The present invention relates generally to apparatuses and methods for processing thin substrates such as semiconductor wafers, compact discs, glass wafers, and the like. More particularly, the present invention relates to a process that monitors and responds to the failure of a processing bath's exhaust system.
The fabrication of semiconductor devices occurs via a plurality of processes, each of which is designed to perform a specific process on the semiconductor device. Many of these processes employ volatile solvents having a low heat of vaporization. For example, a cleaning bath may submerge substrates in a heated chemistry, the vapors of which are potentially harmful (e.g., combustible and/or harmful to humans and/or the environment). Government and/or industry often set acceptable vapor emission levels for these chemistries (e.g., low emission levels). So that the concentration of potentially harmful vapors will not exceed a recommended level, an exhaust system having a pump adapted to pump gases from the processing region is typically employed. Occasionally, however, the exhaust system may clog or may fail, causing the exhaust rate to be insufficient for maintaining the recommended level. In such circumstances, harmful vapors may accumulate. Thus, a safety hazard may result from a clogged or failed exhaust system.
Methods and apparatus are provided for increasing the safety of a clogged or failed exhaust system. In accordance with a first embodiment of the invention, an apparatus is provided that includes (1) a tank adapted to contain a processing fluid; (2) an exhaust system coupled to the tank and adapted to exhaust a gas from the tank, the gas including a hazardous vapor of the processing fluid; (3) a sensor coupled to the exhaust system and adapted to detect a rate at which gas is exhausted from the tank; and (4) a fluid supply mechanism adapted to supply a diluting fluid to the tank so as to dilute the processing fluid contained by the tank if the rate at which gas is exhausted from the tank is less than a predetermined rate.
Systems, methods and computer program products are provided in accordance with this and other embodiments of the invention. Each computer program product described herein may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a compact disc, a DVD, a hard drive, a random access memory, etc.).
Other features and aspects of the present invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.
The inventive processing bath 11 also comprises a response controller that is configured to respond to the sensor by opening a drain valve to drain the tank's chemistry, and by engaging a fluid supply adapted to add a diluting fluid to the tank's chemistry. In one aspect, the fluid supply may comprise one or more nozzles configured to spray a fluid into the tank 13.
The present invention is described herein with respect to a megasonic cleaning tank that employs an ammonia containing chemistry to clean a substrate. It will be understood that the present invention may be employed with other process chambers and other chemistries.
As shown in
In operation the fluid supply and recirculation system 35 maintains the desired chemistry concentration and temperature within the tank 13 as the substrate S is cleaned. The exhaust system 27 continuously pumps gas from the region of the processing tank 13 and is set to pump gas at an exhaust rate sufficient to maintain the concentration of harmful vapors at or below a recommended level. The sensor 33 is adapted to detect when the exhaust rate slows or ceases. Upon detecting such a reduction in the exhaust rate, the sensor 33 sends a signal to the controller 37 which in turn opens the drain valve 23 and begins the spray of the ionized water through the plurality of nozzles 25. The flow rate of the ionized water supplied by the nozzles 25 is less than the flow rate of chemistry from the drain line 21. Thus, deionized water is added to the chemistry in the tank 13 to dilute the chemistry's concentration as it drains from the tank. Note the deionized water is not heated, thus the deionized water also may reduce the temperature of the chemistry contained within the tank (if heated chemistry is employed) thereby reducing the evaporation rate of chemistry from the tank. By diluting the processing fluid and reducing its evaporation rate from the tank the concentration of harmful vapors may be reduced.
As is evident from the description above, the present invention may reduce the safety hazard that results from a clogged or failed exhaust system. As stated above, the present invention may be employed with other processing baths that include other volatile chemicals that produce potentially harmful vapors. The present invention may be applied to reduce the safety hazard that otherwise results as vapor, formed by evaporation of process chemicals, accumulates due to a clogged or failed exhaust mechanism.
The foregoing descriptions discloses only the preferred embodiments of the invention, modifications of the above-disclosed bath and method which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, although the present invention has been described primarily with reference to a cleaning process, the present invention may be applied to other processes. The present invention is generally directed to detecting a condition in an exhaust path and in response to detection of the condition, draining and diluting a processing chemical. The nozzles 25 may be placed in any suitable location, and the placement of the nozzles 25 in
Accordingly, while the present invention has been disclosed in connection with the preferred embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.
This application claims priority from U.S. provisional application Ser. No. 60/291,144, filed May 14, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4819483 | Emplit et al. | Apr 1989 | A |
5011715 | Broadbent | Apr 1991 | A |
5370743 | Usui et al. | Dec 1994 | A |
5722441 | Teramoto | Mar 1998 | A |
5911837 | Matthews | Jun 1999 | A |
5931173 | Schiele | Aug 1999 | A |
6050283 | Hoffman et al. | Apr 2000 | A |
6158445 | Olesen et al. | Dec 2000 | A |
6338671 | Kawashima et al. | Jan 2002 | B1 |
6395101 | Scranton et al. | May 2002 | B1 |
20010009652 | Arno | Jul 2001 | A1 |
Number | Date | Country |
---|---|---|
632795 | Jan 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20020187742 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
60291144 | May 2001 | US |