and has an end which forms a working face 202A. Several blades 203A extend outwardly from the bit body 201A, each of which may have a plurality of cutting inserts 208A. A drill bit 104A most suitable for the present invention may have at least three blades 203A; preferably the drill bit 104A will have between three and seven blades 203A. The blades 203A collectively form an inverted conical region 205A. Each blade 203A may have a cone portion 253, a nose portion 206A, a flank portion 207A, and a gauge portion 204A. Cutting inserts 208A may be arrayed along any portion of the blades 203A, including the cone portion 253A, nose portion 206A, flank portion 207A, and gauge portion 204A. 207A, and gauge portion 204A.
A plurality of nozzles 209A are fitted into recesses 210A formed in the working face 202A. Each nozzle 209A may be oriented such that a jet of drilling mud ejected from the nozzles 209A engages the formation before or after the cutting elements 208A. The jets of drilling mud may also be used to clean cuttings away from drill bit 104A. In some embodiments, the jets may be used to create a sucking effect to remove drill bit cuttings adjacent the cutting inserts 208A by creating a low pressure region within their vicinities.
The shank assembly 303B may be formed of a hard material such as steel, stainless steel, hardened steel, or other materials of similar hardness. The carbide extension 404B may be formed of a material such as tungsten, titanium, tantalum, molybdenum, niobium, cobalt and/or combinations thereof.
The shank assembly 303B may be work-hardened or cold-worked in order to provide resistance to cracking or stress fractures due to forces exerted on the degradation assembly 301B by a formation. The shank assembly 303B may be work-hardened by shot-peening or by other methods of work-hardening. At least a portion of the shank assembly 303B may also be work-hardened by stretching it during a manufacturing process.
The shank assembly 303B includes a locking mechanism 411B has outer surface 412B. The locking mechanism 411B is axially disposed within a bore 413B of the second end 402 of the shank assembly 303B and the locking mechanism 411B is secured within or below the bore 413B. The first end 401B of the shank assembly 303B protrudes into the cavity 405B in the base end 406B of the cemented metal carbide extension 404B and the outer surface 412B of the first end 401B may be adapted to fit into the cavity 405B in the base end 406B of the cemented metal carbide extension 404B. The locking mechanism 411B is adapted to lock the first end 401B of the shank assembly 303B within the cavity 405B. The locking mechanism 411B may attach the shank assembly 303B to the cemented metal carbide extension 404B and restrict movement of the shank assembly 303B with respect to the cemented metal carbide extension 404B. The locking mechanism 411B has a radially extending catch 415B that is formed in the first end 401B of the shank assembly 303B. The shank assembly 303B may be prevented by the locking mechanism 411B from moving in a direction parallel to a central axis 416B of the degradation assembly 301B. In some embodiments the shank assembly 303B may be prevented by the locking mechanism 411B from rotating about the central axis 416B.
In
When a first end 450 of the locking mechanism 411 is inserted into the cavity 405B, the locking head 420B may be extended away from the bore 413 of the outer surface 412. The insert 418B may be disposed around the locking shaft 419 and be between the locking head 420B and the bore 413B. The insert 418B may be formed of stainless steel. In some embodiments the insert 418B may be formed of an elastomeric material and may be flexible. The insert 418B may be a ring, a snap ring, a split ring, a coiled ring, a rigid ring, segments, balls, wedges, shims, a spring, or combinations thereof.
The insert 418B may have a breadth 422B that is larger than a breadth 423B of an opening of the cavity 405B. In such embodiments the insert 418B may compress to have a smaller breadth 422B than the breadth 423B of the opening. Once the insert 418B is past the opening, the insert 418B may expand to its original or substantially original breadth 422B. With both the insert 418B and the locking head 420B inside the cavity 405B, the rest of the first end 401B of the shank assembly 303B may be inserted into the cavity 405B of the cemented metal carbide extension 404B. Once the entire first end 401B of the shank assembly 303B is inserted into the cavity 405B to a desired depth a nut 424B may be threaded onto an exposed end 425B of the locking shaft 419B until the nut 424B contacts a ledge 426B proximate the bore 413B mechanically connecting the locking mechanism 411B to the outer surface 412. This contact and further threading of the nut 424B on the locking shaft 419B causes the locking shaft 419B to move toward the second end 402B of the shank assembly 303B in a direction parallel to the central axis 416B of the shank assembly 303B. This may also result in bringing the radially extending catch 415B of the locking head 420B into contact with the insert 418B, and bringing the insert 418B into contact with the inwardly protruding catch 417B of the cavity 405B. The nut 424B is an example of a tensioning mechanism 427B. The tensioning mechanism 427B is adapted to apply a rearward force on the first end 401B of the shank assembly 303B. The rearward force may pull the first end 401B of the shank assembly 303B in the direction of the second end 402B and applies tension along a length of the locking shaft 419B. In some embodiments the tensioning mechanism 427B may be a press fit, a taper, and/or a nut 424B.
Once the nut 424B is threaded tightly onto the locking shaft 419B, the locking head 420B and insert 41B8 are together too wide to exit the opening 423B. In some embodiments the contact between the locking head 420B and the cemented metal carbide extension 404B via the insert 418B may be sufficient to prevent both rotation of the shank assembly 303B about its central axis 416B and movement of the shank assembly 303B in a direction parallel to its central axis 416B. In some embodiments the locking mechanism 411B is also adapted to inducibly release the shank assembly 303B from attachment with the carbide extension 404B by removing the nut 424B from the locking shaft 419B.
In some embodiments the insert 418B is be a snap ring. The insert 418B may be stainless steel and may be deformed by the pressure of the locking head 420B being pulled towards the second end 402B of the shank assembly 303B. As the insert 418B deforms it may become harder. The deformation may also cause the insert 418B to be complementary to both the inwardly protruding catch 417B and the radially extending catch 415B. This dually complementary insert 418B may avoid point loading or uneven loading, thereby equally distributing contact stresses. In such embodiments the insert 418B may be inserted when it is comparatively soft, and then may be work hardened while in place proximate the catches 236B, 237B.
In some embodiments at least part of the shank assembly 303B of the degradation assembly 301B may also be cold worked. The locking mechanism 411B may be stretched to a critical point just before the strength of the locking mechanism 411B is compromised. In some embodiments, the locking shaft 419B, locking head 420B, and insert 418B may all be cold worked by tightening the nut 424B until the locking shaft and head 419B, 420B, and the insert 418B, reach a stretching critical point. During this stretching,. the insert 418B, and the locking shaft 419 and the locking head 420B, may all deform to create a complementary engagement, and may then be hardened in that complementary engagement. In some embodiments the complementary engagement may result in an interlocking between the radially extending catch 415B and the inwardly protruding catch 417B.
In the embodiment of
The superhard material 407B has a substantially conical geometry with an apex 501B. Preferably, an interface 502B between the substrate 408B and the superhard material 407B is non-planar, which may help distribute loads on the tip 403B across a larger area of the interface 502B. At the interface 502B the substrate 408B may have a tapered surface starting from a cylindrical rim 503B of the substrate 408B and ending at an elevated flatted central region formed in the substrate 408B. The flatted central region may have a diameter of 0.20 percent to 0.60 percent of a diameter of the cylindrical rim 503B.
A thickness from the apex 501B to the non-planar interface 502B is at least 1.5 times a thickness of the substrate 408B from the non-planar interface 502B to its base 504B. In some embodiments the thickness from the apex 501B to the non-planar interface 502B may be at least 2 times a thickness of the substrate 408B from the non-planar interface to its base 504B. The substrate 408B may have a thickness of 0.30 to 0.65 times the thickness of the superhard material 407B. In some embodiments, the thickness of the substrate is less than 0.100 inches, preferably less than 0.060 inches. The thickness from the apex 501B to the non-planar interface 502B may be from 0.190 inches to 0.290 inches. Together, the superhard material 407 and the substrate 408 may have a total thickness of 0.200 inches to 0.500 inches from the apex 501B to the base of the substrate 504B.
The superhard material 407B bonded to the substrate 408B may have a substantially conical geometry with an apex 501B having a 0.065 inch to 0.095 inch radius. The substantially conical geometry comprises a first side 505B that may form a 50 degree to 80 degree included angle 507B with a second side 506B of the substantially conical geometry. In asphalt milling applications, the inventors have discovered that an optimal included angle is 45 degrees, whereas in mining applications the inventors have discovered that an optimal included angle is between 35 and 40 degrees. The tip 403B has a ratio between the an included angle 507B and the thickness from the apex 501B to the non-planar interface 502B of 240 degrees per inch to 440 degrees per inch. The tip 403B may have a ratio between the included angle 507B and a total thickness from the apex 501B to a base 504B of the substrate 408B ratio of 160 degrees per inch to 280 degrees per inch. A tip that may be compatible with the present invention is disclosed in U.S. patent Application Ser. No. 11/673,634 to Hall and is currently pending.
The superhard material 407B may be a material selected from the group consisting of diamond, polycrystalline diamond, natural diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, infiltrated diamond, layered diamond, monolithic diamond, polished diamond, course diamond, fine diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, and metal catalyzed diamond. The superhard material 407B may also comprise infiltrated diamond. The superhard material 407B may comprise an average diamond grain size of 1 to 100 microns. The superhard 407B material may comprise a monolayer of diamond. For the purpose of this patent the word monolayer is defined herein as a singular continuous layer of a material of indefinite thickness.
The superhard material 407B may have a metal catalyst concentration of less than 5 percent by volume. The superhard material 407B may be leached of a catalyzing material to a depth of no greater than at least 0.5 mm from a working surface 508B of the superhard material 407B. A description of leaching and its benefits is disclosed in U.S. Pat. No. 6,562,462 to Griffin et al, which is herein incorporated by reference for all that it contains. Isolated pockets of catalyzing material may exist in the leached region of the superhard material 407B. The depth of at least 0.1 mm from the working surface 508B may have a catalyzing material concentration of 5 to 1 percent by volume.
The impact tip 403B may be brazed onto the carbide extension 404B at a braze interface 509B. Braze material used to braze the tip 403B to the carbide extension 404B may have a melting temperature from 700 to 1200 degrees Celsius; preferably the melting temperature is from 800 to 970 degrees Celsius. The braze material may be composed of silver, gold, copper nickel, palladium, boron, chromium, silicon, germanium, aluminum, iron, cobalt, manganese, titanium, tin, gallium, vanadium, phosphorus, molybdenum, platinum, or combinations thereof. The braze material may comprise 30 to 62 weight percent palladium, preferable 40 to 50 weight percent palladium. Additionally, the braze material may comprise 30 to 60 weight percent nickel, and 3 to 15 weight percent silicon; preferably the braze material may comprise 47.2 weight percent nickel, 46.7 weight percent palladium, and 6.1 weight percent silicon. Active cooling during brazing may be critical in some embodiments, since the heat from brazing may leave some residual stress in the bond between the carbide substrate 408B and the superhard material 407B. The farther away the superhard material 407B is from the braze interface 509B, the less thermal damage is likely to occur during brazing. Increasing the distance between the brazing interface 509B and the superhard material 407B, however, may increase the moment on the carbide substrate 408B and increase stresses at the brazing interface 509B upon impact. The shank assembly 303B may be press fitted into the carbide extension 404B before or after the tip 403B is brazed onto the carbide extension 404B.
Referring now to the embodiment of
In the embodiment of a rotary drag bit 104E of
In the embodiment of a rotary drag bit 104F of
In the embodiment of a rotary drag bit 104G of
In the embodiment of a rotary drag bit 104H of
The drill bit may also comprise degradation assemblies of varying sizes.
Referring now to
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation of U.S. patent application Ser. No. 12/051,738 filed on Mar. 19, 2008 and which is now U.S. Pat. No. 7,669,674 issued on Mar. 2, 2010, which is a continuation of U.S. patent application Ser. No. 12/051,689 filed on Mar. 19, 2008 and which is now U.S. Pat. No. 7,963,617 issued on Jun. 21, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/051,586 filed on Mar. 19, 2008 and which is now U.S. Pat. No. 8,007,050 issued on Aug. 30, 2011, which is a continuation of U.S. patent application Ser. No. 12/021,051 filed on Jan. 28, 2008, which is a continuation of U.S. patent application Ser. No. 12/021,019 filed on Jan. 28, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/971,965 filed on Jan. 10, 2008 and which is now U.S. Pat. No. 7,648,210 issued on Jan. 19, 2010, which is a continuation of U.S. patent application Ser. No. 11/947,644 filed on Nov. 29, 2007 and which is now U.S. Pat. No. 8,007,051 issued on Aug. 30, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 11/844,586 filed on Aug. 24, 2007 and which is now U.S. Pat. No. 7,600,823 issued on Oct. 13, 2009. U.S. patent application Ser. No. 11/844,586 is a continuation-in-part of U.S. patent application Ser. No. 11/829,761 filed on Jul. 27, 2007 and which is now U.S. Pat. No. 7,722,127 issued on May 25, 2010. U.S. patent application Ser. No. 11/829,761 is a continuation-in-part of U.S. patent application Ser. No. 11/773,271 filed on Jul. 3, 2007 and which is now U.S. Pat. No. 7,997,661 issued on Aug. 16, 2011. U.S. patent application Ser. No. 11/773,271 is a continuation-in-part of U.S. patent application Ser. No. 11/766,903 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,903 is a continuation of U.S. patent application Ser. No. 11/766,865 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,865 is a continuation-in-part of U.S. patent application Ser. No. 11/742,304 filed on Apr. 30, 2007 and which is now U.S. Pat. No. 7,475,948 issued on Jan. 13, 2009. U.S. patent application Ser. No. 11/742,304 is a continuation of U.S. patent application Ser. No. 11/742,261 filed on Apr. 30, 2007 and which is now U.S. Pat. No. 7,469,971 issued on Dec. 30, 2008. U.S. patent application Ser. No. 11/742,261 is a continuation-in-part of U.S. patent application Ser. No. 11/464,008 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,338,135 issued on Mar. 4, 2008. U.S. patent application Ser. No. 11/464,008 is a continuation-in-part of U.S. patent application Ser. No. 11/463,998 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,384,105 issued on Jun. 10, 2008. U.S. patent application Ser. No. 11/463,998 is a continuation-in-part of U.S. patent application Ser. No. 11/463,990 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,320,505 issued on Jan. 22, 2008. U.S. patent application Ser. No. 11/463,990 is a continuation-in-part of U.S. patent application Ser. No. 11/463,975 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,445,294 issued on Nov. 4, 2008. U.S. patent application Ser. No. 11/463,975 is a continuation-in-part of U.S. patent application Ser. No. 11/463,962 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,413,256 issued on Aug. 19, 2008. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695,672 filed on Apr. 3, 2007 and which is now U.S. Pat. No. 7,396,086 issued on Jul. 8, 2008. U.S. patent application Ser. No. 11/695,672 is a continuation-in-part of U.S. patent application Ser. No. 11/686,831 filed on Mar. 15, 2007 and which is now U.S. Pat. No. 7,568,770 issued on Aug. 4, 2009. All of these applications are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
465103 | Wegner | Dec 1891 | A |
616118 | Kunhe | Dec 1898 | A |
946060 | Looker | Jan 1910 | A |
1116154 | Stowers | Nov 1914 | A |
1183630 | Bryson | May 1916 | A |
1189560 | Gondos | Jul 1916 | A |
1360908 | Everson | Nov 1920 | A |
1387733 | Midgett | Aug 1921 | A |
1460671 | Hebsacker | Jul 1923 | A |
1544757 | Hufford et al. | Jul 1925 | A |
1821474 | Mercer | Sep 1931 | A |
1879177 | Gault | Sep 1932 | A |
2004315 | Fean | Jun 1935 | A |
2054255 | Howard | Sep 1936 | A |
2064255 | Garfield | Dec 1936 | A |
2124438 | Struk et al. | Jul 1938 | A |
2169223 | Christian | Aug 1939 | A |
2218130 | Court | Oct 1940 | A |
2320136 | Kammerer | May 1943 | A |
2466991 | Kammerer | Apr 1949 | A |
2540464 | Stokes | Feb 1951 | A |
2544036 | Kammerer | Mar 1951 | A |
2755071 | Kammerer | Jul 1956 | A |
2776819 | Brown | Jan 1957 | A |
2819043 | Henderson | Jan 1958 | A |
2838284 | Austin | Jun 1958 | A |
2894722 | Buttolph | Jul 1959 | A |
2901223 | Scott | Aug 1959 | A |
2963102 | Smith | Dec 1960 | A |
3135341 | Ritter | Jun 1964 | A |
3254392 | Novkov | Jun 1966 | A |
3294186 | Buell | Dec 1966 | A |
3301339 | Pennebaker, Jr. | Jan 1967 | A |
3379264 | Cox | Apr 1968 | A |
3397012 | Krekeler | Aug 1968 | A |
3429390 | Bennett | Feb 1969 | A |
3493165 | Schonfeld | Feb 1970 | A |
3583504 | Aalund | Jun 1971 | A |
3626775 | Gentry | Dec 1971 | A |
3745396 | Quintal et al. | Jul 1973 | A |
3745623 | Wentorf, Jr. et al. | Jul 1973 | A |
3746396 | Radd | Jul 1973 | A |
3764493 | Rosar et al. | Oct 1973 | A |
3800891 | White et al. | Apr 1974 | A |
3807804 | Kniff | Apr 1974 | A |
3821993 | Kniff et al. | Jul 1974 | A |
3830321 | McKenry et al. | Aug 1974 | A |
3932952 | Helton | Jan 1976 | A |
3945681 | White | Mar 1976 | A |
3955635 | Skidmore | May 1976 | A |
3960223 | Kleine | Jun 1976 | A |
4005914 | Newman | Feb 1977 | A |
4006936 | Crabiel | Feb 1977 | A |
4081042 | Johnson et al. | Mar 1978 | A |
4096917 | Harris | Jun 1978 | A |
4098362 | Bonnice | Jul 1978 | A |
4106577 | Summers | Aug 1978 | A |
4109737 | Bovenkerk | Aug 1978 | A |
4140004 | Smith et al. | Feb 1979 | A |
4156329 | Daniels et al. | May 1979 | A |
4176723 | Arceneaux | Dec 1979 | A |
4199035 | Thompson | Apr 1980 | A |
4201421 | Den Besten | May 1980 | A |
4211508 | Dill et al. | Jul 1980 | A |
4224380 | Bovenkerk et al. | Sep 1980 | A |
4253533 | Baker, III | Mar 1981 | A |
4268089 | Spence et al. | May 1981 | A |
4277106 | Sahley | Jul 1981 | A |
4280573 | Sudnishnikov et al. | Jul 1981 | A |
4304312 | Larsson | Dec 1981 | A |
4307786 | Evans | Dec 1981 | A |
D264217 | Prause et al. | May 1982 | S |
4333902 | Hara | Jun 1982 | A |
4333986 | Tsuji et al. | Jun 1982 | A |
4337980 | Krekeler | Jul 1982 | A |
4390992 | Judd | Jun 1983 | A |
4397361 | Langford, Jr. | Aug 1983 | A |
4412980 | Tsuji et al. | Nov 1983 | A |
4416339 | Baker et al. | Nov 1983 | A |
4425315 | Tsuji et al. | Jan 1984 | A |
4439250 | Acharya et al. | Mar 1984 | A |
4445580 | Sahley | May 1984 | A |
4448269 | Ishikawa et al. | May 1984 | A |
4465221 | Schmidt | Aug 1984 | A |
4481016 | Campbell et al. | Nov 1984 | A |
4484644 | Cook et al. | Nov 1984 | A |
4484783 | Emmerich | Nov 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4499795 | Radtke | Feb 1985 | A |
4525178 | Hall | Jun 1985 | A |
4531592 | Hayatdavoudi | Jul 1985 | A |
4535853 | Ippolito et al. | Aug 1985 | A |
4538691 | Dennis | Sep 1985 | A |
4566545 | Story et al. | Jan 1986 | A |
4574895 | Dolezal et al. | Mar 1986 | A |
4599731 | Ware et al. | Jul 1986 | A |
4604106 | Hall | Aug 1986 | A |
4627503 | Horton | Dec 1986 | A |
4636253 | Nakai et al. | Jan 1987 | A |
4640374 | Dennis | Feb 1987 | A |
4647111 | Bronder et al. | Mar 1987 | A |
4647546 | Hall, Jr. et al. | Mar 1987 | A |
4650776 | Cerceau et al. | Mar 1987 | A |
4662348 | Hall et al. | May 1987 | A |
4664705 | Horton et al. | May 1987 | A |
4678237 | Collin | Jul 1987 | A |
4682987 | Brady et al. | Jul 1987 | A |
4684176 | Den Besten et al. | Aug 1987 | A |
4688856 | Elfgen | Aug 1987 | A |
4690691 | Komanduri | Sep 1987 | A |
4694918 | Hall | Sep 1987 | A |
4725098 | Beach | Feb 1988 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4729440 | Hall | Mar 1988 | A |
4729603 | Elfgen | Mar 1988 | A |
4765686 | Adams | Aug 1988 | A |
4765687 | Parrott | Aug 1988 | A |
4776862 | Wiand | Oct 1988 | A |
4852672 | Behrens | Aug 1989 | A |
4880154 | Tank | Nov 1989 | A |
4889017 | Fuller et al. | Dec 1989 | A |
D305871 | Geiger | Feb 1990 | S |
4932723 | Mills | Jun 1990 | A |
4940099 | Deane et al. | Jul 1990 | A |
4940288 | Stiffler et al. | Jul 1990 | A |
4944559 | Sionnet et al. | Jul 1990 | A |
4944772 | Cho | Jul 1990 | A |
4951762 | Lundell | Aug 1990 | A |
4956238 | Griffin | Sep 1990 | A |
4962822 | Pascale | Oct 1990 | A |
4981184 | Knowlton et al. | Jan 1991 | A |
5007685 | Beach et al. | Apr 1991 | A |
5009273 | Grabinski | Apr 1991 | A |
5011515 | Frushour | Apr 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5038873 | Jurgens | Aug 1991 | A |
D324056 | Frazee | Feb 1992 | S |
D324226 | Frazee | Feb 1992 | S |
5088797 | O'Neill | Feb 1992 | A |
5112165 | Hedlund et al. | May 1992 | A |
5119714 | Scott et al. | Jun 1992 | A |
5119892 | Clegg et al. | Jun 1992 | A |
5141063 | Quesenbury | Aug 1992 | A |
5141289 | Stiffler | Aug 1992 | A |
D329809 | Bloomfield | Sep 1992 | S |
5154245 | Waldenstrom | Oct 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5186892 | Pope | Feb 1993 | A |
5222566 | Taylor et al. | Jun 1993 | A |
5248006 | Scott et al. | Sep 1993 | A |
5251964 | Ojanen | Oct 1993 | A |
5255749 | Bumpurs et al. | Oct 1993 | A |
5261499 | Grubb | Nov 1993 | A |
5265682 | Russell et al. | Nov 1993 | A |
D342268 | Meyer | Dec 1993 | S |
5303984 | Ojanen | Apr 1994 | A |
5304342 | Hall, Jr. et al. | Apr 1994 | A |
5332348 | Lemelson | Jul 1994 | A |
5351770 | Cawthorne et al. | Oct 1994 | A |
5361859 | Tibbitts | Nov 1994 | A |
5374319 | Stueber et al. | Dec 1994 | A |
D357485 | Mattsson et al. | Apr 1995 | S |
5410303 | Comeau et al. | Apr 1995 | A |
5417292 | Polakoff | May 1995 | A |
5417475 | Graham et al. | May 1995 | A |
5423389 | Warren et al. | Jun 1995 | A |
5447208 | Lund | Sep 1995 | A |
5494477 | Flood et al. | Feb 1996 | A |
5507357 | Hult et al. | Apr 1996 | A |
D371374 | Fischer et al. | Jul 1996 | S |
5533582 | Tibbitts | Jul 1996 | A |
5535839 | Brady | Jul 1996 | A |
5542993 | Rabinkin | Aug 1996 | A |
5544713 | Dennis | Aug 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5568838 | Struthers et al. | Oct 1996 | A |
5653300 | Lund | Aug 1997 | A |
5655614 | Azar | Aug 1997 | A |
5662720 | O'Tigheamaigh | Sep 1997 | A |
5678644 | Fielder | Oct 1997 | A |
5709279 | Dennis | Jan 1998 | A |
5720528 | Ritchey | Feb 1998 | A |
5732784 | Nelson | Mar 1998 | A |
5738698 | Kapoor et al. | Apr 1998 | A |
5794728 | Palmberg | Aug 1998 | A |
5811944 | Sampayan et al. | Sep 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5837071 | Andersson et al. | Nov 1998 | A |
5845547 | Sollami | Dec 1998 | A |
5848657 | Flood et al. | Dec 1998 | A |
5871060 | Jensen et al. | Feb 1999 | A |
5875862 | Jurewicz | Mar 1999 | A |
5884979 | Latham | Mar 1999 | A |
5890552 | Scott et al. | Apr 1999 | A |
5896938 | Moeny et al. | Apr 1999 | A |
5914055 | Roberts et al. | Jun 1999 | A |
5934542 | Nakamura et al. | Aug 1999 | A |
5935718 | Demo et al. | Aug 1999 | A |
5944129 | Jensen | Aug 1999 | A |
5947215 | Lundell | Sep 1999 | A |
5950743 | Cox | Sep 1999 | A |
5957223 | Doster et al. | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
5967250 | Lund | Oct 1999 | A |
5979571 | Scott et al. | Nov 1999 | A |
5992405 | Sollami | Nov 1999 | A |
5992547 | Caraway et al. | Nov 1999 | A |
5992548 | Silva et al. | Nov 1999 | A |
6000483 | Jurewicz et al. | Dec 1999 | A |
6003623 | Miess | Dec 1999 | A |
6006846 | Tibbitts et al. | Dec 1999 | A |
6018729 | Zacharia et al. | Jan 2000 | A |
6019434 | Emmerich | Feb 2000 | A |
6021859 | Tibbitts et al. | Feb 2000 | A |
6039131 | Beaton | Mar 2000 | A |
6041875 | Rai et al. | Mar 2000 | A |
6044920 | Massa et al. | Apr 2000 | A |
6051079 | Andersson et al. | Apr 2000 | A |
6056911 | Griffin | May 2000 | A |
6065552 | Scott et al. | May 2000 | A |
6068913 | Cho et al. | May 2000 | A |
6098730 | Scott et al. | Aug 2000 | A |
6113195 | Mercier et al. | Sep 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6150822 | Hong et al. | Nov 2000 | A |
6170917 | Heinrich et al. | Jan 2001 | B1 |
6186251 | Butcher | Feb 2001 | B1 |
6193770 | Sung | Feb 2001 | B1 |
6196340 | Jensen et al. | Mar 2001 | B1 |
6196636 | Mills et al. | Mar 2001 | B1 |
6196910 | Johnson et al. | Mar 2001 | B1 |
6199645 | Anderson et al. | Mar 2001 | B1 |
6199956 | Kammerer | Mar 2001 | B1 |
6202761 | Forney | Mar 2001 | B1 |
6213226 | Eppink et al. | Apr 2001 | B1 |
6216805 | Lays et al. | Apr 2001 | B1 |
6220375 | Butcher et al. | Apr 2001 | B1 |
6220376 | Lundell | Apr 2001 | B1 |
6223824 | Moyes | May 2001 | B1 |
6223974 | Unde | May 2001 | B1 |
6257673 | Markham et al. | Jul 2001 | B1 |
6258139 | Jensen | Jul 2001 | B1 |
6260639 | Yong et al. | Jul 2001 | B1 |
6269893 | Beaton et al. | Aug 2001 | B1 |
6270165 | Peay | Aug 2001 | B1 |
6272748 | Smyth | Aug 2001 | B1 |
6290008 | Portwood et al. | Sep 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
6302224 | Sherwood, Jr. | Oct 2001 | B1 |
6302225 | Yoshida et al. | Oct 2001 | B1 |
6315065 | Aoki | Nov 2001 | B1 |
6332503 | Pessier et al. | Dec 2001 | B1 |
6340064 | Fielder et al. | Jan 2002 | B2 |
6341823 | Sollami | Jan 2002 | B1 |
6354771 | Bauschulte et al. | Mar 2002 | B1 |
6364034 | Schoeffler | Apr 2002 | B1 |
6364420 | Sollami | Apr 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6375272 | Ojanen | Apr 2002 | B1 |
6375706 | Kembaiyan et al. | Apr 2002 | B2 |
6394200 | Watson et al. | May 2002 | B1 |
6408052 | McGeoch | Jun 2002 | B1 |
6408959 | Bertagnolli et al. | Jun 2002 | B2 |
6419278 | Cunningham | Jul 2002 | B1 |
6429398 | Legoupil et al. | Aug 2002 | B1 |
6439326 | Huang et al. | Aug 2002 | B1 |
6460637 | Siracki et al. | Oct 2002 | B1 |
6468368 | Merrick et al. | Oct 2002 | B1 |
6474425 | Truax et al. | Nov 2002 | B1 |
6478383 | Ojanen et al. | Nov 2002 | B1 |
6481803 | Ritchey | Nov 2002 | B2 |
6484825 | Watson et al. | Nov 2002 | B2 |
6484826 | Anderson et al. | Nov 2002 | B1 |
6499547 | Scott et al. | Dec 2002 | B2 |
6508318 | Linden et al. | Jan 2003 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6517902 | Drake et al. | Feb 2003 | B2 |
6533050 | Molloy | Mar 2003 | B2 |
6561293 | Minikus et al. | May 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
D477225 | Pinnavaia | Jul 2003 | S |
6585326 | Sollami | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6594881 | Tibbitts | Jul 2003 | B2 |
6596225 | Pope et al. | Jul 2003 | B1 |
6601454 | Botnan | Aug 2003 | B1 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6622803 | Harvey et al. | Sep 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6672406 | Beuershausen | Jan 2004 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6692083 | Latham | Feb 2004 | B2 |
6702393 | Mercier | Mar 2004 | B2 |
6709065 | Peay et al. | Mar 2004 | B2 |
6711060 | Sakakibara | Mar 2004 | B2 |
6719074 | Tsuda et al. | Apr 2004 | B2 |
6729420 | Mensa-Wilmot | May 2004 | B2 |
6732817 | Dewey et al. | May 2004 | B2 |
6732914 | Cadden et al. | May 2004 | B2 |
6733087 | Hall et al. | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6758530 | Sollami | Jul 2004 | B2 |
D494031 | Moore, Jr. | Aug 2004 | S |
D494064 | Hook | Aug 2004 | S |
6786557 | Montgomery, Jr. | Sep 2004 | B2 |
6802676 | Noggle | Oct 2004 | B2 |
6822579 | Goswami et al. | Nov 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6846045 | Sollami | Jan 2005 | B2 |
6851758 | Beach | Feb 2005 | B2 |
6854810 | Montgomery, Jr. | Feb 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6878447 | Griffin | Apr 2005 | B2 |
6880744 | Noro et al. | Apr 2005 | B2 |
6889890 | Yamazaki et al. | May 2005 | B2 |
6929076 | Fanuel et al. | Aug 2005 | B2 |
6933049 | Wan et al. | Aug 2005 | B2 |
6953096 | Gledhill et al. | Oct 2005 | B2 |
6959765 | Bell | Nov 2005 | B2 |
6962395 | Mouthaan | Nov 2005 | B2 |
6966611 | Sollami | Nov 2005 | B1 |
6994404 | Sollami | Feb 2006 | B1 |
7048081 | Smith et al. | May 2006 | B2 |
7204560 | Mercier et al. | Apr 2007 | B2 |
D547652 | Kerman et al. | Jul 2007 | S |
D560699 | Omi | Jan 2008 | S |
7350601 | Belnap et al. | Apr 2008 | B2 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7380888 | Ojanen | Jun 2008 | B2 |
7396086 | Hall et al. | Jul 2008 | B1 |
7543662 | Belnap et al. | Jun 2009 | B2 |
7575425 | Hall et al. | Aug 2009 | B2 |
7592077 | Gates, Jr. et al. | Sep 2009 | B2 |
7665552 | Hall | Feb 2010 | B2 |
7703559 | Shen et al. | Apr 2010 | B2 |
7730977 | Achilles | Jun 2010 | B2 |
7798258 | Singh et al. | Sep 2010 | B2 |
20010004946 | Jensen | Jun 2001 | A1 |
20020074851 | Montgomery, Jr. | Jun 2002 | A1 |
20020153175 | Ojanen | Oct 2002 | A1 |
20020175555 | Mercier | Nov 2002 | A1 |
20030079565 | Liang et al. | May 2003 | A1 |
20030141350 | Noro et al. | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20030213621 | Britten | Nov 2003 | A1 |
20030217869 | Snyder et al. | Nov 2003 | A1 |
20030234280 | Cadden et al. | Dec 2003 | A1 |
20040026132 | Hall | Feb 2004 | A1 |
20040026983 | McAlvain | Feb 2004 | A1 |
20040065484 | McAlvain | Apr 2004 | A1 |
20040155096 | Zimmerman et al. | Aug 2004 | A1 |
20040238221 | Runia et al. | Dec 2004 | A1 |
20040256155 | Kriesels | Dec 2004 | A1 |
20040256442 | Gates, Jr. | Dec 2004 | A1 |
20050044800 | Hall et al. | Mar 2005 | A1 |
20050159840 | Lin et al. | Jul 2005 | A1 |
20050173966 | Mouthaan | Aug 2005 | A1 |
20050263327 | Meiners et al. | Dec 2005 | A1 |
20060060391 | Eyre et al. | Mar 2006 | A1 |
20060086537 | Dennis | Apr 2006 | A1 |
20060086540 | Griffin | Apr 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060180354 | Belnap et al. | Aug 2006 | A1 |
20060186724 | Stehney | Aug 2006 | A1 |
20060237236 | Sreshta et al. | Oct 2006 | A1 |
20070193782 | Fang | Aug 2007 | A1 |
20070278017 | Shen et al. | Dec 2007 | A1 |
20080006448 | Zhang et al. | Jan 2008 | A1 |
20080053710 | Moss | Mar 2008 | A1 |
20080073126 | Shen et al. | Mar 2008 | A1 |
20080073127 | Zhan et al. | Mar 2008 | A1 |
20080142276 | Griffo et al. | Jun 2008 | A1 |
20080156544 | Singh et al. | Jul 2008 | A1 |
20080206576 | Qian et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
3 307 910 | Sep 1984 | DE |
3 500 261 | Jul 1986 | DE |
3 818 213 | Nov 1989 | DE |
4 039 217 | Jun 1992 | DE |
19 821 147 | Nov 1999 | DE |
10 163 717 | May 2003 | DE |
0 295 151 | Jun 1988 | EP |
0 412 287 | Feb 1991 | EP |
2 004 315 | Mar 1979 | GB |
2 037 223 | Jul 1980 | GB |
5 280 273 | Oct 1993 | JP |
Entry |
---|
Chaturvedi et al., Diffusion Brazing of Cast Inconel 738 Superalloy, Sep. 2005, Journal of Materials Online (http://www.azom.com/details.asp?ArticlelD=2995). |
International Preliminary Report on Patentability Chapter II for PCT/US07/75670, completed Aug. 24, 2009 (4 pages). |
International Report on Patentability Chapter I for PCT/US07/75670, mailed Nov. 17, 2008 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20090294182 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12051738 | Mar 2008 | US |
Child | 12536695 | US | |
Parent | 12051689 | Mar 2008 | US |
Child | 12051738 | US | |
Parent | 12021019 | Jan 2008 | US |
Child | 12021051 | US | |
Parent | 11947644 | Nov 2007 | US |
Child | 11971965 | US | |
Parent | 11766865 | Jun 2007 | US |
Child | 11766903 | US | |
Parent | 11742261 | Apr 2007 | US |
Child | 11742304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12051586 | Mar 2008 | US |
Child | 12051689 | US | |
Parent | 12021051 | Jan 2008 | US |
Child | 12051586 | US | |
Parent | 11971965 | Jan 2008 | US |
Child | 12021019 | US | |
Parent | 11844586 | Aug 2007 | US |
Child | 11947644 | US | |
Parent | 11829761 | Jul 2007 | US |
Child | 11844586 | US | |
Parent | 11773271 | Jul 2007 | US |
Child | 11829761 | US | |
Parent | 11766903 | Jun 2007 | US |
Child | 11773271 | US | |
Parent | 11742304 | Apr 2007 | US |
Child | 11766865 | US | |
Parent | 11464008 | Aug 2006 | US |
Child | 11742261 | US | |
Parent | 11463998 | Aug 2006 | US |
Child | 11464008 | US | |
Parent | 11463990 | Aug 2006 | US |
Child | 11463998 | US | |
Parent | 11463975 | Aug 2006 | US |
Child | 11463990 | US | |
Parent | 11463962 | Aug 2006 | US |
Child | 11463975 | US | |
Parent | 11463953 | Aug 2006 | US |
Child | 11463962 | US | |
Parent | 12536695 | US | |
Child | 11463962 | US | |
Parent | 11695672 | Apr 2007 | US |
Child | 12536695 | US | |
Parent | 11686831 | Mar 2007 | US |
Child | 11695672 | US |