The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiments. It should be understood, however, that the present invention is not limited to the arrangements and instrumentalities shown in the attached drawings.
Each of the heating element 14, the temperature sensor 16, and the fluid pump 18 may also be electrically connected to a processing unit (not shown) located within, or remotely from, the deicing system 10. The processing unit may be used to control operation of the deicing system 10, such as shown and described in U.S. application Ser. No. 11/733,637, entitled “Fluid Heating System and Method,” filed Apr. 10, 2007, which is hereby incorporated by reference in is entirety.
The sinking deicing system 10 is configured to sink to the bottom of an open-ended water receptacle 22, such as a livestock water trough, water tank, or bucket that retains water 24. As shown in
The fluid pump 18 significantly reduces the temperature gradient between the bottom of the water 24 proximate the deicing system 10 and the water surface 26. Thus, the deicing system 10 is able to detect the warmed water sooner in order to deactivate the heating element 14 before the water surface 26 is excessively heated.
The fluid pump 18 may be a small pump that circulates 40-150 gallons per hour and consumes a relatively small amount of power (e.g., less than 10 watts per hour). The fluid pump 18 operates to circulate the water 24 within the water receptacle 22 in the direction of arrows A. As such, warmer water near the bottom of the water receptacle 22 is circulated to the water surface 26, thereby warming the water surface 26, while cooler water at the water surface 26 is circulated down toward the deicing system 10, where it is warmed. The fluid pump 18 draws water in through a water inlet or intake 28, and ejects water out through a water outlet 30 in order to provide the circulating water flow within the fluid receptacle 22. The water outlet 30 may be pointed upward in order to establish a circulating fluid current in the fluid receptacle 22. The fluid pump 18 may be continually activated even when the heating element 14 is deactivated. Thus, the water 24 within the fluid receptacle 22 may be continually circulated, thereby warming water at the water surface 26, and circulating cooler water to the bottom of the fluid receptacle where it is warmed through heat exchange with the warmer water at the bottom. Heat retained by the water 24 is spread throughout the fluid receptacle 22 via convection. As such, the fluid pump 18 significantly reduces or eliminates potential temperature gradients within the water 24.
Because the fluid pump 18 circulates the water 24, thereby reducing or eliminating temperature gradients, the temperature detected by the temperature sensor 16 at the bottom of the fluid receptacle 22 will be the same, or substantially the same, as the temperature at the water surface 26. Thus, the heating element 14 may be configured to activate at a point that is much closer to the freezing point of the water 24 at the surface 26 than in previous sinking deicers. That is, the deicing system 10 does not need to take into account temperature gradients in order to set an activating trigger point for the heating element 14. Therefore, the water surface 26 is not excessively heated, and energy is saved due to the heating element 14 being operated more efficiently.
Alternatively, embodiments of the present invention may be used with a floating deicing system, although such a floating deicing system is susceptible to being contacted by animals. For example, the main body 12, the heating element 14, the temperature sensor 16, and the fluid pump may be mounted to, or secured with respect to, a floating member, such as an air filled tube, Styrofoam pontoon or ring structures, or the like. In this embodiment, the heating element 14 and the temperature sensor 16 are disposed within the water 24 (e.g., secured to an underside of the main body 12). The fluid pump 18 is also disposed within the water 24 such that the water outlet 30 would be downwardly oriented toward the base of the fluid receptacle 22 to promote water circulation. The water circulation provides a uniform temperature throughout the water 24, thereby reducing or eliminating temperature gradients.
While embodiments of the present invention show deicing systems including a pump 18, embodiments of the present invention may include multiple pumps, or pumps having multiple intakes and outlets. Additionally, while the pump 18 is shown on top of the deicing systems 10 and 40, the pump 18 may be integrally formed with a main body of the deicing systems 10 and 40.
If the water temperature is too cold (e.g., susceptible to freezing), the heating element is activated at 76 in order to begin warming the water, while the water within the water receptacle continues to be circulated at 78. At 80, the temperature sensor determines if the water is at a warm temperature in which it is not susceptible to freezing. If the water is at a warm temperature, the heating element is deactivated at 82, while the pump continues to circulate the water at 84. At 86, the temperature sensor continues to detect the water temperature to determine if the water cools to a cold temperature at 70, at which point the process repeats.
If at 80, the water is not at a warm temperature, the heating element continues heating the water and the pump continues to circulate the water at 88. The temperature sensor continues to detect the water temperature at 90 to determine if and when the water reaches the warm temperature.
Thus, embodiments of the present invention provide safe and efficient deicing systems and methods of operating such systems. Embodiments of the present invention provide sinking and drain plug deicing systems that are particularly safe to use with respect to open-ended water tanks, such as livestock water troughs, buckets, and basins (i.e., animals are unlikely to contact sinking and drain plug deicing systems). Embodiments of the present invention provide a deicing system that circulates fluid within a fluid receptacle in order to reduce or eliminate temperature gradients.
While various spatial terms, such as upper, bottom, lower, mid, lateral, horizontal, vertical, and the like may used to describe embodiments of the present invention, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
The present application relates to and claims priority from U.S. Provisional Application No. 60/811,527, entitled “Deicer With Convection Pump,” filed Jun. 7, 2006, which is also hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60811527 | Jun 2006 | US |