Delegation of data ownership

Information

  • Patent Grant
  • 12072860
  • Patent Number
    12,072,860
  • Date Filed
    Monday, December 19, 2022
    2 years ago
  • Date Issued
    Tuesday, August 27, 2024
    5 months ago
  • CPC
    • G06F16/2219
    • G06F16/13
    • G06F16/907
  • Field of Search
    • US
    • NON E00000
  • International Classifications
    • G06F16/00
    • G06F16/13
    • G06F16/22
    • G06F16/907
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      0
Abstract
A processor-based method for locating data and metadata closely together in a storage system is provided. The method includes writing a first range of a file and a first metadata relating to attributes of the file into at least one segment controlled by a first authority of the file. The method includes delegating, by the first authority, a second authority for a second range of the file, and writing the second range of the file and second metadata relating to the attributes of the file into at least one segment controlled by the second authority.
Description
BACKGROUND

Storage systems are being designed and built for a wide range of amounts of data and sizes of files. Large files tend to create system bottlenecks especially for distributed storage systems. When a large file ties up the resources of a particular processor, for example in a storage node of a storage cluster, attempts to access other files under control of that same processor or node may experience delays. This can be especially problematic during transfer or backup of large files, when frequent appending to a file is occurring.


It is within this context that the embodiments arise.


SUMMARY

In some embodiments, a processor-based method for locating data and metadata closely together in a storage system is provided. The method includes writing a first range of a file and a first metadata relating to attributes of the file into at least one segment controlled by a first authority of the file. The method includes delegating, by the first authority, a second authority for a second range of the file, and writing the second range of the file and second metadata relating to the attributes of the file into at least one segment controlled by the second authority.


In some embodiments, a storage system is provided. The storage system includes storage memory having a plurality of segments and at least one processor. The at least one processor is configured to write data of a file and metadata pertaining to the file into the plurality of segments under a plurality of authorities, wherein a first range of the data of the file and a first metadata relating to attributes of the file are in at least one segment controlled by a first authority of the file. A second range of the data of the file and a second metadata are in at least one segment controlled by a second authority, and wherein the first authority of the file is configured to delegate ownership of a range of data of the file.


In some embodiments, a non-transitory computer readable medium having instructions when executed by a processor, cause the processor to perform actions. The actions include writing a first range of a file and a first metadata relating to attributes of the file into at least one segment controlled by a first authority of the file. The action include delegating, by the first authority, a second authority for a second range of the file, and writing the second range of the file and second metadata relating to the attributes of the file into at least one segment controlled by the second authority.


Other aspects and advantages of the embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The described embodiments and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the described embodiments.



FIG. 1 is a block diagram of a storage cluster with multiple storage nodes, which acts as a system where data and metadata are located closely together in accordance with some embodiments.



FIG. 2 is a diagram of how a relatively large file may be segmented or broken up into pieces of data, each sent to a segment under an authority in accordance with some embodiments.



FIG. 3 is a diagram showing segments of the storage memory of the system of FIG. 1, with details on how metadata and data are arranged in each segment in accordance with some embodiments.



FIG. 4 is a flow diagram of a method for locating data and metadata closely together in a storage system in accordance with some embodiments.



FIG. 5 is an illustration showing an exemplary computing device which may implement the embodiments described herein.





DETAILED DESCRIPTION

A storage system is described where data for a range of a file and metadata associated with that data are located relatively closely together or proximate to each other in at least one segment of storage memory. This proximity of the data and metadata makes data access more efficient, and provides organized locations for various types of metadata such as mapping information and file attributes, among other metadata. The organization of segments of storage memory is applicable to various storage systems, including a storage cluster with distributed storage nodes as shown in some embodiments. Authorities in the storage system direct or manage metadata and data in the segments. An authority of an inode or file can delegate or assign a delegated authority each time it is determined an offset of data or the range of the file is associated with a differing segment in some embodiments. Any appending to the file is then made to the segment controlled by the delegated authority. The authority of an inode, which may be referred to as the original or initial authority, tracks which authority is the delegated authority, and persists the assignment of the delegated authority, for example with a token in some embodiments. Some attributes of the file, including the file size, modification time and/or permissions, are recorded in metadata in the segment controlled by the delegated authority, in various embodiments.



FIG. 1 is a block diagram of a storage cluster 102 with multiple storage nodes 112, which acts as a system where data and metadata are located closely together. Embodiments with segments 114 of storage memory 110 and proximity of data and metadata are not limited to storage clusters 102, and may also include various types of storage systems such as storage arrays and storage devices, with various types of storage memory. The storage cluster 102 has one or more processors 104. Some embodiments have one or more processors in each storage node 112. A file system 106 operates in the storage cluster 102, for example as executed by the processors 104. Authorities 108 can be implemented as software constructs, using software executing on the processors 104. Each authority 108 is an owner of a range of a file or data. In some embodiments, each storage node 112, or many but not all of the storage nodes 112, has one or more authorities 108, and these authorities 108 direct or manage data and metadata. For each range of a file that is written into or read out of the storage cluster 102, there is one authority 108 of the inode for the file. Storage memory 110 may be organized as segments1-n 114. The segments1-n 114 could be logical segments of memory, or physical segments of memory, or both. In one embodiment, the segments1-n 114 are logical segments, each of which is distributed across multiple storage nodes 112 with redundancy and/or erasure coding, and one or more levels of mapping from the logical segments to the physical segments.


In some systems, for example in UNIX-style file systems, data is handled with an index node or inode, which specifies a data structure that represents an object in a file system. The object could be a file or a directory, for example. Metadata may accompany the object, as attributes such as permission data and a creation timestamp, among other attributes. A segment number could be assigned to all or a portion of such an object in a file system. In other systems, data segments are handled with a segment number assigned elsewhere. For purposes of discussion, the unit of distribution is an entity, and an entity can be a file, a directory or a segment. That is, entities are units of data or metadata stored by a storage system. Entities are grouped into sets called authorities. Each authority has an authority owner, which is a storage node that has the exclusive right to update the entities in the authority. In other words, a storage node contains the authority, and that the authority, in turn, contains entities.


A segment is a logical container of data in accordance with some embodiments. A segment is an address space between medium address space and physical flash locations, i.e., the data segment number, are in this address space. Segments may also contain meta-data, which enable data redundancy to be restored (rewritten to different flash locations or devices) without the involvement of higher level software. In one embodiment, an internal format of a segment contains client data and medium mappings to determine the position of that data. Each data segment is protected, e.g., from memory and other failures, by breaking the segment into a number of data and parity shards, where applicable. The data and parity shards are distributed, i.e., striped, across non-volatile solid state storage coupled to the host CPUs in accordance with an erasure coding scheme. Usage of the term segments refers to the container and its place in the address space of segments in some embodiments. Usage of the term stripe refers to the same set of shards as a segment and includes how the shards are distributed along with redundancy or parity information in accordance with some embodiments.


A series of address-space transformations takes place across an entire storage system. At the top are the directory entries (file names) which link to an inode. Inodes point into medium address space, where data is logically stored. Medium addresses may be mapped through a series of indirect mediums to spread the load of large files, or implement data services like deduplication or snapshots. Medium addresses may be mapped through a series of indirect mediums to spread the load of large files, or implement data services like deduplication or snapshots. Segment addresses are then translated into physical flash locations. Physical flash locations have an address range bounded by the amount of flash in the system in accordance with some embodiments. Medium addresses and segment addresses are logical containers, and in some embodiments use a 128 bit or larger identifier so as to be practically infinite, with a likelihood of reuse calculated as longer than the expected life of the system. Addresses from logical containers are allocated in a hierarchical fashion in some embodiments. Initially, each non-volatile solid state storage unit within storage memory 110 may be assigned a range of address space in some embodiments. Within this assigned range, the non-volatile solid state storage unit is able to allocate addresses without synchronization with other non-volatile solid state storage.


Data and metadata is stored by a set of underlying storage layouts that are optimized for varying workload patterns and storage devices. These layouts incorporate multiple redundancy schemes, compression formats and index algorithms. Some of these layouts store information about authorities and authority masters, while others store file metadata and file data. The redundancy schemes include error correction codes that tolerate corrupted bits within a single storage device (such as a NAND flash chip), erasure codes that tolerate the failure of multiple storage nodes, and replication schemes that tolerate data center or regional failures. In some embodiments, low density parity check (LDPC) code is used within a single storage unit. Reed-Solomon encoding is used within a storage cluster, and mirroring is used within a storage grid in some embodiments. Metadata may be stored using an ordered log structured index (such as a Log Structured Merge Tree), and large data may not be stored in a log structured layout. It should be appreciated that the embodiments described herein may be integrated into the system of the assignee in one example.



FIG. 2 is a diagram of how a file 202 may be segmented or broken up into pieces of data or ranges of the file, and each piece sent to a segment 114 under a corresponding authority 108. The sizes of data chunks 206, and the labels for the authorities 108 are by example only, and should not be seen as limiting. Data chunks 206 may be referred to as a range of a file. In this example, each data chunk 206 starts at one logical offset 204 and ends at the next logical offset 204, and has a specified size of 16 MB (megabytes), and the authorities 108 are shown as A7, A15 and A31. The labeling or numbering of authorities 108 need not be sequential. The specified size (16 MB) and logical offset 204 could be the same, or different, for each of the segments1-n 114, in various embodiments. In some embodiments, the specified size and logical offset 204 are tunable, for example tunable to the system, or tunable to types of memory or sizes of segments 114, etc. The data may be compressed for writing to the segments1-n 114 in some embodiments. A relatively small file of less than the specified size, and fitting within one specified amount of logical offset 204 can be written entirely to a segment 114 under the authority 108 of the inode of the file, for example the authority 108 labeled A7. Metadata for that same file is also written to that same segment 114 under that same authority 108 in some embodiments. Thus, for a small file, all of the metadata and all of the data for the file are stored in proximity in one segment 114 under control of one authority 108. It should be appreciated that the data or the range of the file and the meta data for that range of the file may be stored in differing segments in some embodiments as the examples provided are illustrative and not meant to be limiting.


File 202 may initially be stored with a first chunk 206 of data of the file written to the segment1 114 under control of the authority 108 of the inode of the file, e.g., A7, and the metadata for the file also written to that same segment 114 under that same authority 108. Once the logical address of further appended data or a further range of the file becomes associated with a logical offset 204 for a differing segment (segment2), the authority 108 of the inode of the file assigns a delegated authority 108, for example A15. The further range of the file is written to segment 1142 under the delegated authority 108 (A15), along with further metadata in some embodiments. As mentioned above, the data (range of the file) and the metadata for that range of the file may be written to differing segments, in some embodiments. Once the amount of data stored in segment2 114 reaches the predefined limit for a segment 114, i.e., the address reaches the next logical offset 204, the authority 108 (A7) of the inode of the file assigns a new delegated authority 108, for example A31. This next chunk 206 of data for the file, up to the next logical offset 204, is written to segmentn 114 under the new delegated authority 108 (A31). This process is iterative, as indicated by the “ . . . ” in FIG. 2, so that as a file grows, e.g., is appended, or a very large file is encountered, a greater number of segments1-n 114 are allocated to the file, and the authorities continue to be delegated for each segment as described above. The original authority 108 (A7) is referred to as the authority of the inode of the file. This process is further described and shown, along with organization of the data segments 114, in FIG. 3.



FIG. 3 is a diagram showing segments 114 of the storage memory 110 of the system of FIG. 1, with details on how metadata 302 and data 304 are arranged in each segment 114 in accordance with some embodiments. In this example, as in FIG. 2, the authority 108 labeled A7 is the authority for the inode of the file, and the authority 108 labeled A31 is the latest or most recently delegated authority 108, as delegated by the authority for the inode (A7). In the segment 114 under control of the authority 108 for the inode (A7), the first chunk 206 of data 304 of the file 202 is written along with some of the metadata 302 for the file. The metadata 302 relates to attributes of the file. Included in that metadata 302 is a pointer or mapping information to the data 304 in that segment 114. This could be in the form of mapping the logical offset of the data 304 to a logical offset in the segment 114, a map to a physical offset, and/or information about a particular segment/page pair. In some embodiments, each segment 114 is organized into multiple pages (e.g., logical pages in a logical segment), and one of the pages includes a directory (as metadata) that indicates what the logical offset (e.g., a write offset) is, in the page, for the data. As noted above, the data and the corresponding metadata for the data may or may not be stored in the same segment.


Still referring to FIGS. 2 and 3, after the first chunk 206 of data 304, up to the first logical offset 204, and metadata 302 of the file 202 are written to the segment1 114 under control of the authority 108 of the inode for the file (A7), the next chunk 206 of data 304 up to the next logical offset 204, and more metadata 302, are written to the next segment2 114. This next segment2 114 is under control of an authority 108 (A15) that is delegated by the authority of the inode (A7). In the example shown in FIG. 3, this next chunk 206 of data 304 and metadata 302 are written to the segment2 114 under control of the authority 108 labeled A15. During the time of writing of that data 304, that authority 108 (A15) is the delegated authority, as assigned by the authority of the inode (A7). Upon determination that a range of the file is associated with write offset of a differing segment, the authority of the inode (A7) delegates another authority 108 (A31), and data 304 and possibly metadata 302 for that data are then written to the segmentn 114 under control of that delegated authority 108 (A31). This iterative process continues for as long as there is more data, or data continues to be appended to the file. Thus, in some embodiments once the amount of data reaches a predefined limit for the amount of data that should be written to a segment under control of an authority 108, i.e., the address of the data reaches the next logical offset for a differing segment, further authorities are delegated to accommodate appending to the file or a large file.


In the example shown in FIG. 3, the latest or most recent delegated authority 108 is the authority 108 labeled A31. The authority for the inode (A7) persists the delegation of the authority 108 (A31) using a token 308 in some embodiments. It should be appreciated that a token is one example of persisting the delegation of the authority and is not meant to be limiting. In some embodiments, there are redundant copies of metadata showing the persistence of the delegation of the authority 108 or the persisting uses an interlock mechanism. The authority 108 for the inode (A7) records the delegation of the authority 108 in the metadata 302 stored in the segment 114 controlled by the authority for the inode (A7). In this embodiment, the delegation of an authority is persisted prior to the writing of any data 302 or metadata 302 to the segment 114 controlled by the newly delegated authority. Writing the data 302 and the metadata 302 to that segment 114 is controlled by the delegated authority 108, and is responsive to persisting the delegating of the second authority. This sequence, of delegating an authority 108, persisting that authority 108 and recording that delegation of the authority 108 in the metadata 302 in the segment 114 under control of the authority of the inode (A7), is performed each time the write offset is associated or detected as being with a different range of data for the file. When this happens, an authority 108 is delegated for the next chunk of data or range of file, up to the next logical offset.


Still referring to FIG. 3, any further data, for example in an append operation, is added to the segment 114 under control of the latest or most recent delegated authority 108, as indicated by the action to append data here 312. In this embodiment, various attributes 310 of the file including the file size, modification time, permissions, etc., are written in metadata 302 in the segment 114 controlled by the delegated authority 108 (e.g., A31). In this manner, with the metadata 302 and data 304 closely associated in the segment 114, or differing segment, it is straightforward to check the permissions (if needed), update the file size, and record the time at which the file is modified in the same segment 114 in which the data 304 is appended to the file. As with previously written segments 114, if or when the total amount of data 304 in that segment 114 reaches the predefined limit for the segment 114, i.e., the write offset is associated with another segment, the authority of the inode (A7) delegates another authority 108. Further data 304 can then be written or appended to the segment 114 under control of that delegated authority 108. The metadata 302 in the segment 114 controlled by the authority 108 of the inode of the file thus has information about which authority 108, namely the delegated authority 108, has metadata 302 with the attributes 310 about the file size, modification time and permissions of the file and controls the segment 114 to which any further data is to be appended (up to the limit for the particular segment).


With reference to FIGS. 1-3, to read a file, the authority 108 of the inode of the file (A7) is consulted. Metadata 302 in the segment 114 under control of the authority of the inode (A7) has a mapping, which could be in tables for example, and which in some embodiments indicates the logical offset for the file and a map to a particular segment/page pair. The metadata 302 could include a directory with information about the write offset for the segment that the data is located within. This could include a pointer which indicates where the data for the file is found. In some embodiments, the metadata 302 in the segment 114 under control of the authority of the inode (A7) has information about all of the authorities 108 associated with the file, including the most recently delegated authority. In some embodiments, the metadata 302 in each segment 114 under control of an authority 108 has information about the next authority in the chain of authorities. In some embodiments, an authority from which data is going to be read can be calculated directly based on an inode and an offset. In each of these embodiments, data under control of an authority 108 can be determined by reading the metadata 302 in the segment 114 under control of that authority 108, so that the chunks of data or a range of a file can be read in sequence, for example to support a file read request. With each authority 108 controlling a range of data, the system avoids the bottlenecks that are associated with performing reads or writes of a large file all under control of a single entity (and associated processor or node).



FIG. 4 is a flow diagram of a method for locating data and metadata closely together in a storage system. The method can be performed by a storage system, more specifically by one or more processors of a storage system. The storage system has storage memory arranged in segments, and authorities which can be implemented in software executing on one or more processors. In an action 402, a first range of a file and metadata are written to at least one segment under control of an authority of the file. In a decision action 404, it is determined whether a second range of the file is associated with a write offset for a differing segment. If the answer is no, the second range of the file is not associated with a write offset for a differing segment, flow branches back to the action 402, and the range of the file may be written to the segment under control of the original authority. If the answer to the decision action 404 is yes, second range of the file is associated with a write offset for a differing segment, flow proceeds to the action 406. In the action 406, the authority of the inode (the original authority) assigns a delegated authority. In an action 408, the delegated authority is persisted, which can be performed with the use of a token as described above.


In a decision action 410 of FIG. 4, it is determined whether there is more data from the file to be stored. If the answer is no, there is not (at present) more data to be stored from the file, flow branches back to the decision action 410, to await more data, or alternatively branches back to the action 402, for data of a further file to be written to a further segment under control of a further authority. If the answer is yes, there is more data from the file to be stored, flow proceeds to the action 412. In the action 412, data is appended to the segment under control of the delegated authority. In the action 414, attributes, including file size, modification time, permissions, etc., are written to metadata of the segment under control of the delegated authority. As noted above with reference to FIG. 3, the authority of the inode (the original authority) tracks which authority is a most recently delegated authority as well as the chain of authorities.


It should be appreciated that the methods described herein may be performed with a digital processing system, such as a conventional, general-purpose computer system. Special purpose computers, which are designed or programmed to perform only one function may be used in the alternative. FIG. 5 is an illustration showing an exemplary computing device which may implement the embodiments described herein. The computing device of FIG. 5 may be used to perform embodiments of the functionality for locating data and metadata closely together in a storage system in accordance with some embodiments. The computing device includes a central processing unit (CPU) 501, which is coupled through a bus 505 to a memory 503, and mass storage device 507. Mass storage device 507 represents a persistent data storage device such as a floppy disc drive or a fixed disc drive, which may be local or remote in some embodiments. The mass storage device 507 could implement a backup storage, in some embodiments. Memory 503 may include read only memory, random access memory, etc. Applications resident on the computing device may be stored on or accessed via a computer readable medium such as memory 503 or mass storage device 507 in some embodiments. Applications may also be in the form of modulated electronic signals modulated accessed via a network modem or other network interface of the computing device. It should be appreciated that CPU 501 may be embodied in a general-purpose processor, a special purpose processor, or a specially programmed logic device in some embodiments.


Display 511 is in communication with CPU 501, memory 503, and mass storage device 507, through bus 505. Display 511 is configured to display any visualization tools or reports associated with the system described herein. Input/output device 509 is coupled to bus 505 in order to communicate information in command selections to CPU 501. It should be appreciated that data to and from external devices may be communicated through the input/output device 509. CPU 501 can be defined to execute the functionality described herein to enable the functionality described with reference to FIGS. 1-4. The code embodying this functionality may be stored within memory 503 or mass storage device 507 for execution by a processor such as CPU 501 in some embodiments. The operating system on the computing device may be MS-WINDOWS™, OS/2™, UNIX™, LINUX™, iOS™ or other known operating systems. It should be appreciated that the embodiments described herein may also be integrated with a virtualized computing system that is implemented with physical computing resources.


Detailed illustrative embodiments are disclosed herein. However, specific functional details disclosed herein are merely representative for purposes of describing embodiments. Embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.


It should be understood that although the terms first, second, etc. may be used herein to describe various steps or calculations, these steps or calculations should not be limited by these terms. These terms are only used to distinguish one step or calculation from another. For example, a first calculation could be termed a second calculation, and, similarly, a second step could be termed a first step, without departing from the scope of this disclosure. As used herein, the term “and/or” and the “I” symbol includes any and all combinations of one or more of the associated listed items.


As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes”, and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Therefore, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.


It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.


With the above embodiments in mind, it should be understood that the embodiments might employ various computer-implemented operations involving data stored in computer systems. These operations are those requiring physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. Further, the manipulations performed are often referred to in terms, such as producing, identifying, determining, or comparing. Any of the operations described herein that form part of the embodiments are useful machine operations. The embodiments also relate to a device or an apparatus for performing these operations. The apparatus can be specially constructed for the required purpose, or the apparatus can be a general-purpose computer selectively activated or configured by a computer program stored in the computer. In particular, various general-purpose machines can be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations.


A module, an application, a layer, an agent or other method-operable entity could be implemented as hardware, firmware, or a processor executing software, or combinations thereof. It should be appreciated that, where a software-based embodiment is disclosed herein, the software can be embodied in a physical machine such as a controller. For example, a controller could include a first module and a second module. A controller could be configured to perform various actions, e.g., of a method, an application, a layer or an agent.


The embodiments can also be embodied as computer readable code on a tangible non-transitory computer readable medium. The computer readable medium is any data storage device that can store data, which can be thereafter read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion. Embodiments described herein may be practiced with various computer system configurations including hand-held devices, tablets, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. The embodiments can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.


Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.


In various embodiments, one or more portions of the methods and mechanisms described herein may form part of a cloud-computing environment. In such embodiments, resources may be provided over the Internet as services according to one or more various models. Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a case, the computing equipment is generally owned and operated by the service provider. In the PaaS model, software tools and underlying equipment used by developers to develop software solutions may be provided as a service and hosted by the service provider. SaaS typically includes a service provider licensing software as a service on demand. The service provider may host the software, or may deploy the software to a customer for a given period of time. Numerous combinations of the above models are possible and are contemplated.


Various units, circuits, or other components may be described or claimed as “configured to” perform a task or tasks. In such contexts, the phrase “configured to” is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry) that performs the task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the “configured to” language include hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks.


The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the embodiments and its practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various modifications as may be suited to the particular use contemplated. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A method, comprising: writing a first portion of data of a file and a first metadata relating to attributes of the file into a first segment controlled by a first owner of the file;delegating, by the first owner, a second owner for control of a second portion of data of the file, wherein delegation of the second owner is persisted by the first owner; andwriting the second portion of data of the file and second metadata associated with the attributes of the file into a second segment controlled by the second owner.
  • 2. The method of claim 1, wherein: delegating the second owner is associated with a write offset.
  • 3. The method of claim 1, further comprising: writing metadata indicating which owner has a most recent update to a size and a modification time of the file into the first segment controlled by the first owner, and wherein the segments are striped across storage memory in a storage system.
  • 4. The method of claim 1, wherein writing the second portion of data of the file and the second metadata is responsive to the persisting the delegating the second owner.
  • 5. The method of claim 1, further comprising: determining, from the first metadata in the first segment and the first owner, which of a plurality of owners is a delegated owner;appending further data of the file to a further segment controlled by the delegated owner; andwriting further metadata to the further segment controlled by the delegated owner.
  • 6. The method of claim 1, wherein the attributes of the file include at least one of a size of the file, a modification time of the file, and permissions of the file.
  • 7. The method of claim 1, further comprising: reading data from the first segment controlled by the first owner;determining, from the first metadata in the first segment controlled by the first owner where to find the second owner and the second segment controlled by the second owner; andreading data from the second segment controlled by the second owner.
  • 8. A system, comprising: storage memory, configurable to have a plurality of segments that are logical containers of data in an address space for the segments; andat least one processor, configured to write data of a file and metadata relating to attributes of the file into the plurality of segments of the storage memory under a plurality of owners, wherein a first portion of the data of the file and a first metadata are in a first segment controlled by a first owner of the file, and a second portion of the data of the file and a second metadata are in a second segment controlled by a second owner, and wherein the first owner of the file is configured to delegate ownership of a portion of data of the file to the second owner.
  • 9. The system of claim 8, further comprising: the first owner of the file configured to delegate the second owner responsive to a write offset associated with the second portion of data of the file.
  • 10. The system of claim 8, wherein the first metadata indicates which of the plurality of owner, other than the first owner, has metadata including a most recent update to size of the file and modification time of the file.
  • 11. The system of claim 8, further comprising: the at least one processor configured to persist a delegation of an owner using a token.
  • 12. The system of claim 8, further comprising: the at least one processor configured to determine from the first metadata which owner is a delegated owner as delegated by the first owner; andthe at least one processor configured to write further data of the file and further metadata pertaining to the file to a further segment under the delegated owner, and wherein the segments are striped across storage memory in the system.
  • 13. The system of claim 8, further comprising: the at least one processor configured to determine from the first metadata which owner is a delegated owner as delegated by the first owner; andthe at least one processor configured to write further metadata including at least one of permissions of the file, an updated size of the file, and an updated modification time of the file to a further segment under the delegated owner.
  • 14. The system of claim 8, wherein the attributes of the file include at least one of a size of the file, a modification time of the file, and permissions of the file.
  • 15. A system, comprising: storage memory, configurable to have segments that are logical containers of data in an address space for the segments;a plurality of owner implemented in the data storage system with each owner configurable to be an owner of a plurality of portions of data of files; andat least one processor in communication with the storage memory, configured to perform actions comprising:writing data of a first portion of data of a file and a first metadata relating to attributes of the file into a first segment controlled by a first owner of the file;delegating, by the first owner, a second owner for control of a second portion of data of the file; andwriting data of the second portion of data of the file and second metadata relating to the attributes of the file into a second segment controlled by the second owner.
  • 16. The system of claim 15, wherein delegating the second owner is associated with a write offset.
  • 17. The system of claim 15, wherein the actions further comprise: persisting the delegating the second authority using a token, wherein the writing the data of the second portion of data of the file and the second metadata is responsive to the persisting the delegating the second owner.
  • 18. The system of claim 15, wherein the actions further comprise: writing metadata indicating which authority has a most recent update to a size and a modification time of the file into the first segment controlled by the first owner.
  • 19. The system of claim 15, wherein the actions further comprise: determining, from the first metadata in the first segment and the first owner, which of a plurality of owner is a delegated owner;appending further data of the file to a further segment controlled by the delegated owner; andwriting further metadata to the further segment controlled by the delegated owner.
  • 20. The system of claim 15, wherein the actions further comprise: reading data from the first segment controlled by the first owner;determining, from the first metadata in the first segment controlled by the first owner where to find the second owner and the second segment controlled by the second owner; andreading data from the second segment controlled by the second owner.
US Referenced Citations (525)
Number Name Date Kind
5390327 Lubbers et al. Feb 1995 A
5450581 Bergen et al. Sep 1995 A
5479653 Jones Dec 1995 A
5488731 Mendelsohn Jan 1996 A
5504858 Ellis et al. Apr 1996 A
5564113 Bergen et al. Oct 1996 A
5574882 Menon et al. Nov 1996 A
5649093 Hanko et al. Jul 1997 A
5883909 Dekoning et al. Mar 1999 A
6000010 Legg Dec 1999 A
6260156 Garvin et al. Jul 2001 B1
6269453 Krantz Jul 2001 B1
6275898 DeKoning Aug 2001 B1
6453428 Stephenson Sep 2002 B1
6523087 Busser Feb 2003 B2
6535417 Tsuda Mar 2003 B2
6643748 Wieland Nov 2003 B1
6725392 Frey et al. Apr 2004 B1
6763455 Hall Jul 2004 B2
6836816 Kendall Dec 2004 B2
6985995 Holland et al. Jan 2006 B2
7032125 Holt et al. Apr 2006 B2
7047358 Lee et al. May 2006 B2
7051155 Talagala et al. May 2006 B2
7055058 Lee et al. May 2006 B2
7065617 Wang Jun 2006 B2
7069383 Yamamoto et al. Jun 2006 B2
7076606 Orsley Jul 2006 B2
7107480 Moshayedi et al. Sep 2006 B1
7159150 Kenchammana-Hosekote et al. Jan 2007 B2
7162575 Dalal et al. Jan 2007 B2
7164608 Lee Jan 2007 B2
7188270 Nanda et al. Mar 2007 B1
7228352 Yaguchi Jun 2007 B1
7334156 Land et al. Feb 2008 B2
7370220 Nguyen et al. May 2008 B1
7386666 Beauchamp et al. Jun 2008 B1
7398285 Kisley Jul 2008 B2
7424498 Patterson Sep 2008 B1
7424592 Karr Sep 2008 B1
7444532 Masuyama et al. Oct 2008 B2
7480658 Heinla et al. Jan 2009 B2
7484056 Madnani et al. Jan 2009 B2
7484057 Madnani et al. Jan 2009 B1
7484059 Ofer et al. Jan 2009 B1
7536506 Ashmore et al. May 2009 B2
7558859 Kasiolas Jul 2009 B2
7565446 Talagala et al. Jul 2009 B2
7613947 Coatney Nov 2009 B1
7634617 Misra Dec 2009 B2
7634618 Misra Dec 2009 B2
7681104 Sim-Tang et al. Mar 2010 B1
7681105 Sim-Tang et al. Mar 2010 B1
7681109 Yang et al. Mar 2010 B2
7730257 Franklin Jun 2010 B2
7730258 Smith Jun 2010 B1
7730274 Usgaonkar Jun 2010 B1
7743038 Goldick Jun 2010 B1
7743276 Jacobsen et al. Jun 2010 B2
7752489 Deenadhayalan et al. Jul 2010 B2
7757038 Kitahara Jul 2010 B2
7757059 Ofer et al. Jul 2010 B1
7778960 Chatterjee et al. Aug 2010 B1
7783955 Haratsch et al. Aug 2010 B2
7814272 Barrall et al. Oct 2010 B2
7814273 Barrall Oct 2010 B2
7818531 Barrall Oct 2010 B2
7827351 Suetsugu et al. Nov 2010 B2
7827439 Matthew et al. Nov 2010 B2
7831768 Ananthamurthy et al. Nov 2010 B2
7856583 Smith Dec 2010 B1
7870105 Arakawa et al. Jan 2011 B2
7873878 Belluomini et al. Jan 2011 B2
7885938 Greene et al. Feb 2011 B1
7886111 Klemm et al. Feb 2011 B2
7908448 Chatterjee et al. Mar 2011 B1
7916538 Jeon et al. Mar 2011 B2
7921268 Jakob Apr 2011 B2
7930499 Duchesne Apr 2011 B2
7941697 Mathew et al. May 2011 B2
7958303 Shuster Jun 2011 B2
7971129 Watson Jun 2011 B2
7975115 Wayda Jul 2011 B2
7984016 Kisley Jul 2011 B2
7991822 Bish et al. Aug 2011 B2
8006126 Deenadhayalan et al. Aug 2011 B2
8010485 Chatterjee et al. Aug 2011 B1
8010829 Chatterjee et al. Aug 2011 B1
8020047 Courtney Sep 2011 B2
8046548 Chatterjee et al. Oct 2011 B1
8051361 Sim-Tang et al. Nov 2011 B2
8051362 Li et al. Nov 2011 B2
8074038 Lionetti et al. Dec 2011 B2
8082393 Galloway et al. Dec 2011 B2
8086603 Nasre et al. Dec 2011 B2
8086634 Mimatsu Dec 2011 B2
8086911 Taylor Dec 2011 B1
8090837 Shin et al. Jan 2012 B2
8108502 Tabbara et al. Jan 2012 B2
8117388 Jernigan, IV Feb 2012 B2
8117521 Yang et al. Feb 2012 B2
8140821 Raizen et al. Mar 2012 B1
8145838 Miller Mar 2012 B1
8145840 Koul et al. Mar 2012 B2
8175012 Haratsch et al. May 2012 B2
8176360 Frost et al. May 2012 B2
8176405 Hafner et al. May 2012 B2
8180855 Aiello et al. May 2012 B2
8200922 Mckean et al. Jun 2012 B2
8209469 Carpenter et al. Jun 2012 B2
8225006 Karamcheti Jul 2012 B1
8239618 Kotzur et al. Aug 2012 B2
8244999 Chatterjee et al. Aug 2012 B1
8261016 Goel Sep 2012 B1
8271455 Kesselman Sep 2012 B2
8285686 Kesselman Oct 2012 B2
8305811 Jeon Nov 2012 B2
8315999 Chatley et al. Nov 2012 B2
8327080 Der Dec 2012 B1
8335769 Kesselman Dec 2012 B2
8341118 Drobychev et al. Dec 2012 B2
8351290 Huang et al. Jan 2013 B1
8364920 Parkison et al. Jan 2013 B1
8365041 Chu et al. Jan 2013 B2
8375146 Sinclair Feb 2013 B2
8397016 Talagala et al. Mar 2013 B2
8402152 Duran Mar 2013 B2
8412880 Leibowitz et al. Apr 2013 B2
8423739 Ash et al. Apr 2013 B2
8429436 Filingim et al. Apr 2013 B2
8452928 Ofer et al. May 2013 B1
8473698 Lionetti et al. Jun 2013 B2
8473778 Simitci Jun 2013 B2
8473815 Yu et al. Jun 2013 B2
8479037 Chatterjee et al. Jul 2013 B1
8484414 Sugimoto et al. Jul 2013 B2
8495472 Magerramov Jul 2013 B1
8498967 Chatterjee et al. Jul 2013 B1
8504797 Mimatsu Aug 2013 B2
8522073 Cohen Aug 2013 B2
8533408 Madnani et al. Sep 2013 B1
8533527 Daikokuya et al. Sep 2013 B2
8539177 Ofer et al. Sep 2013 B1
8544029 Bakke et al. Sep 2013 B2
8549224 Zeryck et al. Oct 2013 B1
8583861 Ofer et al. Nov 2013 B1
8589625 Colgrove et al. Nov 2013 B2
8595455 Chatterjee et al. Nov 2013 B2
8615599 Takefman et al. Dec 2013 B1
8627136 Shankar et al. Jan 2014 B2
8627138 Clark Jan 2014 B1
8639669 Douglis et al. Jan 2014 B1
8639863 Kanapathippillai et al. Jan 2014 B1
8640000 Cypher Jan 2014 B1
8650343 Kanapathippillai et al. Feb 2014 B1
8660131 Vermunt et al. Feb 2014 B2
8661218 Piszczek et al. Feb 2014 B1
8671072 Shah et al. Mar 2014 B1
8689042 Kanapathippillai et al. Apr 2014 B1
8700875 Barron et al. Apr 2014 B1
8706694 Chatterjee et al. Apr 2014 B2
8706914 Duchesneau Apr 2014 B2
8706932 Kanapathippillai et al. Apr 2014 B1
8712963 Douglis et al. Apr 2014 B1
8713405 Healey et al. Apr 2014 B2
8719621 Karmarkar May 2014 B1
8725730 Keeton et al. May 2014 B2
8751859 Becker-Szendy et al. Jun 2014 B2
8756387 Frost et al. Jun 2014 B2
8762793 Grube et al. Jun 2014 B2
8838541 Camble et al. Jun 2014 B2
8769232 Suryabudi et al. Jul 2014 B2
8775858 Gower et al. Jul 2014 B2
8775868 Colgrove et al. Jul 2014 B2
8788913 Xin et al. Jul 2014 B1
8793447 Usgaonkar et al. Jul 2014 B2
8799746 Baker et al. Aug 2014 B2
8819311 Liao Aug 2014 B2
8819383 Jobanputra et al. Aug 2014 B1
8822155 Sukumar Sep 2014 B2
8824261 Miller et al. Sep 2014 B1
8832528 Thatcher et al. Sep 2014 B2
8838892 Li Sep 2014 B2
8843700 Salessi et al. Sep 2014 B1
8850108 Hayes et al. Sep 2014 B1
8850288 Lazier et al. Sep 2014 B1
8856593 Eckhardt et al. Oct 2014 B2
8856619 Cypher Oct 2014 B1
8862617 Kesselman Oct 2014 B2
8862847 Feng et al. Oct 2014 B2
8862928 Xavier et al. Oct 2014 B2
8868825 Hayes Oct 2014 B1
8874836 Hayes Oct 2014 B1
8880793 Nagineni Nov 2014 B2
8880825 Lionetti et al. Nov 2014 B2
8886778 Nedved et al. Nov 2014 B2
8898383 Yamamoto et al. Nov 2014 B2
8898388 Kimmel Nov 2014 B1
8904231 Coatney et al. Dec 2014 B2
8918478 Ozzie Dec 2014 B2
8930307 Colgrove et al. Jan 2015 B2
8930633 Amit et al. Jan 2015 B2
8943357 Atzmony Jan 2015 B2
8949502 McKnight et al. Feb 2015 B2
8959110 Smith et al. Feb 2015 B2
8959388 Kuang et al. Feb 2015 B1
8972478 Storer et al. Mar 2015 B1
8972779 Lee et al. Mar 2015 B2
8977597 Ganesh et al. Mar 2015 B2
8996828 Kalos et al. Mar 2015 B2
9003144 Hayes Apr 2015 B1
9009724 Gold et al. Apr 2015 B2
9021053 Bernbo et al. Apr 2015 B2
9021215 Meir et al. Apr 2015 B2
9025393 Wu May 2015 B2
9043372 Makkar et al. May 2015 B2
9047214 Sharon et al. Jun 2015 B1
9053808 Sprouse Jun 2015 B2
9058155 Cepulis et al. Jun 2015 B2
9063895 Madnani et al. Jun 2015 B1
9063896 Madnani et al. Jun 2015 B1
9087012 Hayes Jul 2015 B1
9098211 Madnani et al. Aug 2015 B1
9110898 Chamness et al. Aug 2015 B1
9110964 Shilane et al. Aug 2015 B1
9116819 Cope et al. Aug 2015 B2
9117536 Yoon Aug 2015 B2
9122401 Zaltsman et al. Sep 2015 B2
9123422 Sharon et al. Sep 2015 B2
9124300 Olbrich et al. Sep 2015 B2
9134908 Horn et al. Sep 2015 B2
9153337 Sutardja Oct 2015 B2
9158472 Kesselman et al. Oct 2015 B2
9159422 Lee et al. Oct 2015 B1
9164891 Karamcheti et al. Oct 2015 B2
9183136 Kawamura et al. Nov 2015 B2
9189650 Jaye et al. Nov 2015 B2
9201733 Verma Dec 2015 B2
9207876 Shu et al. Dec 2015 B2
9229656 Contreras et al. Jan 2016 B1
9229810 He et al. Jan 2016 B2
9235475 Shilane et al. Jan 2016 B1
9244626 Shah et al. Jan 2016 B2
9244927 Ravan Jan 2016 B1
9250687 Aswadhati Feb 2016 B1
9250999 Barroso Feb 2016 B1
9251066 Colgrove et al. Feb 2016 B2
9268648 Barash et al. Feb 2016 B1
9268806 Kesselman et al. Feb 2016 B1
9275063 Natanzon Mar 2016 B1
9280678 Redberg Mar 2016 B2
9286002 Karamcheti et al. Mar 2016 B1
9292214 Kalos et al. Mar 2016 B2
9298760 Li et al. Mar 2016 B1
9304908 Karamcheti et al. Apr 2016 B1
9311969 Murin Apr 2016 B2
9311970 Sharon et al. Apr 2016 B2
9323663 Karamcheti et al. Apr 2016 B2
9323667 Bennett Apr 2016 B2
9323681 Apostolides et al. Apr 2016 B2
9335942 Kumar et al. May 2016 B2
9348538 Mallaiah et al. May 2016 B2
9355022 Ravimohan et al. May 2016 B2
9384082 Lee et al. Jul 2016 B1
9384252 Akirav et al. Jul 2016 B2
9389958 Sundaram et al. Jul 2016 B2
9390019 Patterson et al. Jul 2016 B2
9395922 Nishikido Jul 2016 B2
9396202 Drobychev et al. Jul 2016 B1
9400828 Kesselman et al. Jul 2016 B2
9405478 Koseki et al. Aug 2016 B2
9411685 Lee Aug 2016 B2
9417960 Klein Aug 2016 B2
9417963 He et al. Aug 2016 B2
9430250 Hamid et al. Aug 2016 B2
9430542 Akirav et al. Aug 2016 B2
9432541 Ishida Aug 2016 B2
9454434 Sundaram et al. Sep 2016 B2
9471579 Natanzon Oct 2016 B1
9477554 Chamness et al. Oct 2016 B2
9477632 Du Oct 2016 B2
9501398 George et al. Nov 2016 B2
9525737 Friedman Dec 2016 B2
9529542 Friedman et al. Dec 2016 B2
9535631 Fu et al. Jan 2017 B2
9552248 Miller et al. Jan 2017 B2
9552291 Munetoh et al. Jan 2017 B2
9552299 Stalzer Jan 2017 B2
9563517 Natanzon et al. Feb 2017 B1
9588698 Karamcheti et al. Mar 2017 B1
9588712 Kalos et al. Mar 2017 B2
9594652 Sathiamoorthy et al. Mar 2017 B1
9600193 Ahrens et al. Mar 2017 B2
9619321 Sharon et al. Apr 2017 B1
9619430 Kannan et al. Apr 2017 B2
9645754 Li et al. May 2017 B2
9667720 Bent et al. May 2017 B1
9710535 Aizman et al. Jul 2017 B2
9733840 Karamcheti et al. Aug 2017 B2
9734225 Akirav et al. Aug 2017 B2
9740403 Storer Aug 2017 B2
9740700 Chopra et al. Aug 2017 B1
9740762 Horowitz et al. Aug 2017 B2
9747319 Bestler et al. Aug 2017 B2
9747320 Kesselman Aug 2017 B2
9767130 Bestler et al. Sep 2017 B2
9781227 Friedman et al. Oct 2017 B2
9785498 Misra et al. Oct 2017 B2
9798486 Singh Oct 2017 B1
9804925 Carmi et al. Oct 2017 B1
9811285 Karamcheti et al. Nov 2017 B1
9811546 Bent et al. Nov 2017 B1
9818478 Chung et al. Nov 2017 B2
9829066 Thomas et al. Nov 2017 B2
9836245 Hayes et al. Dec 2017 B2
9864874 Shanbhag Jan 2018 B1
9891854 Munetoh et al. Feb 2018 B2
9891860 Delgado et al. Feb 2018 B1
9892005 Kedem et al. Feb 2018 B2
9892186 Akirav et al. Feb 2018 B2
9904589 Donlan et al. Feb 2018 B1
9904717 Anglin et al. Feb 2018 B2
9952809 Shah Feb 2018 B2
9910748 Pan Mar 2018 B2
9910904 Anglin et al. Mar 2018 B2
9934237 Shilane et al. Apr 2018 B1
9940065 Kalos et al. Apr 2018 B2
9946604 Glass Apr 2018 B1
9959167 Donlan et al. May 2018 B1
9965539 D'halluin et al. May 2018 B2
9998539 Brock et al. Jun 2018 B1
10007457 Hayes et al. Jun 2018 B2
10013177 Liu et al. Jul 2018 B2
10013311 Sundaram et al. Jul 2018 B2
10019314 Litsyn et al. Jul 2018 B2
10019317 Usvyatsky et al. Jul 2018 B2
10025673 Maccanti Jul 2018 B1
10031703 Natanzon et al. Jul 2018 B1
10061512 Chu et al. Aug 2018 B2
10073626 Karamcheti et al. Sep 2018 B2
10082985 Hayes et al. Sep 2018 B2
10089012 Chen et al. Oct 2018 B1
10089174 Lin Oct 2018 B2
10089176 Donlan et al. Oct 2018 B1
10102356 Sahin Oct 2018 B1
10108819 Donlan et al. Oct 2018 B1
10146787 Bashyam et al. Dec 2018 B2
10152268 Chakraborty et al. Dec 2018 B1
10157098 Chung et al. Dec 2018 B2
10162704 Kirschner et al. Dec 2018 B1
10180875 Northcott Jan 2019 B2
10185495 Katsuki Jan 2019 B2
10185730 Bestler et al. Jan 2019 B2
10216754 Douglis Feb 2019 B1
10235065 Miller et al. Mar 2019 B1
10324639 Seo Jun 2019 B2
10567406 Astigarraga Feb 2020 B2
10606901 Nair Mar 2020 B1
10762069 Hayes et al. Sep 2020 B2
10810088 Gu Oct 2020 B1
10846137 Vallala Nov 2020 B2
10877683 Wu Dec 2020 B2
11076509 Alissa et al. Jul 2021 B2
11106810 Natanzon Aug 2021 B2
11194707 Stalzer Dec 2021 B2
11567917 Hayes et al. Jan 2023 B2
20020144059 Kendall Oct 2002 A1
20030028493 Tajima Feb 2003 A1
20030105984 Masuyama et al. Jun 2003 A1
20030110205 Johnson Jun 2003 A1
20030220923 Curran Nov 2003 A1
20040133570 Soltis Jul 2004 A1
20040161086 Buntin et al. Aug 2004 A1
20040254907 Crow Dec 2004 A1
20050001652 Malik et al. Jan 2005 A1
20050038790 Wolthusen Feb 2005 A1
20050076228 Davis et al. Apr 2005 A1
20050183002 Chapus Aug 2005 A1
20050235132 Karr et al. Oct 2005 A1
20050278460 Shin et al. Dec 2005 A1
20050283649 Turner et al. Dec 2005 A1
20060015683 Ashmore et al. Jan 2006 A1
20060114930 Lucas et al. Jun 2006 A1
20060174157 Barrall et al. Aug 2006 A1
20060248294 Nedved et al. Nov 2006 A1
20070079068 Draggon Apr 2007 A1
20070088754 Brannon Apr 2007 A1
20070214194 Reuter Sep 2007 A1
20070214314 Reuter Sep 2007 A1
20070234016 Davis et al. Oct 2007 A1
20070268905 Baker et al. Nov 2007 A1
20070288494 Chrin Dec 2007 A1
20080080709 Michtchenko et al. Apr 2008 A1
20080107274 Worthy May 2008 A1
20080155191 Anderson et al. Jun 2008 A1
20080228770 Halcrow Sep 2008 A1
20080256141 Wayda et al. Oct 2008 A1
20080295118 Liao Nov 2008 A1
20090063508 Yamato Mar 2009 A1
20090077208 Nguyen et al. Mar 2009 A1
20090112951 Ryu Apr 2009 A1
20090138654 Sutardja May 2009 A1
20090193483 Hwang Jul 2009 A1
20090216910 Duchesneau Aug 2009 A1
20090216920 Lauterbach et al. Aug 2009 A1
20100017444 Chatterjee et al. Jan 2010 A1
20100030791 Iverson Feb 2010 A1
20100042636 Lu Feb 2010 A1
20100077013 Clements Mar 2010 A1
20100088349 Parab Apr 2010 A1
20100094806 Apostolides et al. Apr 2010 A1
20100115070 Missimilly May 2010 A1
20100125695 Wu et al. May 2010 A1
20100162076 Sim-Tang et al. Jun 2010 A1
20100165503 Choi Jul 2010 A1
20100169707 Mathew et al. Jul 2010 A1
20100174576 Naylor Jul 2010 A1
20100185626 Hillis et al. Jul 2010 A1
20100268908 Ouyang et al. Oct 2010 A1
20100306500 Mimatsu Dec 2010 A1
20110035540 Fitzgerald Feb 2011 A1
20110040925 Frost et al. Feb 2011 A1
20110060927 Fillingim et al. Mar 2011 A1
20110119462 Leach et al. May 2011 A1
20110184964 Li Jul 2011 A1
20110219170 Frost et al. Sep 2011 A1
20110238625 Hamaguchi et al. Sep 2011 A1
20110264843 Haines et al. Oct 2011 A1
20110302369 Goto et al. Dec 2011 A1
20120011398 Eckhardt Jan 2012 A1
20120079318 Colgrove et al. Mar 2012 A1
20120089567 Takahashi et al. Apr 2012 A1
20120110249 Jeong et al. May 2012 A1
20120131253 McKnight May 2012 A1
20120158923 Mohamed et al. Jun 2012 A1
20120191900 Kunimatsu et al. Jul 2012 A1
20120198152 Terry et al. Aug 2012 A1
20120198261 Brown et al. Aug 2012 A1
20120209943 Jung Aug 2012 A1
20120226934 Rao Sep 2012 A1
20120233293 Barton et al. Sep 2012 A1
20120246194 Annapragada Sep 2012 A1
20120246435 Meir et al. Sep 2012 A1
20120260055 Murase Oct 2012 A1
20120278382 Faith Nov 2012 A1
20120311557 Resch Dec 2012 A1
20130022201 Glew et al. Jan 2013 A1
20130036314 Glew et al. Feb 2013 A1
20130042056 Shats Feb 2013 A1
20130060884 Bernbo et al. Mar 2013 A1
20130067188 Mehra et al. Mar 2013 A1
20130067242 Lyakhovitskiy Mar 2013 A1
20130073894 Xavier et al. Mar 2013 A1
20130124776 Hallak et al. May 2013 A1
20130132800 Healy et al. May 2013 A1
20130151653 Sawiki Jun 2013 A1
20130151771 Tsukahara et al. Jun 2013 A1
20130173853 Ungureanu et al. Jul 2013 A1
20130238554 Yucel et al. Sep 2013 A1
20130339314 Carpenter et al. Dec 2013 A1
20130339635 Amit et al. Dec 2013 A1
20130339818 Baker et al. Dec 2013 A1
20140019497 Cidon et al. Jan 2014 A1
20140040535 Lee Feb 2014 A1
20140040702 He et al. Feb 2014 A1
20140047263 Coatney et al. Feb 2014 A1
20140047269 Kim Feb 2014 A1
20140063721 Herman et al. Mar 2014 A1
20140064048 Cohen et al. Mar 2014 A1
20140068224 Fan et al. Mar 2014 A1
20140075252 Luo et al. Mar 2014 A1
20140122510 Namkoong et al. May 2014 A1
20140136880 Shankar et al. May 2014 A1
20140181402 White Jun 2014 A1
20140220561 Sukumar et al. Aug 2014 A1
20140237164 Le et al. Aug 2014 A1
20140279936 Bernbo et al. Sep 2014 A1
20140280025 Eidson et al. Sep 2014 A1
20140289588 Nagadomi et al. Sep 2014 A1
20140330785 Isherwood et al. Nov 2014 A1
20140372838 Lou et al. Dec 2014 A1
20140380125 Calder et al. Dec 2014 A1
20140380126 Yekhanin et al. Dec 2014 A1
20150032720 James Jan 2015 A1
20150039645 Lewis Feb 2015 A1
20150039849 Lewis Feb 2015 A1
20150089283 Kermarrec et al. Mar 2015 A1
20150100746 Rychlik Apr 2015 A1
20150134824 Mickens May 2015 A1
20150153800 Lucas et al. Jun 2015 A1
20150154418 Redberg Jun 2015 A1
20150161163 Cypher Jun 2015 A1
20150180714 Chunn Jun 2015 A1
20150280959 Vincent Oct 2015 A1
20150355974 Hayes Dec 2015 A1
20160026397 Nishikido et al. Jan 2016 A1
20160246537 Kim Feb 2016 A1
20160182542 Staniford Jun 2016 A1
20160191508 Bestler et al. Jun 2016 A1
20160248631 Duchesneau Aug 2016 A1
20160378612 Hipsh et al. Dec 2016 A1
20170053195 Sasajima Feb 2017 A1
20170091236 Hayes et al. Mar 2017 A1
20170103092 Hu et al. Apr 2017 A1
20170103094 Hu et al. Apr 2017 A1
20170103098 Hu et al. Apr 2017 A1
20170103116 Hu et al. Apr 2017 A1
20170177236 Haratsch et al. Jun 2017 A1
20170262202 Seo Sep 2017 A1
20180039442 Shadrin et al. Feb 2018 A1
20180054454 Astigarraga et al. Feb 2018 A1
20180081958 Akirav et al. Mar 2018 A1
20180101441 Hyun et al. Apr 2018 A1
20180101587 Anglin et al. Apr 2018 A1
20180101588 Anglin et al. Apr 2018 A1
20180217756 Liu et al. Aug 2018 A1
20180307560 Vishnumolakala et al. Oct 2018 A1
20180321874 Li et al. Nov 2018 A1
20190036703 Bestler Jan 2019 A1
20190220315 Vallala et al. Jul 2019 A1
20200034560 Natanzon et al. Jan 2020 A1
20200326871 Wu et al. Oct 2020 A1
20200379965 Hayes Dec 2020 A1
20210360833 Alissa et al. Nov 2021 A1
20230120685 Hayes Apr 2023 A1
Foreign Referenced Citations (11)
Number Date Country
2164006 Mar 2010 EP
2256621 Dec 2010 EP
2010128886 Jun 2010 JP
2013539133 Oct 2013 JP
2013544386 Dec 2013 JP
WO 02-13033 Feb 2002 WO
WO 2008103569 Aug 2008 WO
WO 2008157081 Dec 2008 WO
WO 2013032825 Jul 2013 WO
WO-2013106079 Jul 2013 WO
WO2014025821 Feb 2014 WO
Non-Patent Literature Citations (28)
Entry
(“Serverless Network File Systems”, ACM Transactions on Computer Systems (TOCS), Association for Computing Machinery, Inc., US, vol. 14, No. 1, Feb. 1, 1996 (Feb. 1, 1996) (Year: 1996).
Hwang, Kai, et al. “RAID-x: A New Distributed Disk Array for I/O-Centric Cluster Computing,” HPDC '00 Proceedings of the 9th IEEE International Symposium on High Performance Distributed Computing, IEEE, 2000, pp. 279-286.
Schmid, Patrick: “RAID Scaling Charts, Part 3:4-128 kB Stripes Compared”, Tom's Hardware, Nov. 27, 2007 (http://www.tomshardware.com/reviews/RAID-SCALING-CHARTS.1735-4.html), See pp. 1-2.
Storer, Mark W. et al., “Pergamum: Replacing Tape with Energy Efficient, Reliable, Disk-Based Archival Storage,” Fast '08: 6th USENIX Conference on File and Storage Technologies, San Jose, CA, Feb. 26-29, 2008 pp. 1-16.
Ju-Kyeong Kim et al., “Data Access Frequency based Data Replication Method using Erasure Codes in Cloud Storage System”, Journal of the Institute of Electronics and Information Engineers, Feb. 2014, vol. 51, No. 2, pp. 85-91.
International Search Report and the Written Opinion of the International Searching Authority, PCT/US2015/018169, dated May 15, 2015.
International Search Report and the Written Opinion of the International Searching Authority, PCT/US2015/034302, dated Sep. 11, 2015.
International Search Report and the Written Opinion of the International Searching Authority, PCT/US2015/039135, dated Sep. 18, 2015.
International Search Report and the Written Opinion of the International Searching Authority, PCT/US2015/039136, dated Sep. 23, 2015.
International Search Report, PCT/US2015/039142, dated Sep. 24, 2015.
International Search Report, PCT/US2015/034291, dated Sep. 30, 2015.
International Search Report and the Written Opinion of the International Searching Authority, PCT/US2015/039137, dated Oct. 1, 2015.
International Search Report, PCT/US2015/044370, dated Dec. 15, 2015.
International Search Report amd the Written Opinion of the International Searching Authority, PCT/US2016/031039, dated May 5, 2016.
International Search Report, PCT/US2016/014604, dated May 19, 2016.
International Search Report, PCT/US2016/014361, dated May 30, 2016.
International Search Report, PCT/US2016/014356, dated Jun. 28, 2016.
International Search Report, PCT/US2016/014357, dated Jun. 29, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/016504, dated Jul. 6, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/024391, dated Jul. 12, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/026529, dated Jul. 19, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/023485, dated Jul. 21, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/033306, dated Aug. 19, 2016.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/047808, dated Nov. 25, 2016.
Stalzer, Mark A., “FlashBlades: System Architecture and Applications,” Proceedings of the 2nd Workshop on Architectures and Systems for Big Data, Association for Computing Machinery, New York, NY, 2012, pp. 10-14.
International Seach Report and the Written Opinion of the International Searching Authority, PCT/US2016/042147, dated Nov. 30, 2016.
Extended European Search Report for European Application No. 16852470.0, mailed Feb. 14, 2019, 10 Pages.
International Search Report and Written Opinion for International Application No. PCT/US2016/054142, mailed Jan. 12, 2017, 11 Pages.
Related Publications (1)
Number Date Country
20230120685 A1 Apr 2023 US
Continuations (2)
Number Date Country
Parent 16994332 Aug 2020 US
Child 18084339 US
Parent 14871833 Sep 2015 US
Child 16994332 US