The present invention is directed to multilayer plastic containers, preforms, articles, and to methods of manufacturing such containers, preforms and articles.
Multilayer plastic containers and preforms typically include one or more layers of plastic matrix resin such as polyethylene terephthalate (PET) alternating with one or more layers of barrier resin such as polyamide or ethylene vinyl alcohol (EVOH) to resist transmission of gas, water vapor and/or flavorants, including odorants and essential oils, through the container wall. An important property of containers of this type is interlaminar adhesion to resist delamination between or among the various layers during filling and handling of the containers by the container manufacturer and the product packager, and during use of the container by the consumer, and there is a need for increasing interlaminar adhesion without detrimentally affecting other container features, such as barrier properties and container clarity. It is therefore a general object of the present invention to provide a multilayer container, a container preform, a multilayer article of manufacture, a method of manufacture and a barrier resin blend having improved adhesion characteristics between the layers of the preform and the container made therefrom.
A plastic container in accordance with one presently preferred aspect of the invention includes a multilayer wall having at least one layer of matrix resin, at least one layer of barrier resin, and an adhesion-promoting material blended with the barrier resin and/or the matrix resin to promote bonding between the barrier and matrix layers. In the preferred embodiments of the invention, the adhesion-promoting material is blended with the barrier resin. The adhesion-promoting material is an amine polymer, preferably an imine polymer, having a plurality of available primary, secondary, or tertiary amine groups. Such polyamine polymers preferably are an alkylene imine polymer or an alkylene amine polymer. Alkylene imine polymers, particularly polyethyleneimine (PEI) polymers, are particularly preferred. PEI polymers are sold by Nippon Shokubai Co., Ltd. under the trade name Epomin, and the EPOMIN bulletin published by Nippon Shokubai Co., Ltd. is incorporated herein by reference.
The polyamines of the present invention are polymeric, either homopolymeric or copolymeric polyamines, and preferably is an alkylene amine polymer or an alkylene imine polymer having molecular weights of from about 150 to about 2,000,000, with about 150 to about 400,000 preferred, and most preferred being from about 300 to about 80,000. Examples of polyamines useful for the invention include polyvinyl amines, aminofunctional polyacrylamides, polyDADMAC's, polyvinyl pyrrolidone copolymers, polyethyleneimine, polypropyleneimine and the reaction product of ethylene diamine and epichlorohydrin copolymers.
A preferred polyamine that can be used to achieve adhesion promoting characteristics is the class of polyamines referred to as polyalkylenimines, such as polyethyleneimine, which is readily available in a wide range of molecular weights and different degrees of branchings. Polyethyleneimines consist of a large family of water-soluble polyamines of varying molecular weight and degree of chemical modification. It is generally known that the polymerization of ethylenimine does not result in a polymer that is completely composed of units having a linear structure, but that also the degree of branching in polyethyleneimines depends on the acid concentration and the temperature during polymerization. Additional groups may be grafted onto polyethyleneimines using methods well known in the art to change other desirable physical and chemical properties. Preferred molecular weights of the polyethyleneimine are from about 150 to 80,000. Most preferred molecular weights of the polyethyleneimine are from about 300 to 80,000 for reasons of material viscosity. As an additional feature of the present invention, PEI polymers blended in the barrier or matrix layer can also interact with acidic gases such as carbon dioxide to provide enhanced acidic gas barrier polymers, to provide increased carbon dioxide barrier performance of the container. This is particularly useful in reducing carbon dioxide loss from the package when the resulting container is used to package carbonated beverages such as soft drinks or beer.
The matrix polymer preferably is an ester-containing polymer—i.e., polymers having an ester in the main polymer chain, ester moities grafted to the main polymer chain, or ester moities as side groups to the chain. Polyester resin is particularly preferred. The polyester resin may be any suitable polyester resin having an ester in the main polymer chain. Suitable polyesters include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polypropylene terephthalate (PPT), polyethylene naphthalate (PEN), polyglycolic acid (PGA), polycarbonate (PC) and polylactic acid (PLA). Other suitable matrix polymers include polyacrylates such as polymethyl methacrylate (PMMA), polyethylene methacrylate (PEMA) and vinyl acetates. Also usable are blends and copolymers of the above, and process and post-consumer regrind that consists essentially of the above, or blends or copolymers of the above. PET-based resins, blends, copolymers and regrinds are particularly preferred. Other matrix polymers include polyolefins and polyamides.
The PEI polymers are known to carry a high cationic charge density by virtue of their incorporation of high amounts of primary, secondary and tertiary amine functionalities. While not being bound to any particular theory, it appears that these amine functionalities strongly interact with esters or other functional groups to achieve improved adhesion between the barrier and ester-containing layers to reduce or prevent delamination of the wall layers during handling and use of the containers.
The barrier resin preferably is selected from the group consisting of EVOH, polyamide, acrylonitrile copolymers, blends of EVOH and polyamide, nanocomposites of EVOH or polyamide and clay, blends of EVOH and an ionomer, acrylonitrile, cyclic olefin copolymers, polyvinylidene chloride (PVDC), polyglycolic acid (PGA), and blends thereof. EVOH and meta-xylylenediamine (MXD) polyamide are particularly preferred. The invention thus achieves improved adhesion between the barrier and polyester layers to reduce or prevent delamination of the wall layers during handling and use of the containers.
Other aspects of the invention include a plastic container preform, methods of making a plastic container and a preform, a barrier resin blend, and a multilayer article and method of manufacture in accordance with the invention.
The invention, together with additional objects, features, advantages and aspects thereof, will be best understood from the following description, the appended claims and the accompanying drawings, in which:
Containers and preforms in accordance with the present invention have a multilayer wall with at least one layer of matrix resin alternating with at least one layer of barrier resin. (Additional layers not germane to the present invention may also be included, such as post consumer resin layers.) For example, a three-layer container or preform may have a wall with layers in the sequence polyester/barrier/polyester. A five-layer container or preform may have wall layers in the sequence polyester/barrier/polyester/barrier/polyester. The barrier layer or layers may extend throughout the bottom wall and the sidewall of the container or preform, or may be confined to a portion of the sidewall or base, for example. The barrier layers may or may not extend into the finish of the container or preform.
The polyester resin preferably is selected from the group consisting of PET, PEN, blends and copolymers of PET and PEN, and process or post consumer regrind that consists essentially of PET, PEN, or blends or copolymers of PET and PEN. In the examples discussed in the present application, the resin is PET-based polyester.
The barrier resin is a thermoplastic material that has a low gas and/or water vapor transmission rate, and/or exhibits a high barrier to transmission of flavorants including odorants and essential oils. The following barrier resin materials are preferred: EVOH, polyamide (including amorphous polyamide and semicrystalline polyamide such as MXD6), acrylonitrile copolymers, blends of EVOH and polyamide, blends of polyester (e.g. PET) and polyamide, blends of EVOH and an ionomer, cyclic olefin copolymers, PGA, nanocomposites of EVOH or polyamide and clay, polyvinylidene chloride and blends thereof. EVOH and polyamide are particularly preferred. MXD6 polyamide and EVOH are employed as barrier resins in the examples discussed in this application. One or more other barrier compositions also may be employed.
It is currently preferred that the adhesion-promoting material be blended with the barrier resin. Because the barrier resin layers form a relatively small percentage by weight of the overall preform or container, a lesser quantity of adhesion-promoting material is required than if the adhesion-promoting material is blended with the matrix resin. However, the adhesion-promoting material could be blended with the matrix resin, or with both the matrix resin and the barrier resin, in accordance with the broadest aspects of the invention.
The adhesion-promoting material typically is in the form of a liquid, and preferably is blended with the barrier resin material prior to forming the multilayer preform or container. When using an EVOH barrier resin, this blending may be performed by high pressure liquid injection of the adhesion-promoting material into an extruder through which the barrier material is flowing, or by placing the barrier material into the same feed throat of the extruder in such a way that the adhesion-promoting material and the barrier resin do not come into contact until they are adjacent to the extruder screw. Alternatively, the high pressure liquid injection resin method or common feedthroat method described above for the introduction of the adhesion-promoting material to the EVOH barrier resin may be employed to make an adhesion-promoting material-EVOH master batch material that is subsequently pelletized by methods well known in the art. These masterbatch pellets can then be blended with the EVOH barrier resin at an appropriate dilution ratio prior to forming the multilayer preform or container. When using an MXD6 barrier resin, the liquid adhesion-promoting material additive may be blended with particles of the barrier material at room temperature before feeding the blend to an extruder.
The amount of adhesion-promoting resin usually is no more than is necessary to achieve the desired level of adhesion, as increasing the proportion of adhesion-promoting material may affect the viscosity or other properties of the resin with which it is blended. The amount of adhesion-promoting material blended with the barrier resin or the matrix resin preferably does not exceed about 10%, and preferably does not exceed 5% by weight of the blend used to form the multilayer article. In this regard, the adhesion-promoting material preferably is blended with the barrier resin and preferably does not exceed about 10% by weight of the blend. The amount of adhesion promoting material more preferably does not exceed about 5% by weight of the blend with the barrier resin used to form the multilayer articles. In many applications, the amount of the adhesion-promoting material does not exceed 2% or 3% by weight of the blend with the barrier resin. All blend percentages in this application are by weight unless otherwise indicated.
The process of container manufacture preferably involves manufacture of a preform, followed by blow molding the preform to form the container. In the examples discussed in this application, the preform is formed in a sequential injection molding operation of a type illustrated in U.S. Pat. Nos. 4,550,043, 4,609,516, 4,710,118 and 4,954,376.
The preferred PEI adhesion-promoting materials promote bonding between matrix and barrier resin layers while the materials are in contact with at least one material at elevated melt temperature, and it is difficult to separate the layers of a preform after the preform has cooled. The presently preferred adhesion-promoting materials identified above are well suited for the chemistries of the disclosed barrier and matrix resins. The invention achieves improved adhesion between the barrier and matrix (e.g. polyester) layers to reduce or prevent delamination of the wall layers during handling and use of the multilayer articles, including preforms and containers.
In all of the test described in this application, the adhesion-promoting material is a grade SP-012 PEI material marketed under the trade name EPOMIN by Nippon Shokubai Co., Ltd. This material has the following properties, according to the resin manufacturer:
The grade SP-012 material is stated by the manufacturer to be soluble in water and alcohol, partially soluble in ethyacetate, THF and toluene, and insoluble in n-hexane.
As noted above, the PEI polymers that are presently preferred as adhesive-promoting agents also exhibit an enhanced barrier effect with acidic gases such as carbon dioxide, and can act to improve carbon dioxide barrier properties in the barrier layer in addition to their adhesive-promoting function. This is particularly advantagous in decreasing carbon dioxide loss when the container is used to package carbonated beverages such as soft drinks and beer.
The following table shows the increase in barrier properties associated with the PEI polymer, specifically EPOMIN SP-012 in these tests, where 28 mm 400 ml beverage containers are filled at 4.0 gas volumes of CO2 by chemical carbonation techniques and are capped with 28 mm closures. These closures are polypropylene closures with ethylene vinyl acetate (EVA) liners as disclosed in U.S. Pat. No. 5,306,542. After being allowed to equilibrate for 14 days at 68F/50% RH storage, the total container CO2 transmission rate is measured by placing the container within a sealed vessel with a known capture volume. The sealed vessel has two ports through which nitrogen carrier gas flowed in through one of the ports and exits the vessel from the other port. The exit port is directed to a Mocon C-IV CO2 test machine for detecting the amount of CO2. The quantity of CO2 is measured for a period of time, from which the CO2 transmission rate is determined.
With the exception of the monolayer PET container, each container has a five layer 13 mil nominal sidewall of PET/Barrier/PET/Barrier/PET of nominal mil thicknesses of 3/0.5/6/0.5/3, respectively. (The “monolayer” PET container was made using a five-layer process with all layers being PET.) In containers (2) through (9), the two “barrier” layers total 3% of the container weight, with the percentages of SP-012 being percentages of the total batter layers—e.g. 1% of the 3% barrier layers or 0.03% adhesion-promoting material based upon total container weight. The results in Table 1 are an average for five of each container. Containers (2) having polystyrene “barrier layers” exhibit poorer barrier properties than the monolayer PET container (1). However, the addition of PEI SP-012 significantly improves the CO2 barrier properties of containers (3) and (4) as compared to containers (2). Blending with PEI SP-012 also significantly improved the CO2 barrier properties of containers (7), (8) and (9) with the EVOH barrier layers as compared to containers (5), although the performance trends in these tests as a function of concentration of the PEI SP-012 appear to be variable.
In the Exemplary Containers:
There have thus been disclosed a multilayer container, a multilayer preform, a barrier resin blend for use in a multilayer container, a method of making a multilayer preform or container, and a method of making a multilayer plastic article of manufacture that fully satisfy all of the objects and aims previously set forth. The container, barrier blend and method of manufacture have been disclosed in conjunction with a number of exemplary embodiments thereof, and several modifications and variations have been discussed. Other modifications and variations will readily suggest themselves to a person of ordinary skill in the art. The invention is intended to embrace all such modifications and variations as fall within the spirit and broad scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4041005 | Talsma et al. | Aug 1977 | A |
4526821 | McHenry et al. | Jul 1985 | A |
4990301 | Krishnakumar et al. | Feb 1991 | A |
5077111 | Collette | Dec 1991 | A |
5102699 | Beeson et al. | Apr 1992 | A |
5156904 | Rice et al. | Oct 1992 | A |
5196469 | Cushing et al. | Mar 1993 | A |
5246753 | Koyama et al. | Sep 1993 | A |
5248364 | Liu et al. | Sep 1993 | A |
5284892 | Brodie, III et al. | Feb 1994 | A |
5350622 | Speer et al. | Sep 1994 | A |
5362784 | Brodie, III et al. | Nov 1994 | A |
5380587 | Musclow et al. | Jan 1995 | A |
5382473 | Musclow et al. | Jan 1995 | A |
5453326 | Siddiqui | Sep 1995 | A |
5453462 | Watanabe et al. | Sep 1995 | A |
5489455 | Nugent et al. | Feb 1996 | A |
5512338 | Bianchini et al. | Apr 1996 | A |
5573819 | Nugent et al. | Nov 1996 | A |
5604042 | Bianchini et al. | Feb 1997 | A |
5660761 | Katsumoto et al. | Aug 1997 | A |
5700554 | Roberts et al. | Dec 1997 | A |
5759653 | Collette et al. | Jun 1998 | A |
5766751 | Kotani et al. | Jun 1998 | A |
5779954 | Tinant et al. | Jul 1998 | A |
5804670 | Stoeppelmann | Sep 1998 | A |
5854326 | Sakaya et al. | Dec 1998 | A |
5866649 | Hong et al. | Feb 1999 | A |
5942297 | Speer et al. | Aug 1999 | A |
6025059 | McGee et al. | Feb 2000 | A |
6042908 | Long et al. | Mar 2000 | A |
6057013 | Ching et al. | May 2000 | A |
6106950 | Searle et al. | Aug 2000 | A |
6132822 | Overcash et al. | Oct 2000 | A |
6287653 | Speer et al. | Sep 2001 | B1 |
6323288 | Ching et al. | Nov 2001 | B1 |
6436498 | Rangwalla et al. | Aug 2002 | B1 |
6514660 | Majumdar et al. | Feb 2003 | B1 |
6525123 | Yang et al. | Feb 2003 | B1 |
6565938 | Toyosumi et al. | May 2003 | B1 |
6677013 | Curie et al. | Jan 2004 | B1 |
20020098269 | Bank et al. | Jul 2002 | A1 |
20030022974 | Tai et al. | Jan 2003 | A1 |
20030044553 | Ramanathan et al. | Mar 2003 | A1 |
20030235708 | Yang et al. | Dec 2003 | A1 |
20040076779 | Bourgeois | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
0526977 | Feb 1993 | EP |
0732363 | Sep 1996 | EP |
0732363 | Sep 1996 | EP |
1102336 | May 2001 | EP |
1188552 | Jun 2001 | EP |
1188552 | Mar 2002 | EP |
1253171 | Oct 2002 | EP |
2752452 | Feb 1998 | FR |
2752452 | Feb 1998 | FR |
61227821 | Oct 1986 | JP |
05051508 | Mar 1993 | JP |
7067594 | Sep 1993 | JP |
WO9217541 | Oct 1992 | WO |
WO9601736 | Jan 1996 | WO |
WO9806779 | Feb 1998 | WO |
WO9831539 | Jul 1998 | WO |
WO9831719 | Jul 1998 | WO |
WO 0049072 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050084635 A1 | Apr 2005 | US |