Delivery and deployment systems for bifurcated stent grafts

Information

  • Patent Grant
  • 11690742
  • Patent Number
    11,690,742
  • Date Filed
    Friday, May 18, 2018
    6 years ago
  • Date Issued
    Tuesday, July 4, 2023
    a year ago
Abstract
A system for endoluminal delivery of a medical device, wherein the medical device includes a bifurcated stent graft having a trunk, a first leg and a second leg shorter than the first leg. The system includes a sheath having a tubular wall having a cylindrical inner surface defining a lumen for receiving the stent graft therein to constrain the stent graft toward a delivery configuration suitable for endoluminal delivery, and a generally cylindrical core member extending through the lumen. The core member has a first annular surface for engaging an end of the first leg. The core has a second annular surface for engaging an end of the second leg while at least the end of the second leg remains constrained by the sheath.
Description
BACKGROUND

The present disclosure relates to medical device deployment systems. More particularly, the present disclosure relates to deployment system for bifurcated stent grafts.


DISCUSSION OF THE RELATED ART

There is a need for advanced devices, tools, systems and methods used for the endoluminal treatment of aortic diseases. In particular, there remains a need for deployment systems that can accommodate increasingly complex modes of deployment of a device, such as steering, reconstraining, multiple stage deployment, multiple device deployment, while promoting ease of use to the clinician. There also remains a need for increasingly reduced profile delivery mechanisms.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the present disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the description serve to explain the principles of the present disclosure.



FIGS. 1-3 illustrate a bifurcated stent graft and a portion of a deployment system in accordance with various embodiments;



FIGS. 4-5 illustrate a bifurcated stent graft retained in a delivery configuration by a deployment system in accordance with various embodiments;



FIGS. 6-7 are cross sectional views of the bifurcated stent graft and deployment system as taken along planes indicated at 6-6 and 7-7 in FIG. 5, respectively; and



FIG. 8 is a longitudinal cross sectional view of the bifurcated stent graft and deployment system in FIG. 5.





DETAILED DESCRIPTION

In various embodiments, a system for endoluminal delivery of a medical device includes a bifurcated stent graft comprising a trunk, a first leg and a second leg, wherein the first leg is longer than the second leg; a sheath having a tubular wall having a cylindrical inner surface defining a lumen for receiving the stent graft therein to constrain the stent graft toward a delivery configuration suitable for endoluminal delivery; and a generally cylindrical core member extending through the lumen, the core member having a first section having a first diameter, a second section having a second diameter smaller than the first diameter, and a third section having a third diameter smaller than the second diameter, the core having an annular first end surface between the first and second sections, and an annular second end surface between the second and third sections, wherein the first and second ends surfaces of the core member engage respective axially spaced apart portions of the stent graft during axial displacement of the sheath with respect to the core member.


Referring to FIGS. 1-8, for example, a delivery system for delivery of a bifurcated stent graft 10 is generally indicated at 100. As shown, the stent graft 10 includes a trunk 20, a first leg 30 and a second leg 40, wherein the first leg 30 is longer than the second leg 40. The delivery system 100 includes a sheath 200 having a tubular wall 210. The tubular wall includes an outer surface 212 and an opposite inner surface 214 defining a lumen 216. The lumen 216 is configured to receive the stent graft 10 therein to constrain and maintain the stent graft 10 in a delivery configuration suitable for endoluminal delivery to a vascular treatment site.


The delivery system 100 includes a core member 300. The core member 300 has a longitudinal axis 302 and through the lumen 216 of the sheath 200. The core member 300 includes a first section 310 having a first diameter. The core member 300 includes a second section 320 having a second diameter smaller than the first diameter. The core member 300 includes a third section 330 having a third diameter smaller than the second diameter.


The core member 300 includes an annular first end surface 350 between the first 310 and second 320 sections. The first end surface 350 can be substantially normal to the longitudinal axis 302 of the core member 300. Similarly, the core member 300 includes an annular second end surface 360 between the second 320 and third 330 sections. The second end surface 360 can be substantially normal to the longitudinal axis 302 of the core member 300.


During assembly, the core member 300 can be inserted through the first leg 30 of the stent graft 10, as shown in FIG. 1, until a terminal end 32 of the first leg 30 abuts the first end surface 350, as shown in FIGS. 2 and 3. A terminal end 42 of the second leg 40 of the stent graft 10 is generally aligned axially with the second end surface 360, as indicated at plane ā€œPā€ in FIG. 3.


With the stent graft 10 mounted in the configuration shown in FIG. 3, the stent graft 10 is then compacted generally radially onto the core member 300 and retained in the delivery configuration by the sheath 200, as shown in FIGS. 4-8. As best shown in the cross sectional view of FIG. 7 (taken along the plane indicated at 7-7 in FIG. 5), the second leg 40 is compacted along a portion of a circumference of the third section 330, while the first leg 30 is compacted and generally co-axially aligned with the third section 330.


By this arrangement, the second leg 40 adds column strength to the stent graft 10 along the core member 300 to help prevent axial crumpling of the stent graft 10 during axial displacement of the sheath 200 relative to the core. Thus, during deployment of the stent graft 10, the sheath 200 is displaced axially along a direction, generally indicated by arrow ā€œaā€ in FIG. 8, relative to the core member 300. Abutment between the terminal ends 32 and 42 of the first 30 and second 40 legs, respectively, and the first 350 and second 360 end surfaces prevents axial displacement of the stent graft 10 due to friction between the stent graft 10 and the sheath 10 as the sheath 10 is displaced. The enhanced column strength of the compacted stent graft along the third section 330 of the core member 300 also helps to resist axial crumpling the stent graft also due to friction between the stent graft 10 and the sheath 10 as the sheath 10 is displaced relative to the core member 300.


Axial displacement of the sheath 10 relative to the core member 300 allows outward expansion of the stent graft 10 from the delivery configuration. Optionally, secondary sheaths or constraining sleeves can be utilized to limit expansion of the stent graft to an intermediate configuration larger than the delivery configuration and smaller than a fully deployed configuration engaged with vessel walls. Further details of such constraining sleeves can be found, for example, in U.S. Pat. No. 6,352,561 issued to Leopold, et al., U.S. Pat. No. 6,551,350 issued to Thornton, et al., as well as co-pending U.S. Patent Application Publication US 2010/0049293 A1 (Zukowski et al.), the content of which is incorporated herein by reference in its entirety.


Upon full deployment of the stent graft 10, the core member 300 and sheath 200 can be removed from the treatment site and body of the patient.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present present disclosure without departing from the spirit or scope of the present disclosure. Thus, it is intended that the present present disclosure cover the modifications and variations of this present disclosure provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. An endoluminal delivery system comprising: a bifurcated stent graft having a trunk, a first leg and a second leg shorter than the first leg;a sheath having a tubular wall having an inner surface defining a lumen for receiving the stent graft therein to constrain the stent graft toward a delivery configuration suitable for endoluminal delivery; anda core member having a first surface and a second annular surface, the core member extending into a lumen of the first leg such that the first surface abuts an end of the first leg, the second surface is-positioned within the lumen of the first leg such that the first leg is disposed between the second surface and the second leg, and a terminal end of the second leg is generally aligned in an axial direction with and abuts the second annular surface, where the second surface is obstructing the end of the second leg while the end of the second leg remains constrained by the sheath.
  • 2. The system of claim 1, wherein the core member is generally cylindrical and includes a first section having a first diameter and a second section having a second diameter, the first diameter being larger than the second diameter, and wherein the first surface is a first annular surface and defines a transition between an outer surface of the first section and an outer surface of the second section.
  • 3. The system of claim 2, wherein the first annular surface is normal relative to a longitudinal axis of the core member.
  • 4. The system of claim 2, wherein the core member includes a third section having a third diameter, the second diameter being larger than the third diameter, and wherein the second surface defines a transition between the outer surface of the second section and an outer surface of the third section.
  • 5. The system of claim 4, wherein a difference between the second diameter and the third diameter is at least twice the sum of a thickness of the first leg and twice a thickness of the second leg.
  • 6. The system of claim 4, wherein the second annular surface is normal relative to a longitudinal axis of the core member.
  • 7. The system of claim 4, wherein the first, second, and third sections of the core member are coaxial.
  • 8. The system of claim 1, wherein the first surface and the second surface are parallel.
  • 9. The system of claim 1, wherein the second leg is configured to add column strength along the core member to resist axial crumpling of the stent graft while the second surface obstructs the end of the second leg and the end of the second leg remains constrained by the sheath.
  • 10. A medical device delivery system, said system comprising: a bifurcated stent graft having a proximal end and a distal end opposite the proximal end, the stent graft having a trunk extending between the proximal end and a bifurcation, the stent graft having first and second legs extending distally from the bifurcation, the first leg having an end defining the distal end of the stent graft, the second leg having an end terminating at a location between the bifurcation and the distal end of the stent graft;a sheath disposed about the stent graft for constraining the stent graft toward a delivery configuration suitable for endoluminal delivery; anda core member having a first surface for engaging the distal end of the stent graft, the core member having a second annular surface and extending into a lumen of the first leg, the second surface positioned within the lumen of the first leg such that the first leg is disposed between the second surface and the second leg, where a terminal end of the second leg is generally aligned in an axial direction with and abuts the second annular surface, and wherein the second annular surface is adapted to engage the end of the second leg during displacement of the sheath relative to the core member.
  • 11. The system of claim 10, wherein the core member extends into the lumen of the first leg such that the first surface is positioned distal to the second surface.
  • 12. The system of claim 10, wherein the second surface is adapted to engage the end of the second leg during displacement of the sheath relative to the core member while the end of the second leg is constrained by the sheath.
  • 13. The system of claim 10, wherein the core member is generally cylindrical and includes a first section having a first diameter, a second section having a second diameter, and a third section having a third diameter, the second diameter being larger than the third diameter, wherein the first surface is a first annular surface that defines a transition between the first section and the second section, and wherein the second surface defines a transition between the second section and the third section.
  • 14. The system of claim 13, wherein a difference between the second diameter and the third diameter is at least twice the sum of a thickness of the first leg and twice a thickness of the second leg.
  • 15. The system of claim 13, wherein the first and second sections of the core member are coaxially aligned.
  • 16. The system of claim 10, wherein the second surface is normal relative to a longitudinal axis of the core member.
  • 17. An endoluminal delivery system comprising: a bifurcated stent graft having a trunk, a first leg and a second leg shorter than the first leg;a sheath having a tubular wall having an inner surface defining a lumen for receiving the stent graft therein to constrain the stent graft toward a delivery configuration suitable for endoluminal delivery; anda core member extending into a lumen of the first leg, the core member having a first annular surface and a second annular surface, the second annular surface being adapted to obstruct axial displacement of the bifurcated stent graft by obstructing an end of the second leg while the second annular surface is positioned within the lumen of the first leg such that the first leg is disposed between the second annular surface and the second leg, and a terminal end of the second leg is generally aligned in an axial direction with and abuts the second annular surface, while the first annular surface abuts an end of the first leg.
  • 18. The system of claim 17, wherein the second annular surface is adapted to obstruct the end of the second leg while the end of the second leg is constrained by the sheath.
  • 19. The system of claim 17, wherein the core member extends into the lumen of the first leg such that the second annular surface is positioned within the lumen of the first leg between the end of the second leg and the end of the first leg.
  • 20. The system of claim 17, wherein the core member includes a first section having a first diameter, a second section having a second diameter, and a third section having a third diameter, the second diameter being larger than the third diameter, the first annular surface defining a transition between the first section and the second section, and the second annular surface defining a transition between the second section and the third section.
  • 21. The system of claim 20, wherein a difference between the second diameter and the third diameter is at least twice the sum of a thickness of the first leg and twice a thickness of the second leg.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/675,368, filed Mar. 31, 2015, now U.S. Pat. No. 9,974,675, issued May 22, 2018, which claims the benefit of U.S. Provisional Application 61/975,217, filed Apr. 4, 2014, both of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (67)
Number Name Date Kind
5609627 Goicoechea Mar 1997 A
5792144 Fischell Aug 1998 A
5860998 Robinson Jan 1999 A
5928248 Acker Jul 1999 A
6120522 Vrba Sep 2000 A
6203550 Olson Mar 2001 B1
6241758 Cox Jun 2001 B1
6352561 Leopold et al. Mar 2002 B1
6551350 Thornton et al. Apr 2003 B1
6689156 Davidson Feb 2004 B1
6692494 Cooper Feb 2004 B1
6733521 Chobotov et al. May 2004 B2
6911039 Shiu Jun 2005 B2
6951572 Douglas Oct 2005 B1
6974471 Van Schie Dec 2005 B2
7081132 Cook Jul 2006 B2
7147661 Chobotov Dec 2006 B2
7435253 Hartley Oct 2008 B1
7550002 Goto Jun 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7837724 Keeble Nov 2010 B2
7938851 Olson May 2011 B2
7976575 Hartley Jul 2011 B2
8109983 Gunderson Feb 2012 B2
8167927 Chobotov May 2012 B2
8211167 Vardi Jul 2012 B2
8241346 Chobotov Aug 2012 B2
8257431 Henderson Sep 2012 B2
8262671 Osypka Sep 2012 B2
8328861 Martin Dec 2012 B2
8361135 Dittman Jan 2013 B2
8480725 Rasmussen Jul 2013 B2
8968384 Pearson Mar 2015 B2
9060895 Hartley Jun 2015 B2
9132025 Aristizabal Sep 2015 B2
9254204 Roeder Feb 2016 B2
9308349 Rezac Apr 2016 B2
9498361 Roeder Nov 2016 B2
9585743 Cartledge Mar 2017 B2
9585774 Aristizabal Mar 2017 B2
9681968 Goetz Jun 2017 B2
9700701 Benjamin Jul 2017 B2
9782284 Hartley Oct 2017 B2
9937070 Skelton Apr 2018 B2
9974675 Beard et al. May 2018 B2
20010037141 Yee Nov 2001 A1
20020198587 Greenberg Dec 2002 A1
20030074047 Richter Apr 2003 A1
20040230286 Moore et al. Nov 2004 A1
20040267348 Gunderson Dec 2004 A1
20050049609 Gunderson Mar 2005 A1
20050050015 Becker Mar 2005 A1
20060229697 Gerdts Oct 2006 A1
20070050015 O'Brien Mar 2007 A1
20080132906 Rasmussen Jun 2008 A1
20090024072 Criado Jan 2009 A1
20090132026 Martin May 2009 A1
20090259296 Mciff et al. Oct 2009 A1
20090259298 Mayberry Oct 2009 A1
20100049293 Zukowski Feb 2010 A1
20110251664 Acevedo Oct 2011 A1
20130053945 Greenberg et al. Feb 2013 A1
20140018913 Cartledge Jan 2014 A1
20140046317 Truckai Feb 2014 A1
20140172067 Brown Jun 2014 A1
20170172724 Cartledge Jun 2017 A1
20170281382 Lostetter Oct 2017 A1
Foreign Referenced Citations (15)
Number Date Country
101330882 Dec 2008 CN
102188296 Sep 2011 CN
103037817 Apr 2013 CN
0684022 Nov 1995 EP
1474074 Apr 2004 EP
1441668 Jan 2008 EP
1915113 Mar 2010 EP
1358903 Feb 2011 EP
2749251 Jul 2016 EP
2956198 Nov 2017 EP
2748197 Nov 1997 FR
WO-9853761 Dec 1998 WO
WO-1998053761 Dec 1998 WO
WO-2007025101 Mar 2007 WO
WO-2008066917 Jun 2008 WO
Non-Patent Literature Citations (4)
Entry
English Translation CN 101330882 (Year: 2008).
English Translation CN 102188296 (Year: 2011).
International Preliminary Reporton Patentability received for PCT Patent Application No. PCT/US2015/023874, dated Oct. 13, 2016, 7 pages.
International Search Report and Written Opinion for PCT/US2015/023874 dated Jul. 8, 20151 corresponding to U.S. Appl. No. 14/675,368, 5 pages.
Related Publications (1)
Number Date Country
20180263800 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
61975217 Apr 2014 US
Continuations (1)
Number Date Country
Parent 14675368 Mar 2015 US
Child 15983186 US