The embodiments described herein relate generally to transcatheter prosthetic valves and more particularly, to delivery and/or retrieval devices and methods for side-deliverable transcatheter prosthetic valves.
Prosthetic heart valves can pose challenges for delivery, deployment, and/or retrieval within a heart, particularly for delivery by catheters through the patient's vasculature rather than through a surgical approach. Delivery of traditional transcatheter prosthetic valves generally includes compressing the valve in a radial direction and loading the valve into a delivery catheter such that a central annular axis of the valve is parallel to a lengthwise or longitudinal axis of the delivery catheter. The valves are deployed from an end of the delivery catheter and expanded outwardly in a radial direction from the central annular axis. The expanded size (e.g., diameter) of traditional valves, however, can be limited by the internal diameter of the delivery catheter. The competing interest of minimizing delivery catheter size presents challenges to increasing the expanded diameter of traditional valves (e.g., trying to compress too much material and structure into too little space). Moreover, the orientation of the traditional valves during deployment can create additional challenges when trying to align the valves with the native valve annulus.
Some transcatheter prosthetic valves can be configured for side and/or orthogonal delivery, which can allow for an increase in an expanded diameter of the side-delivered valve relative to traditional valves. For example, in a side (orthogonal) delivery, the valve can be placed in a compressed or delivery configuration and loaded into a delivery catheter such that a central annular axis of the valve is substantially perpendicular and/or orthogonal to a lengthwise or longitudinal axis of the delivery catheter. More particularly, the valve can be compressed axially (e.g., along the central annular axis) and laterally (e.g., perpendicular to each of the central annular axis and a longitudinal axis of the valve), and uncompressed or elongated longitudinally (e.g., in a direction parallel to the lengthwise or longitudinal axis of the delivery catheter). The compressed valve (e.g., the valve in a delivery configuration) can be loaded into the delivery catheter, advanced through a lumen thereof, and deployed from the end of the delivery catheter. Moreover, the side-delivered valve is generally in a desired orientation relative to the native valve annulus when deployed from the end of the delivery catheter.
In some implementations, however, challenges associated with compressing the side-deliverable valve and/or the loading of the valve into a delivery system may persist. In addition, in some instances, it may be desirable to retrieve or at least partially retrieve the valve after deployment of valve from the end of the delivery catheter.
Accordingly, a need exists for delivery and/or retrieval devices and methods for side-deliverable transcatheter prosthetic valves.
The embodiments described herein are directed to side-deliverable prosthetic valves and devices and/or methods for delivering and/or retrieving the side-deliverable prosthetic valves. In some embodiments, a delivery system for side-delivery of a transcatheter prosthetic valve includes a compression device, a loading device, and a delivery device. The compression device defines a lumen that extends through a proximal end and a distal end, with a perimeter of the lumen at the proximal end being larger than a perimeter of the lumen of the distal end. The loading device defines a lumen that extends through a proximal end and a distal end thereof. A perimeter of the lumen of the loading device is substantially similar to the perimeter of the lumen at the distal end of the compression device. The proximal end of the loading device is coupleable to the compression device and the distal end of the loading device includes a first gate that is movable between an open state and a closed state in which the first gate at least partially occludes the lumen of the loading device. The delivery device has a handle and a delivery catheter extending distally from the handle. The handle and the delivery catheter collectively define a lumen that extends through the delivery device. A perimeter of the lumen of the delivery device is substantially similar to the perimeter of the lumen of the loading device. A proximal end of the handle is coupleable to the distal end of the loading device and includes a second gate that is movable between an open state and a closed state in which the second gate at least partially occludes the lumen of the delivery device.
Disclosed embodiments are directed to side-deliverable transcatheter prosthetic valves (and/or components thereof) and methods of loading, delivering, deploying, and/or retrieving the prosthetic valves (and/or components thereof). In some embodiments, a side-deliverable prosthetic heart valve can include an outer frame and a flow control component. The outer frame can have a supra-annular region, a subannular region, and a transannular region coupled therebetween. The subannular region can form a distal anchoring element and a proximal anchoring element. The flow control component can be mounted to the supra-annular region of the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve can be placed in a delivery configuration for side-delivery of the prosthetic valve to a heart of a patient via a delivery catheter of a delivery system. The prosthetic valve can be allowed to transition to an expanded or released configuration when released from the delivery catheter. In some implementations, the subannular region of the outer frame can be in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and can be transitioned to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
In some embodiments, a delivery and/or retrieval system 180 can facilitate the compression, loading, advancing, delivering, and/or deploying of a prosthetic valve through a delivery catheter of the delivery system and to a desired position relative to a native valve annulus. In some implementations, the delivery and/or retrieval system 180 can include a self-expanding capture element that can extend from an end of a delivery catheter and/or other member of the delivery system to funnel, wrap, and/or at least partially capture the prosthetic valve during or after deployment to facilitate a compression of the valve and an at least partial retrieval thereof.
In some embodiments, a delivery system for side-delivery of a transcatheter prosthetic valve can include a compression device, a loading device, and a delivery device. The compression device defines a lumen extending through a proximal end and a distal end. The perimeter of the lumen at the proximal end being larger than a perimeter of the lumen at the distal end. The loading device defines a lumen extending through a proximal end and a distal end of the loading device. A perimeter of the lumen of the loading device is substantially similar to the perimeter of the lumen at the distal end of the compression device. The proximal end of the loading device is removably coupleable to the compression device. The distal end of the loading device includes a first gate that is movable between an open state and a closed state in which the first gate at least partially occludes the lumen of the loading device. The delivery device has a handle and a delivery catheter extending distally from the handle. The handle and the delivery catheter collectively define a lumen extending through the delivery device. A perimeter of the lumen of the delivery device is substantially similar to the perimeter of the lumen of the loading device. A proximal end of the handle is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state in which the second gate at least partially occludes the lumen of the delivery device.
In some implementations, a method for compressing a prosthetic valve into a delivery configuration for side-delivery to a patient by a delivery catheter can include compressing the prosthetic valve along a lateral axis of the prosthetic valve perpendicular to a central axis of the prosthetic valve, which in turn, is parallel to a fluid flow direction through the prosthetic valve. After compressing, the prosthetic valve is inserted into a proximal end of a compression device. The compression device defines a lumen extending through the proximal end and a distal end. A perimeter of the lumen at the proximal end is larger than a perimeter of the lumen at the distal end. The prosthetic valve is advanced through the lumen of the compression device to compress the prosthetic valve along the central axis. The prosthetic valve in the delivery configuration is transferred from the distal end of the compression device into a loading device coupled to the distal end of the compression device. The loading device defines a lumen having a perimeter that is substantially similar to (i) the perimeter of the lumen at the distal end of the compression device and (ii) a perimeter of a lumen of the delivery catheter.
In some implementations, a method for preparing a side-deliverable prosthetic valve for side-delivery to a patient via a delivery catheter can include compressing the prosthetic valve along a lateral axis of the prosthetic valve perpendicular to a central axis of the prosthetic valve, which in turn, is parallel to a fluid flow direction through the prosthetic valve. After compressing, the prosthetic valve is inserted into a lumen of a compression device. The prosthetic valve is pulled through the lumen of the compression device and into a lumen of a loading device coupled to the compression device via a tether attached to a distal end portion of the prosthetic valve. The prosthetic valve is compressed along the central axis such that the prosthetic valve is in a delivery configuration when in the lumen of the loading device. The tether is removed from the distal end portion of the prosthetic valve and a distal end and a distal end of the loading device is coupled to a delivery device including the delivery catheter.
In some implementations, A method for preparing a side-deliverable prosthetic valve for side-delivery to a patient through a lumen of a delivery catheter included in a delivery device can include compressing the prosthetic valve along a central axis parallel to a fluid flow direction through the prosthetic valve and a lateral axis perpendicular to the central axis to transition the prosthetic valve from an expanded configuration to a delivery configuration. The prosthetic valve in the delivery configuration is advanced into a lumen of a loading device while a first gate at a distal end of the loading device is in a closed state to at least partially occlude the lumen of the loading device. A distal end of the loading device is coupled to a handle of the delivery device while (i) the first gate is in the closed state and (ii) while a second gate at a proximal end of the handle is in a closed state to at least partially occlude a lumen of the handle. The lumen of the delivery catheter is in fluid communication with the lumen of the handle distal to the second gate. After coupling, each of the first gate and the second gate is transitioned from the closed state to an open state.
In some embodiments, an apparatus for selectively engaging a side-deliverable transcatheter prosthetic valve can include a multi-lumen catheter having a distal end and a proximal end. A control portion is coupled to the proximal end of the multi-lumen catheter and a yoke coupled to the distal end of the multi-lumen catheter. A first tether is extendable through a first control arm of the control portion and a first lumen of the multi-lumen catheter, and a portion of the first tether is configured to be looped through a first side of the yoke. A second tether is extendable through a second control arm of the control portion and a second lumen of the multi-lumen catheter, and a portion of the second tether is configured to be looped through a second side of the yoke. A tension member is extendable through a third control arm of the control portion and a third lumen of the multi-lumen catheter, and a portion of the tension member is configured to be removably coupled to a proximal subannular anchoring element of the prosthetic valve.
In some embodiments, a control device can include at least a control catheter having a first tether, a second tether, and a tension member extending therethrough, and a yoke coupled to a distal end of the control catheter. In some implementations, a method of using the control device to selectively control a side-deliverable transcatheter prosthetic valve during at least one of delivery and deployment can include increasing a tension along the first tether and the second tether to secure the yoke against a surface of the prosthetic valve. The prosthetic valve is advanced through a lumen of a delivery catheter while the yoke is secured against the surface of the prosthetic valve. The prosthetic valve is released from a distal end of the delivery catheter. After releasing, a tension along the tension member is increased to transition a proximal subannular anchoring element from a first configuration to a second configuration. The prosthetic valve is seated in an annulus of a native valve in response to a force exerted by the yoke on the surface of the prosthetic valve. After seating the prosthetic valve, the tension along the tension member is released to allow the proximal subannular anchoring element to transition from the second configuration toward the first configuration. The control device is then decoupled from the prosthetic valve.
In some embodiments, a delivery and retrieval system for a side-deliverable prosthetic valve can include a catheter, a capture element, and a control device. The catheter has a distal end and defines a lumen. The prosthetic valve has a delivery configuration for side delivery through the lumen of the catheter and a deployment configuration when released from the distal end of the catheter. The capture element is disposable in the lumen of the catheter in a substantially closed configuration and can be transitioned to an open configuration when advanced beyond the distal end of the catheter. The control device can be at least partially disposed in the lumen of the catheter and can be attached to the prosthetic valve. The control device is operable to (i) exert a distally directed force to advance the prosthetic valve in the delivery configuration through the lumen of the catheter and (ii) exert a proximally directed force to pull the prosthetic valve in the deployment configuration into the distal end of the catheter. The capture element can be extended around at least a portion of the prosthetic valve to transition the prosthetic valve from the deployment configuration to the delivery configuration as the control device pulls the prosthetic valve into the distal end of the catheter.
In some embodiments, a retrieval system for a side-deliverable prosthetic valve can include a control device and a self-expanding capture element. The control device is removably coupleable to the prosthetic valve during delivery and deployment of the prosthetic valve in an annulus of a native heart valve. The self-expanding capture element is extendable from a distal end of a delivery catheter to funnel or wrap at least a portion of the prosthetic valve at least partially deployed in the annulus to facilitate a compression of the prosthetic valve in response to a force exerted by the control device moving the prosthetic valve in a proximal direction toward the delivery catheter.
In some implementations, a method of retrieving a side-deliverable prosthetic heart valve can include extending a self-expanding capture element from a distal end of a catheter disposed in a native atrium of a heart. The capture element is configured to have and/or define a cavity shape when in an extended position. The prosthetic heart valve is pulled into the cavity of the extended capture element to facilitate a compressing of the prosthetic heart valve. The pulling of the prosthetic heart valve into the capture element is operable to transition the capture element from the extended position to or toward a retracted position, in which the prosthetic heart valve is wrapped by the capture element. After wrapping, the prosthetic heart valve that is wrapped (at least partially) by the capture element is pulled into the catheter using a cable.
Any of the prosthetic heart valves described herein can be a relatively low profile, side-deliverable implantable prosthetic heart valve (also referred to herein as “prosthetic valve” or simply, “valve”). Any of the prosthetic valves can be transcatheter prosthetic valves configured to be delivered into a heart via a delivery catheter. The prosthetic valves can have at least an annular outer valve frame and an inner flow control component (e.g., a 2-leaflet or 3-leaflet valve, sleeve, and/or the like) mounted within and/or extending through a central lumen or aperture of the valve frame. The flow control component can be configured to permit blood flow in a first direction through an inflow end of the valve and block blood flow in a second direction, opposite the first direction, through an outflow end of the valve. In addition, the prosthetic valves can include a single anchoring element or multiple anchoring elements configured to anchor the valve in the annulus of a native valve.
Any of the prosthetic valves described herein can be configured to transition between a compressed or delivery configuration for introduction into the body using the delivery catheter, and an expanded or deployed configuration for implanting at a desired location in the body. For example, any of the embodiments described herein can be a balloon-inflated prosthetic valve, a self-expanding prosthetic valve, and/or the like.
Any of the prosthetic valves described herein can be compressible—into the compressed or delivery configuration—in a lengthwise or orthogonal direction relative to the central axis of the flow control component (e.g., along a longitudinal axis) that can allow a large diameter valve (e.g., having a height of about 5-60 mm and a diameter of about 20-80 mm) to be delivered and deployed from the inferior vena cava directly into the annulus of a native mitral or tricuspid valve using, for example, a 24-36 Fr delivery catheter. The longitudinal axis can be substantially parallel to a lengthwise cylindrical axis of the delivery catheter, which can allow deployment of the prosthetic valves without an acute angle of approach common in traditional transcatheter delivery.
Any of the prosthetic valves described herein can have a central axis that is co-axial or at least substantially parallel with blood flow direction through the valve. In some embodiments, the compressed or delivery configuration of the valve is orthogonal to the blood flow direction. In some embodiments, the compressed or delivery configuration of the valve is parallel to or aligned with the blood flow direction. In some embodiment, the valve can be compressed to the compressed or delivery configuration in two directions—orthogonal to the blood flow direction (e.g., laterally) and parallel to the blood flow (e.g., axially). In some embodiments, a long-axis or longitudinal axis is oriented at an intersecting angle of between 45-135 degrees to the first direction when in the compressed or delivery configuration and/or the expanded or deployed configuration.
Any of the prosthetic valves described herein can include an outer support frame that includes a set of compressible wire cells having an orientation and cell geometry substantially orthogonal to the central axis to minimize wire cell strain when the outer support frame is in a delivery configuration (e.g., a compressed configuration, a rolled and compressed configuration, or a folded and compressed configuration).
Any of the outer support frames described herein can have a supra-annular region, a subannular region, and a transannular region coupled therebetween. The supra-annular region can form, for example, an upper collar portion of the outer support frame and can include any number of features configured to engage native tissue, an inner flow control component of the prosthetic valve, and/or a delivery, actuator, and/or retrieval mechanism. The subannular region can form, for example, a distal anchoring element and a proximal anchoring element configured to engage subannular (ventricle) tissue when the prosthetic valve is seated in the native annulus. The transannular region can be coupled between the supra-annular region and the subannular region. The transannular region can form a shape such as a funnel, cylinder, flat cone, or circular hyperboloid when the outer support frame is in an expanded configuration. In some embodiments, the outer support frame is formed from a wire, a braided wire, or a laser-cut wire frame, and is covered with a biocompatible material. The biocompatible material can cover the outer support frame such that an inner surface is covered with pericardial tissue, an outer surface is covered with a woven synthetic polyester material, and/or both the inner surface is covered with pericardial tissue and the outer surface is covered with a woven synthetic polyester material.
Any of the outer support frames described herein can have a side profile of a flat cone shape having an outer diameter R of 40-80 mm, an inner diameter r of 20-60 mm, and a height of 5-60 mm. In some embodiments, an annular support frame has a side profile of an hourglass shape having a top diameter R1 of 40-80 mm, a bottom diameter R2 of 50-70 mm, an internal diameter r of 20-60 mm, and a height of 5-60 mm.
Any of the prosthetic valves described herein can include one or more anchoring element extending from, coupled to, and/or otherwise integral with a portion of a valve frame. For example, any of the prosthetic valves can include a distal anchoring element, which can be used, for example, as a Right Ventricular Outflow Tract (“RVOT”) tab or a Left Ventricular Outflow Tract (“LVOT”) tab. Any of the valves described herein can also include an anchoring element extending from a proximal sided of the valve frame, which can be used, for example, to anchor the valve to proximal subannular tissue of the ventricle. The anchoring elements can include and/or can be formed from a wire loop or wire frame, an integrated frame section, and/or a stent, extending from about 10-40 mm away from the tubular frame. For example, any of the prosthetic valves described herein can include a valve frame having a wire or laser cut subannular region or member that forms a distal and proximal anchoring element.
Any of the prosthetic valves described herein can also include (i) a distal upper (supra-annular) anchoring element extending from, attached to, and/or otherwise integral with a distal upper edge of the valve frame and (ii) a proximal upper (supra-annular) anchoring element extending from, attached to, and/or otherwise integral with a proximal upper edge of the valve frame. The distal and proximal upper anchoring elements can include or be formed from a wire loop or wire frame extending from about 2-20 mm away from the valve frame. In some embodiments, the prosthetic valves described herein can include a wire or laser cut supra-annular region or member that forms the distal and proximal upper anchoring elements. The distal and proximal upper anchoring elements are configured to be positioned into a supra-annular position in contact with and/or adjacent to supra-annular tissue of the atrium. In some implementations, the prosthetic valves described herein can be cinched or at least partially compressed after being seated in a native annulus such that the proximal and distal upper anchoring elements exert a force on supra-annular tissue and the proximal and distal lower anchoring elements exert a force in an opposite direction on subannular tissue, thereby securing the prosthetic valve in the native annulus. Any of the valves described herein can also include an anterior or posterior anchoring element extending from and/or attached to an anterior or posterior side of the valve frame, respectively.
Any of the prosthetic valves described herein can include an inner flow control component that has a leaflet frame with 2-4 flexible leaflets mounted thereon. The 2-4 leaflets are configured to permit blood flow in a first direction through an inflow end of the flow control component and block blood flow in a second direction, opposite the first direction, through an outflow end of the flow control component. The leaflet frame can include two or more panels of diamond-shaped or eye-shaped wire cells made from heat-set shape memory alloy material such as, for example, Nitinol. The leaflet frame can be configured to be foldable along a z-axis (e.g., a longitudinal axis) from a rounded or cylindrical configuration to a flattened cylinder configuration, and compressible along a vertical y-axis (e.g., a central axis) to a compressed configuration. In some implementations, the leaflet frame can include a pair of hinge areas, fold areas, connection points, etc. that can allow the leaflet frame to be folded flat along the z-axis prior to the leaflet frame being compressed along the vertical y-axis. The leaflet frame can be, for example, a single-piece structure with two or more living hinges (e.g., stress concentration riser and/or any suitable structure configured to allow for elastic/nonpermanent deformation of the leaflet frame) or a two-piece structure where the hinge areas are formed using a secondary attachment method (e.g. sutures, fabrics, molded polymer components, etc.)
In some embodiments, the inner flow control component in an expanded configuration forms a shape such as a funnel, cylinder, flat cone, or circular hyperboloid. In some embodiments, the inner flow control component has a leaflet frame with a side profile of a flat cone shape having an outer diameter R of 20-60 mm, an inner diameter r of 10-50 mm, where diameter R is great than diameter r, and a height of 5-60 mm. In some embodiments, the leaflet frame is comprised of a wire, a braided wire, or a laser-cut wire frame. In some embodiments, the leaflet frame can have one or more longitudinal supports integrated into or mounted thereon and selected from rigid or semi-rigid posts, rigid or semi-rigid ribs, rigid or semi-rigid batons, rigid or semi-rigid panels, and combinations thereof.
Any of the prosthetic valves and/or components thereof may be fabricated from any suitable biocompatible material or combination of materials. For example, an outer valve frame, an inner valve frame (e.g., of an inner flow control component), and/or components thereof may be fabricated from biocompatible metals, metal alloys, polymer coated metals, and/or the like. Suitable biocompatible metals and/or metal alloys can include stainless steel (e.g., 316 L stainless steel), cobalt chromium (Co—Cr) alloys, nickel-titanium alloys (e.g., Nitinol®), and/or the like. Moreover, any of the outer or inner frames described herein can be formed from superelastic or shape-memory alloys such as nickel-titanium alloys (e.g., Nitinol®). Suitable polymer coatings can include polyethylene vinyl acetate (PEVA), poly-butyl methacrylate (PBMA), translute Styrene Isoprene Butadiene (SIBS) copolymer, polylactic acid, polyester, polylactide, D-lactic polylactic acid (DLPLA), polylactic-co-glycolic acid (PLGA), and/or the like. Some such polymer coatings may form a suitable carrier matrix for drugs such as, for example, Sirolimus, Zotarolimus, Biolimus, Novolimus, Tacrolimus, Paclitaxel, Probucol, and/or the like.
Some biocompatible synthetic material(s) can include, for example, polyesters, polyurethanes, polytetrafluoroethylene (PTFE) (e.g., Teflon), and/or the like. Where a thin, durable synthetic material is contemplated (e.g., for a covering), synthetic polymer materials such expanded PTFE or polyester may optionally be used. Other suitable materials may optionally include elastomers, thermoplastics, polyurethanes, thermoplastic polycarbonate urethane, polyether urethane, segmented polyether urethane, silicone polyether urethane, polyetheretherketone (PEEK), silicone-polycarbonate urethane, polypropylene, polyethylene, low-density polyethylene (LDPE), high-density polyethylene (HDPE), ultra-high density polyethylene (UHDPE), polyolefins, polyethylene-glycols, polyethersulphones, polysulphones, polyvinylpyrrolidones, polyvinylchlorides, other fluoropolymers, polyesters, polyethylene-terephthalate (PET) (e.g., Dacron), Poly-L-lactic acids (PLLA), polyglycolic acid (PGA), poly(D, L-lactide/glycolide) copolymer (PDLA), silicone polyesters, polyamides (Nylon), PTFE, elongated PTFE, expanded PTFE, siloxane polymers and/or oligomers, and/or polylactones, and block co-polymers using the same.
Any of the outer valve frames, inner valve frames (e.g., of the flow control components), and/or portions or components thereof can be internally or externally covered, partially or completely, with a biocompatible material such as pericardium. A valve frame may also be optionally externally covered, partially or completely, with a second biocompatible material such as polyester or Dacron®. Disclosed embodiments may use tissue, such as a biological tissue that is a chemically stabilized pericardial tissue of an animal, such as a cow (bovine pericardium), sheep (ovine pericardium), pig (porcine pericardium), or horse (equine pericardium). Preferably, the tissue is bovine pericardial tissue. Examples of suitable tissue include that used in the products Duraguard®, Peri-Guard®, and Vascu-Guard®, all products currently used in surgical procedures, and which are marketed as being harvested generally from cattle less than 30 months old.
Any method for manufacturing prosthetic valves described herein can include using additive or subtractive metal or metal-alloy manufacturing to produce, for example, a compressible/expandable outer support frame and/or a compressible/expandable inner leaflet frame. Additive metal or metal-alloy manufacturing can include but is not limited to 3D printing, direct metal laser sintering (powder melt), and/or the like. Subtractive metal or metal-alloy manufacturing can include but is not limited to photolithography, laser sintering/cutting, CNC machining, electrical discharge machining, and/or the like. Moreover, any of the manufacturing processes described herein can include forming and/or setting (e.g., heat setting) a cut or machined workpiece into any suitable shape, size, and/or configuration. For example, any of the outer support frames and/or inner leaflet frames described herein can be laser cut from one or more workpieces and heat set into a desired shape, size, and/or configuration. Moreover, any of the frames described herein can include multiple independent components that are formed into desired shapes and coupled together to form the frames.
In some embodiments, a process of manufacturing can further include mounting 2-4 flexible leaflets to the inner leaflet frame to collectively form a flow control component, mounting the flow control component within the outer support frame, and/or covering at least a portion of the outer support frame with a pericardium material or similar biocompatible material.
Any of the delivery systems described herein can be configured to deliver a side-deliverable transcatheter prosthetic valve to a target location within a patient (e.g., to or into an annulus of a native heart valve). Such delivery systems can include one or more of the following components: (i) a dilator for dilating at least a portion of an arterial pathway to the heart such as the femoral artery, the IVC, and/or the SVC, (ii) a compression device such as a funnel or the like for compressing the prosthetic valve to a delivery configuration, (iii) a loader, capsule, chamber, etc., for receiving the prosthetic valve in the delivery configuration, (iv) a delivery device including a handle and a delivery catheter extending therefrom for delivering the prosthetic valve in the delivery configuration to a space within the heart such as an atrium, (v) a control device, controller, and/or actuator such as a multi-lumen control catheter or the like for engaging and/or actuating one or more portions of the prosthetic valve, and (vi) a guidewire catheter for coupling to the prosthetic valve and for receiving a guidewire allowing the prosthetic valve to be advanced along the guidewire during delivery and/or deployment.
Any of the delivery systems described herein can include a delivery catheter for side-delivery of a side-deliverable prosthetic valve. The delivery catheter can include an outer shaft having an outer proximal end, an outer distal end, and an outer shaft lumen, wherein the outer distal end is closed with an atraumatic ball mounted thereon. The outer shaft lumen has an inner diameter of 8-10 mm sized for passage of a side delivered transcatheter prosthetic valve (e.g., a prosthetic tricuspid valve and/or a prosthetic mitral valve) therethrough.
Any of the delivery systems described herein can include a delivery catheter, a control catheter, and/or other suitable portion that includes one or more members, components, features, and/or the like configured to facilitate at least partial retrieval of the valve from an annulus of a native heart valve. For example, such a delivery system can include, for example, a self-expanding capture element that can be placed in an extended position to at least partially surround and/or capture a portion of the prosthetic valve. In some implementations, the prosthetic valve can be pulled and/or drawn into the self-expanding capture element by virtue of a control catheter and/or other component attached to the prosthetic valve during delivery and/or deployment. As such, the self-expanding capture element can surround and/or capture at least a portion of the prosthetic valve, which in turn, can facilitate a transitioning of the prosthetic valve from an at least partially expanded configuration to an at least partially compressed configuration, allowing the prosthetic valve to be at least partially retracted into the delivery catheter used to deliver the prosthetic valve.
Any method for delivering and deploying a prosthetic valve in an annulus of a native heart valve can include removably coupling a prosthetic valve or an outer frame thereof to a portion of a delivery system. The prosthetic valve is placed into a delivery configuration, loaded into a delivery device including a delivery catheter, and advanced through a lumen of a delivery catheter. The prosthetic valve can then be released from a distal end of the delivery catheter, which is disposed in an atrium of the heart. In some implementations, after releasing the prosthetic valve, a proximal anchoring element of a subannular member of the prosthetic valve can be placed in a first configuration and the prosthetic valve is seated in the annulus of the native heart valve while the proximal anchoring element is in the first configuration. The proximal anchoring element can then be transitioned from the first configuration to a second configuration after seating the prosthetic valve in the annulus. In some implementations, the method for delivering and/or deploying the prosthetic valve can optionally include retrieving at least a portion of the prosthetic valve from the annulus to allow for a repositioning and/or reseating of at least a portion of the prosthetic valve.
Any method for delivering and/or deploying prosthetic heart valves described herein can include orthogonal delivery of the prosthetic heart valve to a native annulus of a human heart that includes at least one of (i) advancing a delivery catheter to the tricuspid valve or pulmonary artery of the heart through the inferior vena cava (IVC) via the femoral vein, (ii) advancing to the tricuspid valve or pulmonary artery of the heart through the superior vena cava (SVC) via the jugular vein, or (iii) advancing to the mitral valve of the heart through a trans-atrial approach (e.g., fossa ovalis or lower), via the IVC-femoral or the SVC jugular approach; and (iv) delivering and/or deploying the prosthetic heart valve to the native annulus by releasing the valve from the delivery catheter.
Any method for delivering prosthetic valves described herein can include placing the prosthetic valves in a delivery configuration. The delivery configuration can include at least one of (i) compressing the valve along a central vertical axis to reduce a vertical dimension of the valve from top to bottom to place the valve in the delivery configuration, (ii) flattening the valve into two parallel panels that are substantially parallel to the long-axis to place the valve in the delivery configuration, or (iii) flattening the valve into two parallel panels that are substantially parallel to the long-axis and then compressing the valve along a central vertical axis to reduce a vertical dimension of the valve from top to bottom to place the valve in the delivery configuration.
Any method for delivering prosthetic valves described herein can include orthogonal delivery of the prosthetic valve to a desired location in the body that includes advancing a delivery catheter to the desired location in the body and delivering the prosthetic valve to the desired location in the body by releasing the valve from the delivery catheter. The valve is in a compressed or delivery configuration when in the delivery catheter and transitions to an expanded or released configuration when released from the delivery catheter.
Any method for delivering prosthetic valves described herein can include releasing the valve from the delivery catheter by (i) pulling the valve out of the delivery catheter using a pulling member (e.g., a wire or rod) that is releasably connected to a sidewall, a drum or collar, and/or an anchoring element (e.g., a distal anchoring element), wherein advancing the pulling member away from the delivery catheter pulls the valve out of the delivery catheter, or (ii) pushing the valve out of the delivery catheter using a pushing member (e.g., a wire, rod, catheter, delivery member, yoke, etc.) that is releasably connected to a sidewall, a drum or collar, and/or an anchoring element (e.g., a proximal and/or distal anchoring element), wherein advancing the pushing member out of a distal end of the delivery catheter pushes the valve out of the delivery catheter. Moreover, releasing the valve from the delivery catheter allows the valve to transition and/or expand from its delivery configuration to an expanded and/or deployment configuration.
Any method for delivering and/or deploying prosthetic valves described herein can include releasing the valve from a delivery catheter while increasing blood flow during deployment of the valve by (i) partially releasing the valve from the delivery catheter to establish blood flow around the partially released valve and blood flow through the flow control component; (ii) completely releasing the valve from the delivery catheter while maintaining attachment to the valve to transition to a state with increased blood flow through the flow control component and decreased blood flow around the valve; (iii) deploying the valve into a final mounted or seated position in a native annulus to transition to a state with complete blood flow through the flow control component and minimal or no blood flow around the valve; and (iv) disconnecting and withdrawing a positioning catheter, pulling or pushing wire or rod, delivery catheter, actuator, and/or other suitable portion of a delivery system.
In some implementations, prior to the disconnecting and withdrawing, the method optionally can include transitioning the valve to a secured or cinched state via an actuator or portion of a delivery system such that the valve contacts annular tissue to secure the valve in the native annulus. In some implementations, prior to the disconnecting and withdrawing, the method optionally can include retrieving, at least in part, the valve from the annulus and repositioning at least a portion of the valve in the annulus. In some implementations, the retrieving can include retrieving and/or retracting at least a portion of the valve into the delivery catheter.
Any method for delivering and/or deploying prosthetic valves described herein can include positioning the valve or a portion thereof in a desired position relative to the native tissue. For example, the method can include positioning a distal anchoring tab of the heart valve prosthesis into a ventricular outflow tract of the left or right ventricle. In some embodiments, the method can further include positioning an upper distal anchoring tab into a supra-annular position, where the upper distal anchoring tab provides a supra-annular downward force in the direction of the ventricle and the distal anchoring tab (e.g., the lower distal anchoring tab) provides a subannular upward force in the direction of the atrium. In some implementations, the method can include partially inserting the prosthetic valve into the annulus such that a distal portion thereof contact native annular tissue while a proximal portion of the prosthetic valve is at least partially compressed and disposed in the delivery catheter. In some embodiments, the method can include rotating the heart valve prosthesis, using a steerable catheter, a yoke, a set of tethers, an actuator, and/or any other portion of a delivery system (or combinations thereof), along an axis parallel to the plane of the valve annulus. In some embodiments, the method can include transitioning one or more anchoring elements into a desired position and/or state to engage native tissue surrounding at least a portion of the annulus. In some implementations, one or more tissue anchors may be attached to the valve and to native tissue to secure the valve in a desired position.
Any method for at least partially retrieving prosthetic valves described herein can include (i) extending a self-expanding capture element from a distal end of a delivery catheter that is disposed in an atrium of a heart, wherein the capture element is configured to have a cavity shape when in an extended position, and (ii) pulling the heart valve into the cavity of the extended capture element to facilitate compression of the heart valve to or toward its delivery (compressed) configuration, wherein pulling the heart valve into the capture element transitions the capture element from the extended position to a retracted position, wherein the heart valve is encompassed by the capture element in the retracted position, and wherein the heart valve-capture element combination is pulled into the delivery and/or retrieval catheter (e.g., using a cable, control catheter, actuator, and/or any other suitable portion of a delivery and retrieval system. In some implementations, the method optionally can include pre-compressing the valve by (a) suturing a proximal subannular anchoring element against an underside of an atrial or supra-annular collar or member, or (b) pinching proximal sidewall hips of the prosthetic valve, or (c) both, prior to pulling the heart valve into the cavity of the capture element, and subsequently into the delivery and/or retrieval catheter.
Any of the prosthetic valves (or components, features, and/or aspects thereof), delivery systems, methods of manufacturing, methods of delivery, methods of deployment, and/or methods of retrieval described herein can be similar to and/or substantially the same as any of those described in International Patent Application No. PCT/US2019/051087, filed Sep. 19, 2019, entitled “Transcatheter Deliverable Prosthetic Heart Valves and Method of Delivery” (referred to herein as “the '957 PCT”); International Patent Application No. PCT/US2019/067010, filed Dec. 18, 2019, entitled “Transcatheter Deliverable Prosthetic Heart Valves and Methods of Delivery” (referred to herein as “the '010 PCT”); International Patent Application No. PCT/US2020/015231, filed Jan. 27, 2020, entitled “Collapsible Inner Flow Control Component for Side-Deliverable Transcatheter Heart Valve Prosthesis” (referred to herein as “the '231 PCT”); International Patent Application No. PCT/US2020/031390, filed May 4, 2020, entitled “Cinch Device and Method for Deployment of a Side-Delivered Prosthetic Heart Valve in a Native Annulus,” (referred to herein as “the '390 PCT”); and/or International Patent Application No. PCT/US2020/045108, filed Aug. 6, 2020, entitled “Side-Deliverable Transcatheter Prosthetic Valves and Methods for Delivering and Anchoring the Same” (referred to herein as “the '108 PCT”), the disclosures of which are incorporated herein by reference in their entireties.
Likewise, any of the prosthetic valves (or components, features, and/or aspects thereof), delivery systems, methods of manufacturing, methods of delivery, methods of deployment, and/or methods of retrieval described herein can be similar to and/or substantially the same as any of those described in U.S. Provisional Patent Application No. 62/889,327 (referred to herein as “the '327” Provisional”); U.S. Provisional Patent Application No. 62/891,964 (referred to herein as “the '964 Provisional”); U.S. Provisional Patent Application No. 63/027,345 (referred to herein as “the '345 Provisional”); and/or U.S. Provisional Patent Application No. 63/038,807 (referred to herein as “the '807 Provisional”); to which this application claims priority to and the benefit of and the disclosures of which have been incorporated above by reference in their entireties.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the full scope of the claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
In general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” etc.). Similarly, the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers (or fractions thereof), steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers (or fractions thereof), steps, operations, elements, components, and/or groups thereof. As used in this document, the term “comprising” means “including, but not limited to.”
As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items. It should be understood that any suitable disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
All ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof unless expressly stated otherwise. Any listed range should be recognized as sufficiently describing and enabling the same range being broken down into at least equal subparts unless expressly stated otherwise. As will be understood by one skilled in the art, a range includes each individual member.
The term “valve prosthesis,” “prosthetic heart valve,” and/or “prosthetic valve” can refer to a combination of a frame and a leaflet or flow control structure or component, and can encompass both complete replacement of an anatomical part (e.g., a new mechanical valve replaces a native valve), as well as medical devices that take the place of and/or assist, repair, or improve existing anatomical parts (e.g., the native valve is left in place).
Prosthetic valves disclosed herein can include a member (e.g., a frame) that can be seated within a native valve annulus and can be used as a mounting element for a leaflet structure, a flow control component, or a flexible reciprocating sleeve or sleeve-valve. It may or may not include such a leaflet structure or flow control component, depending on the embodiment. Such members can be referred to herein as an “annular support frame,” “tubular frame,” “wire frame,” “valve frame,” “flange,” “collar,” and/or any other similar terms.
The term “flow control component” can refer in a non-limiting sense to a leaflet structure having 2-, 3-, 4-leaflets of flexible biocompatible material such a treated or untreated pericardium that is sewn or joined to an annular support frame, to function as a prosthetic heart valve. Such a valve can be a heart valve, such as a tricuspid, mitral, aortic, or pulmonary, that is open to blood flowing during diastole from atrium to ventricle, and that closes from systolic ventricular pressure applied to the outer surface. Repeated opening and closing in sequence can be described as “reciprocating.” The flow control component is contemplated to include a wide variety of (bio)prosthetic artificial heart valves. Bioprosthetic pericardial valves can include bioprosthetic aortic valves, bioprosthetic mitral valves, bioprosthetic tricuspid valves, and bioprosthetic pulmonary valves.
Any of the disclosed valve embodiments may be delivered by a transcatheter approach. The term “transcatheter” is used to define the process of accessing, controlling, and/or delivering a medical device or instrument within the lumen of a catheter that is deployed into a heart chamber (or other desired location in the body), as well as an item that has been delivered or controlled by such as process. Transcatheter access is known to include cardiac access via the lumen of the femoral artery and/or vein, via the lumen of the brachial artery and/or vein, via lumen of the carotid artery, via the lumen of the jugular vein, via the intercostal (rib) and/or sub-xiphoid space, and/or the like. Moreover, transcatheter cardiac access can be via the inferior vena cava (IVC), superior vena cava (SVC), and/or via a trans-atrial (e.g., fossa ovalis or lower). Transcatheter can be synonymous with transluminal and is functionally related to the term “percutaneous” as it relates to delivery of heart valves. As used herein, the term “lumen” can refer to the inside of a cylinder or tube. The term “bore” can refer to the inner diameter of the lumen.
The mode of cardiac access can be based at least in part on a “body channel,” used to define a blood conduit or vessel within the body, and the particular application of the disclosed embodiments of prosthetic valves can determine the body channel at issue. An aortic valve replacement, for example, would be implanted in, or adjacent to, the aortic annulus. Likewise, a tricuspid or mitral valve replacement would be implanted at the tricuspid or mitral annulus, respectively. While certain features described herein may be particularly advantageous for a given implantation site, unless the combination of features is structurally impossible or excluded by claim language, any of the valve embodiments described herein could be implanted in any body channel.
The term “expandable” as used herein may refer to a prosthetic heart valve or a component of the prosthetic heart valve capable of expanding from a first, delivery size or configuration to a second, implantation size or configuration. An expandable structure, therefore, is not intended to refer to a structure that might undergo slight expansion, for example, from a rise in temperature or other such incidental cause, unless the context clearly indicates otherwise. Conversely, “non-expandable” should not be interpreted to mean completely rigid or a dimensionally stable, as some slight expansion of conventional “non-expandable” heart valves, for example, may be observed.
The prosthetic valves disclosed herein and/or components thereof are generally capable of transitioning between two or more configurations, states, shapes, and/or arrangements. For example, prosthetic valves described herein can be “compressible” and/or “expandable” between any suitable number of configurations. Various terms can be used to describe or refer to these configurations and are not intended to be limiting unless the context clearly states otherwise. For example, a prosthetic valve can be described as being placed in a “delivery configuration,” which may be any suitable configuration that allows or enables delivery of the prosthetic valve. Examples of delivery configurations can include a compressed configuration, a folded configuration, a rolled configuration, and/or similar configuration or any suitable combinations thereof. Similarly, a prosthetic valve can be described as being placed in an “expanded configuration,” which may be any suitable configuration that is not expressly intended for delivery of the prosthetic valve. Examples of expanded configuration can include a released configuration, a relaxed configuration, a deployed configuration, a non-delivery configuration, and/or similar configurations or any suitable combinations thereof. Some prosthetic valves described herein and/or components or features thereof can have a number of additional configurations that can be associated with various modes, levels, states, and/or portions of actuation, deployment, engagement, etc. Examples of such configurations can include an actuated configuration, a seated configuration, a secured configuration, an engaged configuration, and/or similar configurations or any suitable combinations thereof. While specific examples are provided above, it should be understood that they are not intended to be an exhaustive list of configurations. Other configurations may be possible. Moreover, various terms can be used to describe the same or substantially similar configurations and thus, the use of particular terms are not intended to be limiting and/or to the exclusion of other terms unless the terms and/or configurations are mutually exclusive, or the context clearly states otherwise.
In general, traditional delivery of prosthetic valves can be such that a central cylinder axis of the valve is substantially parallel to a lengthwise axis of a delivery catheter used to deliver the valve. Typically, the valves are compressed in a radial direction relative to the central cylinder axis and advanced through the lumen of the delivery catheter. The valves are deployed from the end of the delivery catheter and expanded outwardly in a radial direction from the central cylinder axis. The delivery orientation of the valve generally means that the valve is completely released from the delivery catheter while in the atrium of the heart and reoriented relative to the annulus, which in some instances, can limit a size of the valve.
The prosthetic valves described herein are configured to be delivered via side or orthogonal delivery techniques, unless clearly stated otherwise. As used herein the terms “side-delivered,” “side-delivery,” “orthogonal delivery,” “orthogonally delivered,” and/or so forth can be used interchangeably to describe such a delivery method and/or a valve delivered using such a method. Orthogonal delivery of prosthetic valves can be such that the central cylinder axis of the valve is substantially orthogonal to the lengthwise axis of the delivery catheter. With orthogonal delivery, the valves are compressed (or otherwise reduced in size) in a direction substantially parallel to the central cylinder axis and/or in a lateral direction relative to the central cylinder axis. As such, a lengthwise axis (e.g., a longitudinal axis) of an orthogonally delivered valve is substantially parallel to the lengthwise axis of the delivery catheter. In other words, an orthogonally delivered prosthetic valve is compressed and/or delivered at a roughly 90-degree angle compared to traditional processes of compressing and delivering transcatheter prosthetic valves. Moreover, in some instances, the orientation of orthogonally delivered valves relative to the annulus can allow a distal portion of the valve to be at least partially inserted into the annulus of the native heart valve while the proximal portion of the valve, at least in part, remains in the delivery catheter, thereby avoiding at least some of the size constraints faced with some know traditional delivery techniques. Examples of prosthetic valves configured to be orthogonally delivered and processes of delivering such valves are described in detail in the '957 PCT and/or the '010 PCT incorporated by reference hereinabove.
Mathematically, the term “orthogonal” refers to an intersecting angle of 90 degrees between two lines or planes. As used herein, the term “substantially orthogonal” refers to an intersecting angle of 90 degrees plus or minus a suitable tolerance. For example, “substantially orthogonal” can refer to an intersecting angle ranging from 75 to 105 degrees.
The embodiments herein, and/or the various features or advantageous details thereof, are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well-known components and processing techniques are omitted so as to not unnecessarily obscure the embodiments herein. Like numbers refer to like elements throughout.
A discussion of various embodiments, components, and/or features of a prosthetic valve is followed by a discussion of delivery and/or retrieval system 180s used to delivery, deploy, and/or at least partially retrieve such prosthetic valves. The examples and/or embodiments described herein are intended to facilitate an understanding of structures, functions, and/or aspects of the embodiments, ways in which the embodiments may be practiced, and/or to further enable those skilled in the art to practice the embodiments herein. Similarly, methods and/or ways of using the embodiments described herein are provided by way of example only and not limitation. Specific uses described herein are not provided to the exclusion of other uses unless the context expressly states otherwise. For example, any of the prosthetic valves described herein can be used to replace a native valve of a human heart including, for example, a mitral valve, a tricuspid valve, an aortic valve, and/or a pulmonary valve. While some prosthetic valves are described herein in the context of replacing a native mitral valve or a native tricuspid valve, it should be understood that such a prosthetic valve can be used to replace any native valve unless expressly stated otherwise or unless one skilled in the art would clearly recognize that one or more components and/or features would otherwise make the prosthetic valve incompatible for such use. Accordingly, specific examples, embodiments, methods, and/or uses described herein should not be construed as limiting the scope of the inventions or inventive concepts herein. Rather, examples and embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concepts to those skilled in the art.
The transcatheter prosthetic valve 100 (also referred to herein as “prosthetic valve” or simply “valve”) is compressible and expandable in at least one direction relative to a long-axis 102 of the valve 100 (also referred to herein as “horizontal axis,” “longitudinal axis,” or “lengthwise axis”). The valve 100 is compressible and expandable between an expanded configuration (
In some embodiments, the valve 100 (and/or at least a portion thereof) may start in a roughly tubular configuration and may be heat-shaped and/or otherwise formed into any desired shape. In some embodiments, the valve 100 can include an upper atrial cuff or flange for atrial sealing, a lower ventricle cuff or flange for ventricular sealing, and a transannular section or region (e.g., a body section, a tubular section, a cylindrical section, etc.) disposed therebetween. The transannular region can have an hourglass cross-section for about 60-80% of the circumference to conform to the native annulus along the posterior and anterior annular segments while remaining substantially vertically flat along 20-40% of the annular circumference to conform to the septal annular segment. While the valve 100 is shown in
For example, the valve 100 can be centric (e.g., radially symmetrical relative to a central y-axis 104), or can be eccentric (e.g., radially asymmetrical relative to the central y-axis axis 104). In some eccentric embodiments, the valve 100, or an outer frame thereof, may have a complex shape determined by the anatomical structures where the valve 100 is being mounted. For example, in some instances, the valve 100 may be deployed in the tricuspid annulus having a circumference in the shape of a rounded ellipse with a substantially vertical septal wall, and which is known to enlarge in disease states along an anterior-posterior line. In some instances, the valve 100 may be deployed in the mitral annulus (e.g., near the anterior leaflet) having a circumference in the shape of a rounded ellipse with a substantially vertical septal wall, and which is known to enlarge in disease states. As such, the valve 100 can have a complex shape that determined, at least in part, by the native annulus and/or a disease state of the native valve. For example, in some such embodiments, the valve 100 or the outer frame thereof may have a D-shape (viewed from the top) so the flat portion can be matched to the anatomy in which the valve 100 will be deployed.
As shown, the valve 100 generally includes an annular support frame 110 and a flow control component 150. In addition, the valve 100 and/or at least the annular support frame 110 of the valve 100 can include and/or can couple to an actuator 170 and/or a delivery system interface 180. In some implementations, the valve 100 and/or aspects or portions thereof can be similar to and/or substantially the same as the valves (and/or the corresponding aspects or portions thereof) described in detail in the '957 PCT, the '010 PCT, the '231 PCT, the '390 PCT, the '108 PCT, the '327 Provisional, the '964 Provisional, the '345 Provisional, and/or the '807 Provisional incorporated by reference hereinabove. Accordingly, certain aspects, portions, and/or details of the valve 100 may not be described in further detail herein.
The annular support frame 110 (also referred to herein as “tubular frame,” “valve frame,” “wire frame,” “outer frame,” or “frame”) can have a supra-annular region 120, a subannular region 130, and a transannular region 112, disposed and/or coupled therebetween. In some embodiments, the supra-annular region 120, the subannular region 130, and the transannular region 112 can be separate, independent, and/or modular components that are coupled to collectively form the frame 110. In some implementations, such a modular configuration can allow the frame 110 to be adapted to a given size and/or shape of the anatomical structures where the valve 100 is being mounted. For example, one or more of the supra-annular region(s) 120, the subannular region 130, and/or the transannular region 112 can be designed and/or adapted so that that the support frame has any desirable height, outer diameter, and/or inner diameter such as any of those described above. Moreover, such a modular configuration can allow the frame 110 to bend, flex, compress, fold, roll, and/or otherwise reconfigure without plastic or permanent deformation thereof. For example, the frame 110 is compressible to a compressed configuration for delivery and when released it is configured to return to its original shape (uncompressed or expanded configuration).
The support frame 110 and/or the supra-annular region 120, subannular region 130, and/or transannular region 112 can be formed from or of any suitable material. In some embodiments, the supra-annular region 120, the subannular region 130, and the transannular region 112 can be formed from or of a shape-memory or superelastic metal, metal alloy, plastic, and/or the like. For example, the supra-annular region 120, the subannular region 130, and the transannular region 112 can be formed from or of Nitinol or the like. Moreover, the supra-annular region 120, the subannular region 130, and the transannular region 112 can be coupled to from a wire frame portion of the support frame 110, which in turn, is covered by a biocompatible material such as, for example, pericardium tissue (e.g., Duraguard®, Peri-Guard®, Vascu-Guard®, etc.), polymers (e.g., polyester, Dacron®, etc.), and/or the like, as described above.
The supra-annular region 120 of the frame 110 can be and/or can form, for example, a cuff or collar that can be attached or coupled to an upper edge or upper portion of the transannular region 112, as described in further detail herein. When the valve 100 is deployed within a human heart, the supra-annular region 120 can be an atrial collar that is shaped to conform to the native deployment location. In a tricuspid and/or mitral valve replacement, for example, the supra-annular region 120 collar can have various portions configured to conform to the native valve and/or a portion of the atrial floor surrounding the tricuspid and/or mitral valve, respectively. In some implementations, the supra-annular region 120 can be deployed on the atrial floor to direct blood from the atrium into the flow control component 150 of the valve 100 and to seal against blood leakage (perivalvular leakage) around the frame 110.
In some embodiments, the supra-annular region 120 can be a wire frame that is laser cut out of any suitable material. In some embodiments, the supra-annular region 120 can be formed from a shape-memory or superelastic material such as, for example, Nitinol. In some embodiments, the supra-annular region 120 can be laser cut from a sheet of a shape-memory metal alloy such as Nitinol and, for example, heat-set into a desired shape and/or configuration. In some embodiments, forming the supra-annular region 120 in such a manner can allow the supra-annular region 120 to bend, flex, fold, compress, and/or otherwise reconfigure substantially without plastically deforming and/or without fatigue that may result in failure or breaking of one or more portions thereof. Moreover, the wire frame of the supra-annular region 120 can be covered by any suitable biocompatible material such as any of those described above.
As shown in
Although not shown in
The subannular region 130 of the frame 110 can be and/or can form, for example, a cuff or collar that can be attached or coupled to a lower edge or upper portion of the transannular region 112, as described in further detail herein. When the valve 100 is deployed within a human heart, the subannular region 130 can be a ventricular collar that is shaped to conform to the native deployment location. In a tricuspid and/or mitral valve replacement, for example, the subannular region 130 collar can have various portions configured to conform to the native valve and/or a portion of the ventricular ceiling surrounding the tricuspid and/or mitral valve, respectively. In some implementations, the subannular region 130 or at least a portion thereof can engage the ventricular ceiling surrounding the native annulus to secure the valve 100 in the native annulus, to prevent dislodging of the valve 100, to sandwich or compress the native annulus or adjacent tissue between the supra-annular region 120 and the subannular region 130, and/or to seal against blood leakage (perivalvular leakage and/or regurgitation during systole) around the frame 110.
In some embodiments, the subannular region 130 can be a wire frame that is laser cut out of any suitable material. In some embodiments, the subannular region 130 can be formed from a shape-memory or superelastic material such as, for example, Nitinol. In some embodiments, the subannular region 130 can be laser cut from a sheet of a shape-memory metal alloy such as Nitinol and, for example, heat-set into a desired shape and/or configuration. In some embodiments, forming the subannular region 130 in such a manner can allow the subannular region 130 to bend, flex, fold, compress, and/or otherwise reconfigure substantially without plastically deforming and/or without fatigue that may result in failure or breaking of one or more portions thereof. Moreover, the wire frame of the subannular region 130 can be covered by any suitable biocompatible material such as any of those described above.
The subannular region 130 can be shaped and/or formed to include any number of features configured to engage native tissue, one or more other portions of the valve 100, and/or the actuator 170. For example, in some embodiments, the subannular region 130 can include and/or can form a distal portion having a distal anchoring element 132 and a proximal portion having a proximal anchoring element 134. In some embodiments, the subannular region 130 can include and/or can form any other suitable anchoring element (not shown in
In some embodiments, the distal anchoring element 132 can optionally include a guidewire coupler configured to selectively engage and/or receive a portion of a guidewire or a portion of a guidewire assembly. The guidewire coupler is configured to allow a portion of the guidewire to extend through an aperture of the guidewire coupler, thereby allowing the valve 100 to be advanced over or along the guidewire during delivery and deployment. In some embodiments, the guidewire coupler can selectively allow the guidewire to be advanced therethrough while blocking or preventing other elements and/or components such as a pusher or the like.
The anchoring elements 132 and/or 134 of the subannular region 130 can be configured to engage a desired portion of the native tissue to mount the valve 100 and/or the support frame 110 to the annulus of the native valve in which it is deployed. For example, in some implementations, the distal anchoring element 132 can be a projection or protrusion extending from the subannular region 130 and into a RVOT or a LVOT. In such implementations, the distal anchoring element 132 can be shaped and/or biased such that the distal anchoring element 132 exerts a force on the subannular tissue operable to at least partially secure the distal end portion of the valve 100 in the native annulus. In some implementations, the proximal anchoring element 134 can be configured to engage subannular tissue on a proximal side of the native annulus to aid in the securement of the valve 100 in the annulus.
In some implementations, at least the proximal anchoring element 134 can be configured to transition, move, and/or otherwise reconfigure between a first configuration in which the proximal anchoring element 134 extends from the subannular region 130 a first amount or distance and a second configuration in which the proximal anchoring element 134 extends from the subannular region 130 a second amount or distance. For example, in some embodiments, the proximal anchoring element 134 can have a first configuration in which the proximal anchoring element 134 is in a compressed, contracted, retracted, undeployed, folded, and/or restrained state (e.g., a position that is near, adjacent to, and/or in contact with the transannular region 112 and/or the supra-annular region 120 of the support frame 110), and a second configuration in which the proximal anchoring element 134 is in an expanded, extended, deployed, unfolded, and/or unrestrained state (e.g., extending away from the transannular region 112). Moreover, in some implementations, the proximal anchoring element 134 can be transitioned in response to actuation of the actuator 170, as described in further detail herein.
In some implementations, the proximal anchoring element 134 can be transitioned from the first configuration to the second configuration during deployment to selectively engage native tissue, chordae, trabeculae, annular tissue, leaflet tissue, and/or any other anatomic structures to aid in the securement of the valve 100 in the native annulus. The proximal anchoring element 134 (and/or the distal anchoring element 132) can include any suitable feature, surface, member, etc. configured to facilitate the engagement between the proximal anchoring element 134 (and/or the distal anchoring element 132) and the native tissue. For example, in some embodiments, the proximal anchoring element 134 can include one or more features configured to engage and/or become entangled in the native tissue, chordae, trabeculae, annular tissue, leaflet tissue, and/or any other anatomic structures when in the second configuration, as described in further detail herein with reference to specific embodiments.
The transannular region 112 of the support frame 110 is disposed between the supra-annular region 120 and the subannular region 130. In some embodiments, the transannular region 112 can be coupled to each of the supra-annular region 120 and the subannular region 130 such that a desired amount of movement and/or flex is allowed therebetween (e.g., welded, bonded, sewn, bound, and/or the like). For example, in some implementations, the transannular region 112 and/or portions thereof can be sewn to each of the supra-annular region 120 and the subannular region 130 (and/or portions thereof).
The transannular region 112 can be shaped and/or formed into a ring, a cylindrical tube, a conical tube, D-shaped tube, and/or any other suitable annular shape. In some embodiments, the transannular region 112 may have a side profile of a flat-cone shape, an inverted flat-cone shape (narrower at top, wider at bottom), a concave cylinder (walls bent in), a convex cylinder (walls bulging out), an angular hourglass, a curved, graduated hourglass, a ring or cylinder having a flared top, flared bottom, or both. Moreover, the transannular region 112 can form and/or define an aperture or central channel 114 that extends along the central axis 104 (e.g., the y-axis). The central channel 114 (e.g., a central axial lumen or channel) can be sized and configured to receive the flow control component 150 across a portion of a diameter of the central channel 114. In some embodiments, the transannular region 112 can have a shape and/or size that is at least partially based on a size, shape, and/or configuration of the supra-annular region 120 and/or subannular region 130 of the support frame 110, and/or the native annulus in which it is configured to be deployed. For example, the transannular region 112 can have an outer circumference surface for engaging native annular tissue that may be tensioned against an inner aspect of the native annulus to provide structural patency to a weakened native annular ring.
In some embodiments, the transannular region 112 can be a wire frame that is laser cut out of any suitable material. In some embodiments, the transannular region 112 can be formed from a shape-memory or superelastic material such as, for example, Nitinol. In some embodiments, the transannular region 112 can be laser cut from a sheet of a shape-memory metal alloy such as Nitinol and, for example, heat-set into a desired shape and/or configuration. Although not shown in
As described above with reference to the supra-annular region 120 and the subannular region 130, the wire frame of the transannular region 112 can be covered by any suitable biocompatible material such as any of those described above. In some implementations, the wire frames of the supra-annular region 120, transannular region 112, and subannular region 130 can be flexibly coupled (e.g., sewn) to form a wire frame portion of the support frame 110, which in turn, is covered in the biocompatible material. Said another way, the supra-annular region 120, the transannular region 112, and the subannular region 130 can be covered with the biocompatible material prior to being coupled or after being coupled. In embodiments in which the wire frames are covered after being coupled, the biocompatible material can facilitate and/or support the coupling therebetween.
Although not shown in
The flow control component 150 can refer in a non-limiting sense to a device for controlling fluid flow therethrough. In some embodiments, the flow control component 150 can be a leaflet structure having 2-leaflets, 3-leaflets, 4-leaflets, or more, made of flexible biocompatible material such a treated or untreated pericardium. The leaflets can be sewn or joined to a support structure such as an inner frame, which in turn, can be sewn or joined to the outer frame 110. The leaflets can be configured to move between an open and a closed or substantially sealed state to allow blood to flow through the flow control component 150 in a first direction through an inflow end of the valve 100 and block blood flow in a second direction, opposite to the first direction, through an outflow end of the valve 100. For example, the flow control component 150 can be configured such that the valve 100 functions, for example, as a heart valve, such as a tricuspid valve, mitral valve, aortic valve, or pulmonary valve, that can open to blood flowing during diastole from atrium to ventricle, and that can close from systolic ventricular pressure applied to the outer surface. Repeated opening and closing in sequence can be described as “reciprocating.”
The inner frame and/or portions or aspects thereof can be similar in at least form and/or function to the outer frame 110 and/or portions or aspects thereof. For example, the inner frame can be a laser cut wire frame formed from or of a shape-memory material such as Nitinol. Moreover, the inner frame can be compressible for delivery and configured to return to its original (uncompressed) shape when released (e.g., after delivery). In some embodiments, the inner frame can include and/or can form any suitable number of compressible, elastically deformable diamond-shaped or eye-shaped wire cells, and/or the like. The wire cells can have an orientation and cell geometry substantially orthogonal to an axis of the flow control component 150 to minimize wire cell strain when the inner frame is in a compressed configuration.
In some embodiments, the flow control component 150 and/or the inner frame thereof can have a substantially cylindrical or tubular shape when the valve 100 is in the expanded configuration (see e.g.,
As shown in
The flow control component 150 can be at least partially disposed in the central channel 114 such that the axis of the flow control component 150 that extends in the direction of blood flow through the flow control component 150 is substantially parallel to the central axis 104 of the frame 110. In some embodiments, the arrangement of the support frame 110 can be such that the flow control component 150 is centered within the central channel 114. In other embodiments, the arrangement of the support frame 110 can be such that the flow control component 150 is off centered within the central channel 114. In some embodiments, the central channel 114 can have a diameter and/or perimeter that is larger than a diameter and/or perimeter of the flow control component 150. Although not shown in
In some embodiments, the flow control component 150 (or portions and/or aspects thereof) can be similar to, for example, any of the flow control components described in the '231 PCT. Thus, the flow control component 150 and/or aspects or portions thereof are not described in further detail herein.
Referring back to
In some implementations, the actuator 170 can be secured and/or locked when the proximal anchoring element 134 is compressed and/or retracted (e.g., a first configuration) to at least temporarily maintain the proximal anchoring element 134 in the first configuration. As described above, in some implementations, the proximal anchoring element 134 can be in the first configuration for delivery and deployment prior to seating the valve 100 in the native annulus. Once the valve 100 is seated in the native annulus, a user can manipulate a portion of the delivery system to actuate the actuator 170. In this example, actuating the actuator 170 can cause the actuator 170 to release and/or remove the force exerted on the proximal anchoring element 134 (e.g., via the cable(s), tether(s), etc.), thereby allowing the proximal anchoring element 134 to return to its original or biased configuration (e.g., a second configuration), as described above.
The delivery system interface 180, shown in
Furthermore, a lumen of the multi-lumen secondary catheter (e.g., a central lumen) can include and/or can receive a torque cable and a guidewire. The guidewire extends though the secondary catheter and into a desired position relative to the native tissue (e.g., the RVOT or the LVOT) to provide a path along which the valve 100 travels during delivery and/or deployment, as described in the '957 PCT. The torque cable can be any suitable cable, or the like configured to removably couple to the supra-annular region 120 of the frame 110 (e.g., a waypoint coupled to and/or formed by the supra-annular region 120). The torque cable can be a relatively stiff cable that can be configured to facilitate delivery and/or deployment of the valve 100 as well as retraction of the valve 100 if desirable. In this manner, the delivery system interface 180 shown in
As described above, the valve 100 is compressible and expandable between the expanded configuration and the compressed configuration. The valve 100 can have a first height or size along the central axis 104 when in the expanded configuration and can have a second height or size, less than the first height or size, along the central axis 104 when in the compressed configuration. The valve 100 can also be compressed in additional directions. For example, the valve 100 can be compressed along the lateral axis 106 that is perpendicular to both the longitudinal axis 102 and the central axis 104 (see e.g.,
The valve 100 is compressed during delivery of the valve 100 and is configured to expand once released from the delivery catheter. More specifically, the valve 100 is configured for transcatheter orthogonal delivery to the desired location in the body (e.g., the annulus of a native valve), in which the valve 100 is compressed in an orthogonal or lateral direction relative to the dimensions of the valve 100 in the expanded configuration (e.g., along the central axis 104 and/or the lateral axis 106). During delivery, the longitudinal axis 102 of the valve 100 is substantially parallel to a longitudinal axis of the delivery catheter, as described in the '957 PCT.
The valve 100 is in the expanded configuration prior to being loaded into the delivery system and after being released from the delivery catheter and deployed or implanted (or ready to be deployed or implanted) at the desired location in the body. When in the expanded configuration shown in
When in the compressed configuration shown in
As shown in
In some implementations, the delivery of the valve 100 can include advancing a guidewire into the atrium of the human heart, through the native valve, and to a desired position within the ventricle (e.g., the RVOT or the LVOT). After positioning the guidewire, the delivery catheter can be advanced along and/or over the guidewire and into the atrium (e.g., via the IVC, the SVC, and/or a trans-septal access). In some embodiments, a guidewire coupler of the valve 100 (e.g., included in or on the distal anchoring element 132) can be coupled to a proximal end portion of the guidewire and the valve 100 can be placed in the compressed configuration, allowing the valve 100 to be advanced along the guidewire and through a lumen of the delivery catheter, and into the atrium.
The deployment of the valve 100 can include placing the distal anchoring element 132 of the subannular region 130 in the ventricle (RV, LV) below the annulus while the remaining portions of the valve 100 are in the atrium (RA, LA). In some instances, the distal anchoring element 132 can be advanced over and/or along the guidewire to a desired position within the ventricle such as, for example, an outflow tract of the ventricle. For example, in some implementations, the valve 100 can be delivered to the annulus of the native tricuspid valve (TV) and at least a portion of the distal anchoring element 132 can be positioned in the RVOT. In other implementations, the valve 100 can be delivered to the annulus of the native mitral valve (MV) and at least a portion of the distal anchoring element 132 can be positioned in the LVOT.
In some implementations, the prosthetic valve 100 can be temporarily maintained in a partially deployed state. For example, the valve 100 can be partially inserted into the annulus and held at an angle relative to the annulus to allow blood to flow from the atrium to the ventricle partially through the native valve annulus around the valve 100, and partially through the valve 100, which can allow for assessment of the valve function.
The valve 100 can be placed or seated in the annulus (PVA, MVA, AVA, and/or TVA) of the native valve (PV, MV, AV, and/or TV) such that the subannular region 130 (e.g., a ventricular collar) is disposed in a subannular position, the transannular region 112 of the valve frame 110 extends through the annulus, and the supra-annular region 120 (e.g., a atrial collar) remains in a supra-annular position. For example, in some embodiments, the delivery system, the delivery system interface 180, the actuator 170, and/or any other suitable member, tool, etc. can be used to push at least the proximal end portion of the valve 100 into the annulus. In some implementations, the proximal anchoring element 134 can be maintained in its first configuration as the valve 100 is seated in the annulus. For example, as described above, the proximal anchoring element 134 can be in a compressed, contracted, and/or retracted configuration in which the proximal anchoring element 134 is in contact with, adjacent to, and/or near the transannular region 112 and/or the supra-annular region 120 of the frame 110, which in turn, can limit an overall circumference of the subannular region 130 of the frame 110, thereby allowing the subannular region 130 and the transannular region 112 of the frame 110 to be inserted into and/or through the annulus.
Once seated, the proximal anchoring element 134 can be transitioned from its first configuration to its second configuration, as described in detail in the '010 PCT, the '108 PCT, and/or the '345 Provisional. For example, in some implementations, a user can manipulate a portion of the delivery system to actuate the actuator 170. In some implementations, actuating the actuator 170 can release and/or reduce an amount of tension within or more tethers, cables, connections, and/or portions of the actuator 170, thereby allowing the proximal anchoring element 134 to transition Accordingly, once the valve 100 is seated in the annulus, the proximal anchoring element 134 can be placed in its second configuration in which the proximal anchoring element 134 contacts, engages, and/or is otherwise disposed adjacent to subannular tissue. In some implementations, the proximal anchoring element 134 can be configured to engage and/or capture native tissue, chordae, trabeculae, annular tissue, leaflet tissue, and/or the like when the proximal anchoring element 134 is disposed in the ventricle. For example, in some implementations, after seating the valve 100 in the annulus, the proximal anchoring element 134 can be transitioned from the first (compressed) configuration to the second (extended) configuration such that the proximal anchoring element 134 extends around and/or through one or more portions of native tissue, chordae, etc. The proximal anchoring element 134 can then be returned to the first configuration to capture and/or secure the one or more portions of native tissue, chordae, trabeculae, annular tissue, leaflet tissue, etc. between the proximal anchoring element 134 and, for example, the transannular section of the outer frame 110. In other implementations, the proximal anchoring element 134 can be maintained in the second (extended) configuration after the valve 100 is seated in the native annulus. In such implementations, the proximal anchoring element 134, for example, can contact and/or engage subannular tissue on a proximal side of the annulus such that the proximal anchoring element and a proximal portion of the atrial collar exert a compressive force on a proximal portion of the annular tissue.
In this manner, the distal anchoring element 132 can be configured to engage native tissue on a distal side of the annulus and the proximal anchoring element 134 can be configured to engage native tissue on a proximal side of the annulus (e.g., when in the second or expanded configuration), thereby securely seating the valve 100 in the native annulus, as shown in
While not shown in
As shown, the annular support frame 210 has a supra-annular member and/or region 220, a subannular member and/or region 230, and a transannular member and/or region 212, disposed and/or coupled therebetween. In the embodiment shown in
In some embodiments, the supra-annular member 220 of the frame 210 can be similar in at least form and/or function to the supra-annular member 120 described above with reference to
In some embodiments, the outer portion or loop (referred to herein as “outer loop”) can be shaped and/or sized to engage native tissue. More specifically, the supra-annular member 220 (or an outer loop thereof) can have a distal portion 222 configured to engage distal supra-annular tissue and a proximal portion 224 configured to engage proximal supra-annular tissue. In some embodiments, the distal and proximal portions 222 and 224 can have a rounded and/or curved shape, wherein a radius of curvature of the proximal portion 224 is larger than a radius of curvature of the distal portion 222. In some implementations, the distal portion 222 can form, for example, a distal upper anchoring element that can engage distal supra-annular tissue to at least partially stabilize and/or secure the frame 210 in the native annulus. Similarly, the proximal portion 224 can form, for example, a proximal upper anchoring element that can engage proximal supra-annular tissue to at least partially stabilize and/or secure the frame 210 in the native annulus.
The inner portion or loop (referred to herein as “inner loop”) of the supra-annular member 220 can be substantially circular and can be coupled to and/or suspended from the outer loop by the one or more splines. As described in further detail herein with reference to specific embodiments, the inner loop can be coupled to an inner frame of the flow control component to at least partially mount the flow control component to the support frame 210. In some implementations, suspending the inner loop from the outer loop (via the one or more splines) can, for example, at least partially isolate the inner loop from at least a portion of the force associated with transitioning the frame 210 between the expanded configuration and the compressed configuration, as described in further detail herein. Moreover, mounting the flow control component to the inner loop of the supra-annular member 220 similarly at least partially isolates and/or reduces an amount of force transferred to the flow control component when the frame 210 is transitioned between its expanded configuration and its compressed configuration.
The one or more splines of the supra-annular member 220 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the supra-annular member 220 can include a distal spline and a proximal spline. As described above, the splines can be configured to support the inner loop and/or otherwise couple the inner loop to the outer loop. In some embodiments, the supra-annular member 220 can include a spline (e.g., a proximal spline) configured to receive, couple to, and/or otherwise engage the actuator 270 and/or delivery system interface. For example, in some embodiments, a proximal spline can form a connection point, attachment point, waypoint, and/or any other suitable feature that can temporarily and/or removably couple to the actuator 270, as described in further detail herein with reference to specific embodiments.
In some embodiments, the subannular member 230 of the frame 210 can be similar in at least form and/or function to the subannular region 130 described above with reference to
The subannular member 230 can be shaped and/or formed to include any number of features configured to engage native tissue, one or more other portions of the frame 210, and/or the actuator 270. For example, in some embodiments, the subannular member 230 can include and/or can form a distal portion having a distal anchoring element 232 and a proximal portion having a proximal anchoring element 234. In some embodiments, the subannular member 230 can include and/or can form any other suitable anchoring element (not shown in
In some embodiments, the distal anchoring element 232 can optionally include a guidewire coupler configured to selectively engage and/or receive a portion of a guidewire or a portion of a guidewire assembly. The guidewire coupler is configured to allow a portion of the guidewire to extend through an aperture of the guidewire coupler, thereby allowing the frame 210 to be advanced over or along the guidewire during delivery and deployment. In some embodiments, the guidewire coupler can selectively allow the guidewire to be advanced therethrough while blocking or preventing other elements and/or components such as a pusher or the like.
The anchoring elements 232 and/or 234 of the subannular member 230 can be configured to engage a desired portion of the native tissue to mount the frame 210 to the annulus of the native valve in which it is deployed. For example, in some implementations, the distal anchoring element 232 can be a projection or protrusion extending from the subannular member 230 and into a RVOT or a LVOT. In such implementations, the distal anchoring element 232 can be shaped and/or biased such that the distal anchoring element 232 exerts a force on the subannular tissue operable to at least partially secure the distal end portion of the frame 210 in the native annulus. In some implementations, the proximal anchoring element 234 can be configured to engage subannular tissue on a proximal side of the native annulus to aid in the securement of the frame 210 in the annulus.
In some implementations, at least the proximal anchoring element 234 can be configured to transition, move, and/or otherwise reconfigure between a first configuration in which the proximal anchoring element 234 extends from the subannular member 230 a first amount or distance and a second configuration in which the proximal anchoring element 234 extends from the subannular member 230 a second amount or distance. As described above, the subannular member 230 of the frame 210 can be and/or can include, for example, a laser cut wire frame formed of a shape-memory material such as Nitinol, which is heat-set into a desired shape. In some embodiments, heat-setting the subannular member 230 can include forming one or more twists in a portion of the laser cut wire, which in turn, can allow one or more portions of the subannular member 230 to be biased in different directions and/or orientations. For example, in general, the subannular member 230 of the frame 210 can be formed to provide a high amount of flexibility in a direction that allows the subannular member 230 to be folded and/or compressed (e.g., relative to a longitudinal axis of the subannular member 230). In some embodiments, however, a portion of the subannular member 230 can be twisted and/or otherwise oriented to provide a high amount of flexibility in a direction that allows the proximal anchoring element 234 to be actuated and/or to otherwise transition between its first and second configurations (e.g., in a direction orthogonal to the longitudinal axis of the subannular member 230 and orthogonal to a fold and/or compression direction.
In some embodiments, the proximal anchoring element 234 can be in a compressed, contracted, retracted, undeployed, folded, and/or restrained state (e.g., a position that is near, adjacent to, and/or in contact with the transannular member 212 and/or the supra-annular member 220 of the support frame 210) when in the first configuration, and can be in an expanded, extended, deployed, unfolded, and/or unrestrained state (e.g., extending away from the transannular member 212) when in the second state. In some embodiments, the proximal anchoring element 234 can be biased and/or heat-set in the second configuration. Moreover, in some implementations, the proximal anchoring element 234 can be transitioned in response to actuation of the actuator 270, as described in further detail herein.
In some implementations, the proximal anchoring element 234 can be transitioned from the first configuration to the second configuration during deployment to selectively engage native tissue, chordae, trabeculae, annular tissue, leaflet tissue, and/or any other anatomic structures to aid in the securement of the frame 210 in the native annulus. The proximal anchoring element 234 (and/or the distal anchoring element 232) can include any suitable feature, surface, member, etc. configured to facilitate the engagement between the proximal anchoring element 234 (and/or the distal anchoring element 232) and the native tissue. For example, in some embodiments, the proximal anchoring element 234 can include one or more features configured to engage and/or become entangled in the native tissue, chordae, trabeculae, annular tissue, leaflet tissue, and/or any other anatomic structures when in the second configuration, as described in further detail herein with reference to specific embodiments.
In some embodiments, the transannular member 212 of the frame 210 can be similar in at least form and/or function to the transannular region 112 described above with reference to
As described above, the supra-annular member 220, the subannular member 230, and the transannular member 212 can be independent and/or modular components that are coupled to collectively form the frame 210. In some embodiments, the supra-annular member 220 is configured to engage supra-annular tissue of the native valve and can be shaped and/or biased to form a substantially fluid tight seal with the atrial floor to limit and/or substantially prevent leakage around the frame (e.g., perivalvular leaks). Similarly, the subannular member 220 is configured to engage subannular tissue of the native valve and can be shaped and/or biased to form a substantially fluid tight seal with the ventricular ceiling to limit and/or substantially prevent leakage around the frame. Moreover, in some implementations, the transannular member 212 can have a slightly oversized circumference relative to the native annular tissue and can, for example, form at least a partial seal between the transannular member 212 of the frame 210 and the native tissue forming the walls of the annulus. In such implementations, forming a seal against the atrial floor, the ventricular ceiling, and the walls of the annulus can provide redundancy in the event of an imperfect or partial seal formed by one or more of the supra-annular member(s) 220, the subannular member 230, and/or the transannular member 212.
In other implementations, the distal and proximal anchoring elements 232 and 234 can exert a force on the subannular tissue that is operable in pulling the supra-annular member 220 of the frame 210 toward the atrial floor, thereby facilitating the formation of a seal. In such implementations, for example, the subannular member 230 and/or the transannular member 212 need not form a seal or can form a partially seal with the native tissue because of the seal formed by the supra-annular member 220.
In some implementations, the arrangement of the frame 210 can be such that structural support and/or stiffness is provided by the supra-annular member 220 and the subannular member 230, while the transannular member 212 need not provide substantial support and/or stiffness. In some such implementations, the transannular member 212 can be configured to couple the supra-annular member 220 to the subannular member 230 and to easily deform (elastically) for delivery rather than provide substantial support and/or stiffness. Moreover, while the transannular member 212 is described above as being formed by a laser cut wire frame that is covered by biocompatible material, in other embodiments, the transannular member 212 can be formed from any suitable flexible material such as pericardial tissue, fabric, polyester, and/or the like. In some such embodiments, forming the flexible material without the laser cut wire frame can, for example, reduce a size of the frame 210 when in the compressed configuration, thereby allowing a valve to be delivered using a smaller delivery catheter. In some embodiments, the frame 210 need not include a separate transannular member 212. For example, in such embodiments, a flow control component can be coupled between the supra-annular member 220 and the subannular member 230, thereby allowing a further reduction in a size of a valve in the compressed configuration.
As shown in
In some embodiments, the actuator 270 and/or a portion of the actuator 270 can be configured to at least temporarily couple to the spline of the supra-annular member 220 (e.g., an attachment point, waypoint, connector, threaded coupler, etc.) and can be configured to actuate one or more portions of the frame 210. The actuator 270 can be configured to actuate at least the proximal anchoring element 234 of the subannular member 220 of the support frame 210 to transition the proximal anchoring element 234 between its first and second configurations (described above).
In some implementations, the actuator 270 can include one or more cables, tethers, linkages, joints, connections etc., that can exert a force (or can remove an exerted force) on a portion of the proximal anchoring element 234 operable to transition the proximal anchoring element 234 between the first and second configuration. For example, the actuator 270 can couple to a waypoint or the like of the supra-annular member 220 and can include one or more tethers, cables, and/or members that extend through the waypoint and/or one or more openings or apertures and couple to the proximal anchoring element 234. In some implementations, the one or more tethers, cables, and/or members can be removably and/or temporarily coupled to the proximal anchoring element 234, as described, for example, in the '010 PCT, the '108 PCT, and/or the '345 Provisional.
As described above, the subannular member 230 can be formed with the proximal anchoring element 234 biased in the uncompressed and/or expanded configuration. In this manner, the actuator 270 can be actuated to exert a force, via the one or more cables, tethers, etc., operable to transition the proximal anchoring element 234 to the compressed and/or retracted configuration. More specifically, the user can manipulate the proximal end portion of the actuator 270 to actuate a distal end portion of the actuator 270 that is coupled to the frame 210. For example, actuating the actuator 270 can be such that the one or more cables, tethers, and/or members are pulled in a proximal direction (e.g., away from the frame 210 and/or in a manner that increases a tension therein), as indicated by the arrow AA in
In some implementations, actuating the actuator 270 also can be operable to pull a proximal-anterior portion of the subannular member and/or transannular wall and a proximal-posterior portion of the subannular member and/or transannular wall to or toward the longitudinal axis of the valve 200. For example,
In some implementations, the actuator 270 can be secured and/or locked when the proximal anchoring element 234 is compressed and/or retracted (e.g., a first configuration) to at least temporarily maintain the proximal anchoring element 234 in the first configuration. As described above, in some implementations, the proximal anchoring element 234 can be in the first configuration for delivery and deployment prior to seating the frame 210 (or valve) in the native annulus. Once the frame 210 is seated in the native annulus, a user can manipulate the proximal portion of the actuator 270 to actuate and/or release the actuator 270. In this example, the actuation can cause the actuator 270 to release and/or remove at least a portion of the force exerted on the proximal anchoring element 234 (e.g., via the cable(s), tether(s), etc.), thereby allowing the proximal anchoring element 234 (and/or one or more portions of the anterior and/or posterior walls) to return to its biased configuration or a second configuration (see e.g.,
In some implementations, the actuator 270 can be configured to further actuate the frame 210 after the frame 210 (or valve) is seated in the native annulus. For example, in some implementations, the user can manipulate the proximal end portion of the actuator 270 (e.g., in the same way as just described or in a different manner) to move one or more cables, tethers, and/or members of the actuator 270 in the proximal direction (e.g., away from the frame 210 and/or in a manner that increases a tension therein), as indicated by the arrow DD in
As shown in
Although not shown in
While the frame 210 and/or one or more portions of the subannular member 230 are described above as being compressed to move inward toward a central axis of the frame 210 in response to actuation of the actuator 270, in other embodiments, the actuator 270 can be removably coupled to one or more portions of the frame 210 and configured to move such portions in any suitable manner. For example, in some implementations, the actuator 270 (e.g., one or more tethers or the like, as described above) can be coupled to the proximal anchoring element 234 such that actuation of the actuator 270 results in the proximal anchoring element 234 folding or wrapping around the transannular member 212 of the frame 210 in either an anterior direction or a posterior direction, or both directions depending on the mode of actuation. As described above, the folding and/or wrapping of the proximal anchoring element 234 around the transannular member 212 can reduce a circumference or diameter of at least the subannular member 230 allowing the frame 210 to be inserted into and/or at least partially through the annulus of the native heart valve.
As shown, the annular support frame 310 has a supra-annular member and/or region 320, a subannular member and/or region 330, and a transannular member and/or region 312, disposed and/or coupled therebetween. In the embodiment shown in
In some embodiments, the supra-annular member 320 of the frame 310 can be similar in at least form and/or function to the supra-annular members 120, 220 described above. For example, the supra-annular member 320 can be and/or can form, for example, a cuff or collar that can be attached or coupled to an upper edge or upper portion of the transannular member 312. The supra-annular member 320 can be shaped and/or formed to include any number of features configured to engage native tissue and/or one or more other portions of the frame 310 and/or the actuator 370. For example, the supra-annular member 320 (or an outer loop thereof) can have a distal portion 322 configured to engage distal supra-annular tissue and a proximal portion 324 configured to engage proximal supra-annular tissue.
As described above, the supra-annular member 320 can include and/or can form an outer portion or loop, an inner portion or loop, and one or more splines disposed between the outer and inner portions or loops. The outer portion or loop (referred to herein as “outer loop”) can be shaped and/or sized to engage native tissue. In some implementations, the outer loop can form, for example, one or more upper or supra-annular anchoring elements that can engage supra-annular tissue to at least partially stabilize and/or secure the frame 310 in the native annulus. The inner portion or loop (referred to herein as “inner loop”) of the supra-annular member 320 is coupled to and/or suspended from the outer loop by the one or more splines and is coupleable to an inner frame of the flow control component to at least partially mount the flow control component to the support frame 310, as described above with reference to the supra-annular member 220. The one or more splines of the supra-annular member 320 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the supra-annular member 320 can include a distal spline and a proximal spline. In some embodiments, the supra-annular member 320 can include a spline (e.g., a proximal spline) configured to receive, couple to, and/or otherwise engage the actuator 370 and/or delivery system interface. For example, in the embodiment shown in
The subannular member 330 of the frame 310 can be similar in at least form and/or function to the subannular regions and/or members 130, 230 described above. For example, the subannular member 330 of the frame 310 can be and/or can form, for example, a cuff or collar that can be attached or coupled to a lower edge or upper portion of the transannular member 312. When the frame 310 is deployed within a human heart, the subannular member 330 can be a ventricular collar that is shaped to conform to the native deployment location. In some implementations, the subannular member 330 or at least a portion thereof can engage the ventricular ceiling surrounding the native annulus to secure the frame 310 in the native annulus, to prevent dislodging of the frame 310 and/or to seal against blood leakage (perivalvular leakage and/or regurgitation during systole) around the frame 310.
The subannular member 330 included in the frame 310 shown in
The proximal anchoring element 334 can be configured to transition, move, and/or otherwise reconfigure between a first configuration in which the proximal anchoring element 334 extends from the subannular member 330 a first amount, distance, and/or direction and a second configuration in which the proximal anchoring element 334 extends from the subannular member 330 a second amount, distance, and/or direction. In some embodiments, the proximal anchoring element 334 can be substantially similar in at least form and/or function to the proximal anchoring element 234 described above with reference to
In some embodiments, the proximal anchoring element 334 can be in a compressed, contracted, retracted, undeployed, folded, and/or restrained state (e.g., a position that is near, adjacent to, and/or in contact with the transannular member 312 and/or the supra-annular member 320 of the support frame 310) when in the first configuration, and can be in an expanded, extended, deployed, unfolded, and/or unrestrained state (e.g., extending away from the transannular member 312) when in the second state. In some embodiments, the proximal anchoring element 334 can be biased and/or heat-set in the second configuration. Moreover, in some implementations, the proximal anchoring element 334 can be transitioned in response to actuation of the actuator 370, as described in further detail herein.
The transannular member 312 is disposed between the supra-annular member 320 and the sub annular member 330. In some embodiments, the transannular member 312 can be coupled to each of the supra-annular member 320 and the subannular member 330 such that a desired amount of movement and/or flex is allowed therebetween (e.g., welded, bonded, sewn, bound, and/or the like). In some embodiments, the transannular member 312 of the frame 310 can be similar in at least form and/or function to the transannular regions 112, 212 described above and thus, is not described in further detail herein.
While the frame 310 is described above as being substantially similar to the frame 210 described above with reference to
For example, actuating the actuator 370 can be such that the one or more tethers are pulled in a proximal direction (e.g., away from the frame 310 and/or in a manner that increases a tension therein), as indicated by the arrow GG in
After the frame 310 (or valve) is seated in the annulus, the actuator 370 can be actuated again and/or otherwise returned to an unactuated state or configuration. As such, the proximal anchoring element 334 is allowed to return to the extended and/or unactuated configuration. In the embodiment shown in
Provided below is a discussion of certain aspects or embodiments of side deliverable transcatheter prosthetic valves (e.g., prosthetic valves). The transcatheter prosthetic valves (or aspects or portions thereof) described below with respect to specific embodiments can be substantially similar in at least form and/or function to the valves 100 and/or 200 (or corresponding aspects or portions thereof). Similarly, the valves described below (or aspects or portions thereof) can be similar in at least form and/or function to the valves described in detail in the '957 PCT, the '010 PCT, the '231 PCT, the '390 PCT, the '108 PCT, the '327 Provisional, the '964 Provisional, the '345 Provisional, and/or the '807 Provisional. Thus, certain aspects and/or portions of the specific embodiments may not be described in further detail herein.
The valve 400 is compressible and expandable in at least one direction relative to an x-axis of the valve 400 (also referred to herein as “horizontal axis,” “longitudinal axis,” “long axis,” and/or “lengthwise axis”). The valve 400 is compressible and expandable between an expanded configuration for implanting at a desired location in a body (e.g., a human heart) and a compressed configuration for introduction into the body using a delivery catheter (not shown in
In some embodiments, the valve 400 has an expanded or deployed height of about 5-60 mm, about 5-30 mm, about 5-20 mm, about 8-12 mm, or about 8-10 mm, and an expanded or deployed diameter (e.g., length and/or width) of about 25-80 mm, or about 40-80 mm. In some embodiments, the valve 400 has a compressed height (y-axis) and width (z-axis) of about 6-15 mm, about 8-12 mm, or about 9-10 mm. It is contemplated in some implementations that the length of the valve 400 (e.g., along the x-axis) is not compressed or otherwise reduced since it can extend along the length of the central cylindrical axis of the delivery catheter.
In certain embodiments, the valve 400 is centric, or radially symmetrical. In other embodiments, the valve 400 is eccentric, or radially asymmetrical (e.g., along or relative to the y-axis). In some eccentric embodiments, the frame 410 may have a D-shape in cross-section, with a flat portion or surface configured to substantially match an annulus of a native mitral valve at or near the anterior leaflet. In the example shown in
The valve 400 includes an annular outer support frame 410 and a collapsible flow control component 450 mounted within the annular outer support frame 410. The annular outer support frame 410 (also referred to herein as “outer frame”) is made from a shape-memory material such as Nickel-Titanium alloy (Nitinol) and is therefore a self-expanding structure from a compressed configuration to an expanded configuration. As shown in
The outer frame 410 has a transannular member 412 and/or body that circumscribes, forms, and/or defines a central (interior) channel about and/or along the vertical or central axis (y-axis). The outer frame 410 has a supra-annular member 420 attached circumferentially at a top edge of the transannular member 412 and a subannular member 410 attached circumferentially at a bottom edge of the transannular member 412. The supra-annular member 420 is shaped to conform to the native deployment location. In a tricuspid replacement, for example, the supra-annular member 420 or atrial collar can have a tall back wall portion to conform to the septal area of the native valve and can have a distal and proximal portion. The distal portion can be larger than the proximal portion to account for the larger flat space above (atrial) the ventricular outflow tract (VOT) subannular area. In a mitral replacement, for example, the supra-annular member 420 of the outer frame 410 may be D-shaped or shaped like a hyperbolic paraboloid to mimic the native structure.
The collapsible (inner) flow control component 450 is mounted within the outer frame 410. The flow control component 450 has a foldable and compressible inner wire frame 35 (also referred to as “inner leaflet frame” or “inner frame”) with two (or more) fold areas, hinge areas, coupling areas, elastically deformable regions, etc. A set of 2-4 flexible leaflets 456 are mounted in or on the inner frame 451 (not shown in
The inner flow control component 450, like the outer frame 410, is foldable and compressible. For example, the inner frame 451 is foldable along or in the direction of a z-axis (e.g., foldable at the fold areas or the like) from a cylindrical configuration to a flattened cylinder configuration (or a two-layer band), where the fold areas are located on a distal side and on a proximal side of the inner frame 451. The flow control component 450, like the outer frame 410, is also vertically (y-axis) compressible to a shortened or compressed configuration. By folding (compressing) in the direction of the z-axis and vertically compressing in the y-axis, the valve 400 is permitted to maintain a relatively large dimension along the horizontal (x-axis). In some implementations, the outer frame 410 and the flow control component 450 are reduced along z-axis until the side walls are in contact or nearly so. This also allows the outer frame 410 and the flow control component 450 to maintain the radius along the horizontal axis (x-axis), to minimize the number of wire cells, which make up the outer and the inner frames, that can be damaged by forces applied during folding and/or compression necessary for loading into the delivery catheter.
The flow control component 450 has a diameter and/or perimeter that is smaller than a diameter and/or perimeter of the central channel of the outer frame 410. The flow control component 450 is mounted to or within the outer frame 410 such that a central or vertical axis (y-axis) of the inner frame 451 is parallel to the central or vertical axis (y-axis) of the outer frame 410. In some embodiments, the y-axis defined by the inner frame 451 is parallel to but offset from the y-axis defined by the outer frame 410 (
In certain embodiments, the inner frame 451 can have a diameter of about 25-30 mm, the outer frame 410 (or the transannular member 412 thereof) can have a diameter of about 50-80 mm, and the supra-annular member 420 (or atrial collar) extend beyond the top edge of the transannular member 412 by about 20-30 mm to provide a seal on the atrial floor against perivalvular leaks (PVLs). The flow control component 450 and the outer frame 410 can be foldable (e.g., in the direction of the z-axis) and/or compressible (e.g., in the direction of the y-axis) to reduce a size of the entire valve 400 to fit within the inner diameter of a 24-36 Fr (8-12 mm inner diameter) delivery catheter (not shown in this
As shown, the supra-annular member 420 includes a distal portion 422, a proximal portion 424, an outer loop 421, an inner loop 425, and at least one spline 427. In some embodiments, the outer loop 421 can be shaped and/or sized to engage native tissue. For example, the distal portion 422 of the supra-annular member 420 (formed at least in part by the outer loop 421) is configured to engage distal supra-annular tissue and the proximal portion 424 (formed at least in part by the outer loop 421) is configured to engage proximal supra-annular tissue. The distal and proximal portions 422 and 424 can have a rounded and/or curved shape, wherein a radius of curvature of the proximal portion 424 is larger than a radius of curvature of the distal portion 422. The distal portion 422 can form, for example, a distal anchoring loop 423 that can engage distal supra-annular tissue to at least partially stabilize and/or secure the frame 410 in the native annulus. Although not shown in
The inner loop 425 of the supra-annular member 420 can be substantially circular and can be coupled to and/or suspended from the outer loop by the one or more splines 427. As shown in
The one or more splines 427 of the supra-annular member 420 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the supra-annular member 420 can include a proximal spline 427 and one or more distal splines 427. The distal splines 427 can couple a distal portion of the inner loop 425 to a distal portion of the outer loop 421. Similarly, the proximal spline 427 can couple a proximal portion of the inner loop 425 to a proximal portion of the outer loop 421. In some embodiments, the proximal spline 427 can be configured to receive, couple to, and/or otherwise engage an actuator and/or a portion of a delivery system. For example, the proximal spline 427 includes, forms, and/or can be coupled to a waypoint 428 that can be used to couple to one or more portions of the actuator and/or delivery system, as described above with reference to the frames 110 and 210.
The transannular member 412 can be shaped and/or formed into a ring, a cylindrical tube, a conical tube, and/or any other suitable annular shape. In some embodiments, the transannular member 412 may have a side profile of a concave cylinder (walls bent in), an angular hourglass, a curved, graduated hourglass, a ring or cylinder having a flared top, flared bottom, or both. Moreover, the transannular member 412 can form and/or define an aperture or central channel 414 that extends along the central axis 404 (e.g., the y-axis). The central channel 414 (e.g., a central axial lumen or channel) can be sized and configured to receive the flow control component 450 across a portion of a diameter of the central channel 414. In some embodiments, the transannular member 412 can have a shape and/or size that is at least partially based on a size, shape, and/or configuration of the supra-annular member 420 and/or subannular member 430 of the support frame 410, and/or the native annulus in which it is configured to be deployed, as described above.
The transannular member 412 can be and/or can include a wire frame that is laser cut out of Nitinol or the like and, for example, heat-set into a desired shape and/or configuration. The transannular member 412 can be formed to include a set of compressible wire cells 413 having an orientation and/or cell geometry substantially orthogonal to the central axis extending through the central channel 414 to minimize wire cell strain when the transannular member 412 is in a vertical compressed configuration, a rolled and compressed configuration, or a folded and compressed configuration. As shown in
In some embodiments, forming the transannular member 412 in such a manner can allow the transannular member 412 to bend, flex, fold, deform, and/or otherwise reconfigure (substantially without plastic deformation and/or undue fatigue) in response to lateral folding along or in a direction of a lateral or z-axis and/or vertical compression along or in a direction of the central or y-axis. Moreover, coupling at the hinge points 417 using sutures can allow for a desired amount of slippage between the sutures and the anterior/posterior sides 415/416, which in turn, can limit and/or substantially prevent binding, sticking, and/or failure in response to folding along the lateral or z-axis.
As shown in
As shown, the subannular member 430 of the frame 410 includes and/or forms a distal portion having a distal anchoring element 432 and a proximal portion having a proximal anchoring element 434. The anchoring elements 432 and 434 are integrally and/or monolithically formed with the subannular member 430. The distal anchoring element 432 and the proximal anchoring element 434 of the subannular member 430 can be any suitable shape, size, and/or configuration such as any of those described in detail in the '957 PCT, the '010 PCT, the '231 PCT, the '390 PCT, the '108 PCT, the '327 Provisional, the '964 Provisional, the '345 Provisional, the '807 Provisional, any of those described above with reference to the frames 110 and/or 210, and/or any of those described herein with respect to specific embodiments.
The distal anchoring element 432 is shown as including an atraumatic end that forms a guidewire coupler 433 configured to selectively engage and/or receive a portion of a guidewire or a portion of a guidewire assembly. The guidewire coupler 433, for example, is configured to allow a portion of the guidewire to extend through an opening and/or aperture of the guidewire coupler 433, thereby allowing the frame 410 to be advanced over or along the guidewire during delivery and deployment. In some embodiments, the guidewire coupler 433 can selectively allow the guidewire to be advanced therethrough while blocking or preventing other elements and/or components such as a pusher or the like.
The anchoring elements 432 and/or 434 are configured to engage a desired portion of the native tissue to mount the frame 410 to the annulus of the native valve in which it is deployed. For example, the distal anchoring element 432 can extend (e.g., about 10-40 mm) from the subannular member 430 and into a RVOT or a LVOT. The distal anchoring element 432 can be shaped and/or biased such that the distal anchoring element 432 exerts a force on the subannular tissue operable to at least partially secure the distal end portion of the frame 410 in the native annulus.
The proximal anchoring element 434 can be configured to engage subannular tissue on a proximal side of the native annulus to aid in the securement of the frame 410 in the annulus. More specifically, the proximal anchoring element 434 is configured to transition, move, and/or otherwise reconfigure between a first configuration in which the proximal anchoring element 434 extends from the subannular member 430 a first amount or distance and a second configuration in which the proximal anchoring element 434 extends from the subannular member 430 a second amount or distance. As described above, the subannular member 430 of the frame 410 can be and/or can include, for example, a laser cut wire frame formed of a shape-memory material such as Nitinol, which is heat-set into a desired shape and wrapped in a biocompatible material (e.g., a fabric as shown in
As described above, the proximal anchoring element 434 can be in a compressed, contracted, retracted, undeployed, folded, and/or restrained state (e.g., a position that is near, adjacent to, and/or in contact with the transannular member 412 and/or the supra-annular member 420 of the support frame 410) when in the first configuration, and can be in an expanded, extended, deployed, unfolded, and/or unrestrained state (e.g., extending away from the transannular member 412) when in the second state. In some embodiments, the proximal anchoring element 434 can be biased and/or heat-set in the second configuration. Moreover, in some implementations, the space 418 defined by the transannular member 412 of the outer frame 410 is configured to provide sufficient room to allow the proximal anchoring element 434 to transition between the first and second configurations.
Although not shown, the inner leaflet frame 451 can be transitioned from the expanded or cylindrical configuration to an at least partially folded configuration. The inner leaflet frame 451 can have wireframe sidewalls that allow for rotating or hinging at least at the lateral connection points 451 and 453. The inner leaflet frame 451 can be configured to fold in response to the valve 400 being folded and/or compressed for delivery. When transitioned, for example, to a completely folded configuration, the wireframe sidewalls can be rotated, hinged, and/or folded at their lateral connection points 451 and 453. In addition, the inner leaflet frame 451 can be vertically compressed into a compressed configuration. The wireframe sidewalls can form cells (e.g., diamond-shaped cells or the like) that can be oriented in a direction of compression to allow for elastic compression of the inner frame 451. In some embodiments, the inner frame 451 can be vertically compressed into a pleated or accordion (compressed) configuration.
In some embodiments, the inner leaflet frame 451 of the flow control component 450 can be formed from a linear wireframe or laser cut sheet prior to being further assembled into a cylinder structure (e.g., as shown in
While the actuator 570 is shown in
The guidewire catheter 684 can be sufficiently stiff to, for example, limit and/or define (at least in part) a range of motion of the valve 600 during delivery. For example, the guidewire catheter 684 can define an axis about which the valve 600 can rotate during delivery but can substantially limit or oppose movement of the valve 600 in other directions. In some implementations, the arrangement of the connection member 678 (e.g., yoke) and the guidewire catheter 684 can allow for greater control of a position of the valve 600 during delivery. The guidewire catheter 684 and/or one or more portions of the valve 600 (e.g., the subannular member 630) can also include radiopaque markers allowing for enhanced visualization during image guided delivery. For example, in some instances, a radiopaque marker or wire can be placed relative to an annular plane of the native valve and can define a landmark during image guided delivery. In such instances, the radiopaque markers on the guidewire catheter 684 and/or other portion(s) of the valve 600 (e.g., the subannular member 630) can be used to align, orient, locate, index, etc. the valve 600 relative to the landmark, which in turn, corresponds to the annular plane of the native valve. Thus, image guided delivery can allow a user to visualize the valve 600 during delivery and/or deployment and can allow the user to visualize when the valve 600 has been seated in the annulus (e.g., the radiopaque marker bands of the valve 600 are below or in a subannular direction relative to the radiopaque landmark.
While the valves 500 and/or 600 are described above as actuating and/or transitioning the corresponding proximal anchoring element in a particular manner, it should be understood that a proximal anchoring element of a valve can be actuated, moved, swung, rotated, and/or otherwise transitioned in any suitable manner. For example,
The valve 700 is configured to engage or to be engaged by at least a portion of a delivery system 780, or the like. The delivery system 780 can include any suitable component for delivering, retrieving, deploying, moving, manipulating, actuating, and/or otherwise interacting with one or more portions of the valve 700. In this embodiment, the delivery system 780 can include, for example, one or more catheters. For example, the delivery system 780 can include a delivery catheter through which the valve 700 is delivered to an annulus of a native heart valve. The delivery system 780 can also include one or more steerable catheters, control catheters, multi-lumen catheters, and/or the like, or combinations thereof. In some embodiments, the delivery system 780 can include a multi-lumen control catheter that has a distal end portion configured to removably engage and/or couple to one or more portions of the valve 700 to facilitate delivery, deployment, and/or retrieval of the valve 700. Although not shown in
In the embodiment shown in
The valve 800 is shown with the subannular member 830 having and/or forming a distal anchoring element 832 and a proximal anchoring element 834. The distal anchoring element 832 includes a guidewire coupler 833 that can receive a guidewire and/or a guidewire catheter through an opening, hole, aperture, port, etc., defined by the guidewire coupler 833. In some implementations, a guidewire catheter can extend beyond the distal anchoring element 832 and can have and/or can provide sufficient stiffness to allow the valve 800 be advanced along a guidewire that is threaded through a lumen of the guidewire catheter. The proximal anchoring element 834 can be, for example, a movable anchoring element configured to be moved and/or otherwise transitioned (e.g., by an actuator) between a first configuration and a second configuration to reduce a perimeter of the subannular member 820 during delivery and/or deployment.
The proximal anchoring element 834 can be configured to move in any suitable direction from the first, extended configuration (
The supra-annular member 820 is shown having laser cut wire frame that is wrapped or covered in a biocompatible material. The supra-annular member 820 includes a distal portion 822, a proximal portion 824, an outer loop 821, an inner loop 825, and at least one spline 827. In some embodiments, the outer loop 821 can be shaped and/or sized to engage native tissue. For example, the distal portion 822 of the supra-annular member 820 (formed at least in part by the outer loop 821) is configured to engage distal supra-annular tissue and the proximal portion 824 (formed at least in part by the outer loop 821) is configured to engage proximal supra-annular tissue. The distal and proximal portions 822 and 824 can have a rounded and/or curved shape, wherein a radius of curvature of the proximal portion 824 is larger than a radius of curvature of the distal portion 822. The distal portion 822 and/or the proximal portion 824 can form, for example, a distal supra-annular anchoring element and/or a proximal supra-annular anchoring element, respectively, each of which can engage supra-annular tissue to at least partially stabilize and/or secure the frame 810 in the native annulus.
The inner loop 825 of the supra-annular member 820 can have an oblong or teardrop-shape can be coupled to and/or suspended from the outer loop 821 by the one or more splines 827. The inner loop 825 can be coupled to the flow control component 850 via, for example, biocompatible material 826. The inner loop 825 is shown as being coupled to the flow control component 850 such that the flow control component 850 is distally offset relative to the valve 800. In some implementations, suspending the inner loop 825 from the outer loop 821 can, for example, at least partially isolate the inner loop 825 (and the flow control component 850 coupled to the inner loop 825) from at least a portion of the force associated with transitioning the frame 810 between the expanded configuration and the compressed configuration (e.g., during delivery and/or deployment).
The one or more splines 827 of the supra-annular member 820 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the supra-annular member 820 can include a proximal spline 827 that defines a waypoint 828. The waypoint 828 can be, for example, an opening, a hole, an aperture, a port, a coupler, a sealable/resealable access point, and/or the like configured to at least temporarily couple to and/or receive a portion of a delivery system. For example, in some implementations, the portion of the delivery system can include at least an actuator and a guidewire catheter.
The supra-annular member 820 is further shown as including a drum 845 that extends between and/or is coupled to the outer loop 821 and the inner loop 825 and covers a space not otherwise occupied by the flow control component 850.
While the attachment member 838 is shown coupled to the drum 845 at or near a proximal edge of the drum 845, in other embodiments, the attachment member 838 can be coupled to the drum 845 in any suitable location (e.g., a proximal position adjacent to the flow control component 850, a distal position as shown in
The valves described herein are configured to be delivered to a desired target location within a patient via side or orthogonal delivery techniques, methods, and/or systems. A delivery system for side-delivering a transcatheter prosthetic valve can be any shape, size, and/or configuration, and can include any suitable feature, component, member, mechanism, assembly, subsystem, and/or the like. In some implementations, a delivery system can be similar to and/or can include any suitable combination of components from the delivery systems described in any of the '957 PCT, the '010 PCT, the '231 PCT, the '390 PCT, the '108 PCT, the '327 Provisional, the '964 Provisional, the '345 Provisional, and/or the '807 Provisional.
For example,
The delivery system 980 can include any suitable component(s) configured to place the valve 900 in a delivery configuration, load the valve 900 into a portion of the delivery system 980, deliver the valve 900 in the delivery configuration through a portion of the delivery system 980, control and/or facilitate a deployment of the valve 900 in the annulus of the native valve, and in some instances, at least partially retrieve the valve 900 from the annulus to allow for adjustment and/or reseating of the valve 900 or removal of the valve 900 from the heart (e.g., in the case of failure or patient distress).
In the embodiment shown in
The connection member is removably coupleable to the valve 900. More specifically, the connection member can be removably coupled to and placed in contact with a supra-annular member or region of the valve frame. In some embodiments, the connection member can be in contact with and/or removably coupled to a drum extending across the supra-annulus member or region, a transannular member or region of the frame, and/or any other suitable portion of the valve 900. The connection member can removably couple to the valve 900 via sutures, tethers, cables, clips, couplers, and/or any other removable coupling. For example, in some embodiments, the valve 900 can include one or more attachment members such as a tether, suture, cable, frame structure, drum structure, and/or the like to which the connection member of the control device 970 can be removably coupled (e.g., via a suture, tether, and/or any other removable coupling).
The control device 970 can include a control catheter that is coupled to and/or that otherwise includes the connection member at a distal end thereof. In some embodiments, the control catheter can be a steerable, multi-lumen catheter. The multiple lumens can be configured to provide one or more paths through which one or more components can extend to selectively engage the valve 900. For example, as shown in
In addition, one or more of the lumens of the multi-lumen control catheter can receive a tether, suture, wire, etc., configured to loop through a portion or side of the connection member (e.g., a yoke), around an attachment point of the valve 900, through the portion or side of the connection member again, back through the same lumen of the control catheter, thereby coupling the connection member to the valve 900. Moreover, such an arrangement can allow an operator to pull on one end of the tether, suture, wire, etc., (“tether”) to remove the tether from the control device 970, which in turn, can at least partially decouple the connection member from the valve 900 (e.g., after a successful deployment of the valve). Similarly, one or more of the lumens of the control catheter can receive an actuator, tension member, tether, cable, wire, etc., that can be routed through a lumen of the control catheter to engage a proximal anchoring element of the valve 900. Accordingly, the tension member or the like can be actuated (e.g., placed under tension) to transition the proximal anchoring element between two or more configurations, as described in detail above with reference to the valves 500, 600, and/or 700.
In some implementations, after initially inserting the valve 900 into the proximal end of the compression device 990 a user or operator can, for example, exert a force on the control device 970 such that the connection member (e.g., a yoke) pushes the valve 900 through the compression device 990. In other implementations, the control device 970 can include a pusher and/or the guidewire catheter 984 can include a pusher that can selectively engage a portion of the distal subannular anchoring element to pull the valve 900 through the compression device 990 in response to a distally directed force exerted on the control device 970. In some implementations, the delivery system 980 can include a pulling device and/or the like (not shown) that can be removably coupled to a distal portion of the loading device 960 and a distal end of the valve 900 (e.g., via a tether or the like) and can be manipulated to pull the valve 900 through the compression device 990. In some implementations, the pulling device can be used to pull the valve 900 and the control device 970 can be used to push and/or pull the valve 900 to collectively advance the valve 900 through the compression device 990.
The valve 900 is shown in
The distal end of the loading device 960 is further shown as including at least one port 967. The at least one port 967 is in fluid communication with the lumen 963 and is configured to provide selective flushing of at least a portion the lumen 963. In some embodiments, for example, the loading device 960 can include a first port that is disposed proximal to the gate 966 and in fluid communication with at least a portion of the lumen 963 proximal to the gate 966, and a second port that is disposed distal to the gate 966 and in fluid communication with at least a portion of the lumen 963 distal to the gate 966. In some implementations, the port 967 (e.g., via a first portion of the port 967 or a first port) can be used to provide suction to at least a portion of the lumen 963 as well as a flow of fluid for flushing at least a portion of the lumen 963 (e.g., via a second portion of the port 967 or a second port). In some instances, the port 967 can provide flushing (e.g., a flow of sterile fluid such as saline with or without simultaneous suctioning) of at least a portion of the lumen 963 while the gate 966 is in the closed state and/or after the gate 966 is transitioned to the open state.
The lumen 963 of the loading device 960 has a diameter and/or perimeter that is substantially similar to a diameter and/or perimeter of the lumen 995 at the distal end of the compression device 990. As such, the valve 900 can be compressed to the delivery configuration and advanced from the compression device 990 into the lumen 963 of the loading device 960.
In some instances, it may be desirable to at least partially retrieve the valve 900 from the annulus during deployment (e.g., to adjust a position, orientation, and/or seating of the valve 900 in the annulus). In such instances, the control device 970 further can be used to at least partially retrieve the valve 900 into the distal end of the delivery catheter (included in the delivery device). For example, with the connection member (e.g., a yoke) coupled to a portion of the valve 900, the user and/or operator can exert a proximally directed force on the control device 970 that can pull that valve 900 proximally toward and/or into the delivery catheter. Moreover, the delivery system 980 can include any suitable capture element, feature, member, mechanism, etc. configured to facilitate a compression of the valve 900 as the valve 900 is pulled in a proximal direction toward and/or into the delivery catheter. In some instances, after partially retrieving the valve 900, the control device 970 can be manipulated to reseat the valve 900 in the annulus in a desired orientation and/or configuration.
The delivery system 1080 can include any suitable component(s) configured to place the valve 1000 in a delivery configuration, load the valve 1000 into a portion of the delivery system 1080, deliver the valve 1000 in the delivery configuration through a portion of the delivery system 1080, control and/or facilitate a deployment of the valve 1000 in the annulus of the native valve, and in some instances, at least partially retrieve the valve 1000 from the annulus to allow for adjustment and/or reseating of the valve 1000 or removal of the valve 1000 from the heart (e.g., in the case of failure or patient distress).
The pulling device 1098 can be any suitable device configured to removably couple to the valve 1000 to facilitate advancement (e.g., a pulling) of the valve 1000 through one or more portions of the delivery system 1080. For example, in some embodiments, the pulling device 1098 can include a tether (e.g., a suture, tension member, cable, wire, etc.) that can be coupled to a distal end of the valve 1000 at a first end. An opposite end of the tether can be coupled to the pulling device 1098, which can be and/or can include a spool mechanism or the like about which at least a portion of the tether can be spooled or wound. As described in further detail herein, the spooling and/or winding of the tether can be operable to pull the valve 1000 through the one or more portions of the delivery system 1080.
The lumen 1095 and/or the perimeter of the lumen 1095 at the proximal end has a lateral dimension that substantially corresponds to a lateral width of the valve 1000 configured to be inserted therein. More specifically, the lateral dimension substantially corresponds to a width of the valve 1000 in a laterally compressed configuration. As described in detail above, the valve 1000 can be compressed and/or folded in the lateral direction. In this embodiment, the lateral dimension of the lumen 1095 at the proximal end is such that the valve 1000 is manually compressed and/or folded prior to being inserted into the proximal end of the compression device 1090.
The control portion 1072 can be any suitable shape, size, and/or configuration and can provide a way for a user and/or operator to engage one or more portions of the control device 1072. The control portion 1072 is shown having a number of control arms 1077, each of which can receive and provide a way of controlling a portion of the control device 1070 such as, for example, one or more tethers, tension members, cables, wires, sutures, etc.
The control catheter 1071 can be a steerable, multi-lumen catheter. For example,
The supra-annular region 1020 is shown having a laser cut frame that is wrapped or covered in a biocompatible material. The supra-annular region 1020 includes a proximal spline 1027 that extends between an outer loop and an inner loop of the supra-annular region 1020, as described above with reference to the valve 800. The flow control component 1050 is shown mounted to the inner loop of the supra-annular region 1020. The spline 1027 is shown having a bowed configuration and defining a waypoint 1028. The waypoint 1028 can be, for example, an opening, a hole, an aperture, a port, a coupler, a sealable/resealable access point, and/or the like configured to at least temporarily couple to and/or receive a portion of the delivery system 1080.
The supra-annular region 1020 is further shown as including a drum 1045 that extends between and/or is coupled to the outer loop and the inner loop and covers a space not otherwise occupied by the flow control component 1050. The drum 1045 can have and/or can form a set of spokes that can be used to increase a stiffness of the drum 1045, as described above with reference to the valve 800. The bowed spline 1027 can exert a force on the drum 1045 that bows the drum 1045 and increases a tension across the area of the drum 1045. The increase in tension in the drum 105 and the increase in stiffness of the drum 1045 due to the spokes can, in turn, reduce and/or limit an amount of drum deformation during, for example, diastole or systole, thereby enhancing performance of the valve 1000 and/or reduce fatigue in or along the drum 1045, as described in detail above with reference to the valve 800. The supra-annular region 1020 and/or the drum 1045 is further shown having an attachment member 1038 that can extend along or across a portion of the drum 1045. The attachment member 1038 facilitates a temporary and/or removable attachment to a portion of the control device 1070. The attachment member 1038 can be, for example, a braided thread, a suture, a tether, a cable, and/or the like that can include and/or form a set of loops 1039 or the like allowing for selective engagement of the attachment member 1038.
After advancing the valve 1000 into the loading device 1060, the compression device 1090 can be removed from the proximal end of the loading device 1060. As described above, the first member 1091 and second member 1092 of the compression device 1090 are laterally separable when the coupler 1093 is removed. Thus, the coupler 1093 can be removed and the first member 1091 and the second member 1092 can be separated to decouple the compression device 1090 from the proximal end of the loading device 1060 without, for example, disconnecting, removing, and/or substantially changing the control device 1070 relative to the valve 1000. After removing the compression device 1090 from the loading device 1060, a hemostasis valve 1068 and/or the like can be advanced over a portion of the control device 1070 and coupled to the proximal end of the loading device 1060 (see e.g.,
With the hemostasis valve 1068 coupled to the proximal end of the loading device 1060 and the distal end of the loading device 1060 decoupled from the loading device 1060, the loading device 1060 is ready for coupling to the delivery device 1081. Thus, with the valve 1000 being loaded into the loading device 1060 while in the fluid (e.g., saline) bath, the loading device 1060 with the valve 1000 in the delivery configuration disposed in the lumen 1063, the hemostasis valve 1068 coupled to the proximal end, and the gate 1066 in the closed state can be removed from the bath and brought to, for example, an operating table or the like to be coupled to the proximal end of the delivery device 1081 that is already inserted into the patient.
As described above, the delivery catheter 1082 is previous inserted into the patient and the proximal end of the guidewire 1085 extends from the proximal end of the handle 1088 of the delivery device 1081. Accordingly, prior to coupling the distal end of the loading device 1060 to the proximal end of the handle 1088, the proximal end of the guidewire 1085 is inserted into the guidewire catheter 1084. As described above, the loading device 1060 is coupled to the proximal end of the handle 1088 while the valve 1000 is proximal to the 1066 of the loading device 1060 and each of the gates 1066 and 1086 of the loading device 1060 and the delivery device 1081, respectively, is in a closed state. In some implementations, after coupling the loading device 1060 to the delivery device 1081 and before transitioning the gates 1066 and 1086 to the open state, the volume collectively defined by the lumens 1063 and 1083 disposed between the gates 1066 and 1086 can be flushed via the ports 1067 and 1087. For example, in some implementations, the port(s) 1087 can provide a flow of saline and/or other sterile fluid into the volume while the port(s) 1067 can provide a suction to and/or through at least the volume (or vice versa).
In some instances, it may be desirable to at least partially retrieve the valve 1000 from the annulus during deployment (e.g., to adjust a position, orientation, and/or seating of the valve 1000 in the annulus). In such instances, the control device 1070 further can be used to at least partially retrieve the valve 1000 into the distal end of the delivery catheter 1082. For example, with the connection member 1078 (yoke) removably coupled to the valve 1000, the user and/or operator can exert a proximally directed force on the control device 1070 that can pull that valve 1000 proximally toward and/or into the delivery catheter 1082. Moreover, the delivery system 1080 can include any suitable capture element, feature, member, mechanism, etc. (such as those described herein with reference to specific embodiments) configured to facilitate a compression of the valve 1000 as the valve 1000 is pulled in a proximal direction toward and/or into the delivery catheter 1082. In some instances, after partially retrieving the valve 1000, the control device 1070 can be manipulated to reseat the valve 1000 in the annulus in a desired orientation and/or configuration.
As described above, any of the prosthetic valves described herein can be delivered via a delivery system and can be configured to engage with the delivery system in any suitable manner. In some implementations, a prosthetic valve can be configured to engage a delivery system in a manner similar to those described in the '010 PCT, the '108 PCT, the '327 Provisional, the '964 Provisional, the '345 Provisional, and/or the '807 Provisional incorporated by reference hereinabove.
For example,
In the embodiment shown in
In this embodiment, the actuator 2070 includes a first cable 2047 with an end portion that forms a threaded coupler configured to engage and/or couple to the attachment point 2029 formed by the collar (e.g., a threaded nut or the like). The actuator 2070 includes a second cable 2048 with an end portion that forms a receiving member configured to receive and/or removably couple to the second end of the lead 2041. For example, the receiving member of the second cable 2048 and the coupling feature 2042 formed by the second end of the lead 2041 can be a ball and cup coupling mechanism. Moreover, the actuator 2070 can include and/or can form an outer sheath or catheter configured to at least partially house the first cable 2047 and the second cable 2048.
In some implementations, a retrieval process (or a portion thereof) may be performed during the initial valve deployment/delivery procedure and while the valve 2100 is still attached and/or connected to the elongated connection member 2178. For example, the retrieval process can be performed to at least partially withdraw the prosthetic valve 2100 due to a problem or medical issue identified by the interventionalist that calls for the valve 2100 that was being deployed, to be retrieved or at least partially retrieved. In other implementations, a retrieval process (or a portion thereof) may be performed after the valve 2100 has been deployed and disconnected from the elongated connection member 2178. In such implementations, the elongated connection member 2178 can be reconnected to the valve 2100 (or a new elongated connection member can be connected to the valve 2100). In some implementations, attachment and/or connection can be aided by the use of radio-markers on the elongated connection member 2178 and on a proximal portion of the valve 2100.
As described above with reference to the control catheter shown in
For example,
The method 10 includes compressing the prosthetic valve along the lateral axis of the valve perpendicular to the central axis, at 11. In some implementations, the valve is manually compressed along the lateral axis. For example, a user can exert a lateral force on the valve to compress, fold, and/or squeeze the valve into a laterally compressed configuration.
After laterally compressing the valve, the valve is inserted into a proximal end of a compression device that defines a lumen extending through the proximal end and a distal end, at 12. In some embodiments, a perimeter of the lumen at the proximal end is larger than a perimeter of the lumen at the distal end as described above with reference to the compression device 1090. Moreover, in some implementations, the valve can be inserted into the compression device while that the compression device and the valve are disposed in a fluid bath (e.g., a saline bath or the like). As described above, a distal end of the valve can be inserted into the compression device prior to a proximal end of the valve (e.g., a distal anchoring element can lead the valve through the compression device).
The prosthetic valve is advanced through the lumen of the compression device to compress the prosthetic valve along the central axis, at 13. In some implementations, the advancing of the valve can be in response to a control device and/or the like exerting a force on a proximal end of the valve to push the valve through the compression device, in response to a pulling device pulling the valve through the compression device (e.g., via a tether or the like attached to a distal end of the valve), or in response to a combination of pushing and/or pulling. As described above, a lumen of the compression device can be tapered in at least the axial direction as the lumen extends from the proximal end to the distal end of the compression device. The lumen at the distal end of the compression device can have a perimeter and/or diameter is associated with, for example, an axial-lateral extent of the valve in a compressed and/or delivery configuration. In other words, advancing the valve through the compression device places the valve in the delivery configuration.
The prosthetic valve in the delivery configuration is transferred from the distal end of the compression device into a loading device coupled to the distal end of the compression device, at 14. The loading device defines a lumen having a perimeter that is substantially similar to (i) the perimeter of the lumen at the distal end of the compression device and (ii) a perimeter of a lumen of the delivery catheter. As described above, the valve can be pushed and/or pulled through the compression device and into the loading device. Moreover, the perimeter of the lumen of the loading device is such that the valve is in the delivery configuration when disposed in the lumen of the loading device. With the valve compressed to the compressed and/or delivery configuration, the valve is ready to be advanced, for example, into and/or through the delivery catheter and into a target location in the patient (e.g., an annulus of a native heart valve).
The method 20 includes compressing the prosthetic valve along the lateral axis of the valve perpendicular to the central axis, at 21. In some implementations, the valve is manually compressed along the lateral axis. For example, a user can exert a lateral force on the valve to compress, fold, and/or squeeze the valve into a laterally compressed configuration.
After laterally compressing the valve, the valve is inserted into a proximal end of a compression device that defines a lumen extending through the proximal end and a distal end, at 22. In some embodiments, a perimeter of the lumen at the proximal end is larger than a perimeter of the lumen at the distal end as described above with reference to the compression device 1090. Moreover, in some implementations, the valve can be inserted into the compression device while that the compression device and the valve are disposed in a fluid bath (e.g., a saline bath or the like). As described above, a distal end of the valve can be inserted into the compression device prior to a proximal end of the valve (e.g., a distal anchoring element can lead the valve through the compression device).
The prosthetic valve is pulled through the lumen of the compression device and into a loading device coupled to the compression device via a tether attached to a distal end portion of the valve such that the valve is compressed along the central axis to place the prosthetic valve in a delivery configuration when in the lumen of the loading device, at 23. In some embodiments, the tether can be included in a pulling device that is removably coupled to a distal end of the loading device. For example, the pulling device can be and/or can include a spool and/or winding device about which a portion of the tether is spooled or wound. In such embodiments, rotating the spool, winding, and/or any other suitable portion of the pulling device can increase a tension along the tether that can pull the tether through the compression device and into the loading device. As described in detail above, the compression device can have and/or can define a tapered lumen with a distal end thereof corresponding to a size of the valve in the delivery configuration. The lumen of the loading device can be substantially similar to the lumen at the distal end of the compression device and thus, the valve is in the delivery configuration when pulled into the lumen of the loading device.
The tether is removed from the distal end portion of the prosthetic valve, at 24. For example, the tether can be part of a pulling device and/or the like as described above, which in turn, can be decoupled from the distal end of the loading device. In some implementations, a user can, for example, pull on one end of the tether to withdraw the tether from the distal end portion the valve and the loading device. Moreover, the arrangement of the tether and valve is such that the tether can be removed from the distal end portion of the valve while the valve is in the delivery configuration and disposed in the lumen of the loading device.
The distal end of the loading device is coupled to a delivery device including the delivery catheter, at 25. The delivery device can be any suitable device such as, for example, the delivery device 1081 described above with reference to
The method 30 includes compressing the prosthetic valve along the central axis and the lateral axis to transition the valve from an expanded configuration to a delivery configuration, at 31. In some implementations, the valve is manually compressed along the lateral axis. For example, a user can exert a lateral force on the valve to compress, fold, and/or squeeze the valve into a laterally compressed configuration. In some implementations, after laterally compressing the valve, the valve is advanced through a compression device to compress the valve along the central axis. In other implementations, the valve can be advanced through a compression device without manually compressing the valve along the lateral axis. For example, a first end of a compression device can have a size sufficient to receive an uncompressed valve and advancing the valve therethrough compresses the valve laterally and axially. In some implementations, the compression device can have an inner surface that defines a lumen and the size, shape, and/or configuration of the inner surface can at least partially define the way the valve is compressed as the valve is advanced therethrough. Moreover, a size and/or shape of the inner surface or lumen at a second end (e.g., a distal end) can be associated with a size, shape, and/or axial-lateral extent of the valve in the delivery configuration. Thus, the valve is transitioned from the expanded configuration to a delivery configuration.
The valve in the delivery configuration is advanced into a lumen of a loading device while a first gate at a distal end of the loading device is in a closed state to at least partially occlude the lumen of the loading device, at 32. For example, in some embodiments, the valve can be advanced through a compression device to be placed in the delivery configuration and then advanced into the lumen of the loading device, as described in detail above. In some implementations, the valve can be advanced into the lumen of the loading device to place a distal end or a distal subannular anchoring element in contact with and/or adjacent to a proximal side of the gate in the closed state. In some implementations, a hemostasis valve or the like can be coupled to the proximal end of the loading device when the valve is disposed therein to substantially seal the proximal end, with the prosthetic valve being disposed between the gate in the closed state and the hemostasis valve.
A distal end of the loading device is coupled to a handle of the delivery device while (i) the first gate is in the closed state and (ii) while a second gate at a proximal end of the handle is in a closed state to at least partially occlude a lumen of the handle, at 33. The lumen of the delivery catheter is in fluid communication with the lumen of the handle distal to the second gate. In some instances, a volume collectively defined by the lumens of the loading device and the delivery device between the first gate in the closed state and the second gate state can be flushed while the valve is proximal to the first gate. Each of the first gate and the second gate are transitioned from the closed state to an open state, at 34. For example, in some implementations, the gates are transitioned after flushing and/or the like. In some implementations, the gates can be opened in a substantially concurrent process. In other implementations, the first gate can be transitioned to the open state prior to the second gate, or vice versa. Moreover, transitioning the gates from the closed state to the open state can allow the valve to be advanced from the loading device and into a lumen of the delivery catheter for side-delivery of the valve to a target location in the patient (e.g., an annulus of a native heart valve).
The control device can be any suitable control device, actuator, delivery and/or retrieval system, and/or the like. For example, in some implementations, the control device can include at least a control catheter having a first tether, a second tether, and a tension member extending therethrough, and a yoke coupled to a distal end of the control catheter. In some embodiments, the control device can be similar to and/or substantially the same as the control devices 970 and/or 1070 described in detail above.
The control device can be any suitable control device, actuator, delivery and/or retrieval system, and/or the like. For example, in some implementations, the control device can include at least a control catheter having a first tether, a second tether, and a tension member extending therethrough, and a yoke coupled to a distal end of the control catheter. In some embodiments, the control device can be similar to and/or substantially the same as the control devices 970 and/or 1070 described in detail above.
The method 40 includes increasing a tension along the first tether and the second tether to secure the yoke against a surface of the prosthetic valve, at 41. As described above with reference to the control device 1070, the first tether and the second tether can be looped through a first portion and a second portion of the yoke, respectively, and a first attachment point and a second attachment point on the valve, respectively, to removably couple the yoke to the surface of the valve.
The valve is advanced through a lumen of a delivery catheter while the yoke is secured against the surface of the prosthetic valve, at 42. For example, in some implementations, a user and/or operator can exert a distally directed force on the control device and with the yoke secured against the surface of the valve, the control device can push the valve through the lumen of the delivery device (e.g., via a yoke-valve interface). In other implementations, the control device can include a pusher or the like that can extend through a portion of the valve to engage and/or contact a distal subannular anchoring element. As such, the distally directed force can be exerted on the distal subannular anchoring element, which in turn, can be operable to pull the valve through the lumen of the delivery catheter. In either implementation, when the valve reaches the distal end of the delivery catheter, valve is released from the distal end of the delivery catheter, at 43.
After releasing the valve, a tension along the tension member is increased to transition a proximal subannular anchoring element from a first configuration to a second configuration, at 44. For example, in some implementations, the arrangement of the control device and valve can be similar to and/or substantially the same as the arrangement described above with reference to the valves 600, 700, 800, and/or 1000. In some implementations, for example, the tension along the tension member can pull the proximal subannular anchoring element in a supra-annular direction toward the supra-annular region of the valve. In other implementations, the tension along the tension member can cause the proximal subannular anchoring element (or at least a portion thereof) to swing in one of an anterior direction or a posterior direction. As such, increasing the tension along the tension member can reduce reconfigure the proximal subannular anchoring element to, for example, reduce a perimeter of the subannular region of the valve.
The prosthetic valve is seated in an annulus of a native valve in response to a force exerted by the yoke on the surface of the prosthetic valve, at 45. For example, as described above, the yoke can be removably secured to a surface of the valve such that a distally directed force exerted on a proximal end of the control device results in the yoke exerting at least a portion of the distally directed force on the surface of the valve. In some implementations, a distal end of the control device can be steerable or the like such that at least a portion of the force exerted on the valve is in a subannular direction. In some implementations, the increasing the tension along the tension member can, for example, be operable to bow, bend, steer, deflect, and/or elastically (e.g., non-permanently) deform the distal end of the control device such that a distally directed force exerted along the control device results in the yoke exerting at least a portion of the force in the subannular direction, as described in detail above with reference to the control device 1070 shown in
The tension along the tension member is released to allow the proximal subannular anchoring element to transition from the second configuration toward the first configuration after the seating the prosthetic valve, at 46. For example, as described above with reference to the valves 600, 700, 800, and/or 1000, the proximal anchoring element can be configured to transition between the first configuration and the second configuration. The proximal anchoring element can be placed in the second configuration to reduce a perimeter of at least the subannular region of the valve as the valve is seated in the annulus. Once seated, the proximal anchoring element can be allowed to transition from the second configuration to the first configuration (e.g., an expanded configuration) to at least partially secure the valve in the annulus. In some instances, releasing the tension along the tension members can allow the proximal anchoring element to automatically transition from the second configuration to or toward the first configuration.
Once the valve is seated in the annulus, the control device is decoupled from the prosthetic valve, at 47. For example, as described above with reference to the valve 1000 and the control device 1070, the yoke can be releasably coupled to the valve via the tethers. The arrangement of the tethers can be such that pulling on one of a proximal end or a distal end of the tethers is operable to withdraw the tethers from the yoke and the attachment points of the valve. Thus, the yoke can be decoupled from the valve. Similarly, the tension member can be coupled to the proximal anchoring element in such a releasable manner. Accordingly, decoupling the control device from the valve can include releasing and withdrawing the tethers and the tension member. In addition, the guidewire catheter can be retracted from the valve. The control device can then be retracted through the delivery catheter while the valve remains seated in the annulus.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Likewise, it should be understood that the specific terminology used herein is for the purpose of describing particular embodiments and/or features or components thereof and is not intended to be limiting. Various modifications, changes, and/or variations in form and/or detail may be made without departing from the scope of the disclosure and/or without altering the function and/or advantages thereof unless expressly stated otherwise. Functionally equivalent embodiments, implementations, and/or methods, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions and are intended to fall within the scope of the disclosure.
Where schematics, embodiments, and/or implementations described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments described herein, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.
Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. While methods have been described as having particular steps and/or combinations of steps, other methods are possible having a combination of any steps from any of methods described herein, except mutually exclusive combinations and/or unless the context clearly states otherwise.
This application is a continuation of International Patent Application No. PCT/US2020/047162, filed Aug. 20, 2020, entitled “Delivery and Retrieval Devices and Method for Side-Deliverable Transcatheter Prosthetic Valves,” which claims priority to and the benefit of U.S. Provisional Patent Application No. 63/038,807, filed Jun. 13, 2020, entitled “Retrieval Device and Method for Side-Deliverable Transcatheter Prosthetic Valves;” U.S. Provisional Patent Application No. 63/027,345, filed May 19, 2020, entitled “Side-Deliverable Transcatheter Prosthetic Valves and Method for Delivering and Anchoring the Same;” U.S. Provisional Patent Application No. 62/891,964, filed Aug. 27, 2019, entitled “Wrap Around Anchor Arm and Catheter Delivery System for Side-Delivered Transcatheter Heart Valve Prosthesis;” and U.S. Provisional Patent Application No. 62/889,327, filed Aug. 20, 2019, entitled “Loader System for Side-Delivered Transcatheter Heart Valve Prosthesis,” the disclosure of each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5397351 | Pavcnik et al. | Mar 1995 | A |
5509428 | Dunlop | Apr 1996 | A |
6006134 | Hill et al. | Dec 1999 | A |
6197013 | Reed et al. | Mar 2001 | B1 |
6290719 | Garberoglio | Sep 2001 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6628987 | Hill et al. | Sep 2003 | B1 |
6718208 | Hill et al. | Apr 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6890330 | Streeter et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6904318 | Hill et al. | Jun 2005 | B2 |
6929653 | Strecter | Aug 2005 | B2 |
7074189 | Montegrande | Jul 2006 | B1 |
7125418 | Duran et al. | Oct 2006 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7225019 | Jahns et al. | May 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7449027 | Hunt et al. | Nov 2008 | B2 |
7717952 | Case et al. | May 2010 | B2 |
7749245 | Cohn et al. | Jul 2010 | B2 |
7753949 | Lamphere et al. | Jul 2010 | B2 |
7828840 | Biggs et al. | Nov 2010 | B2 |
7846199 | Paul, Jr. et al. | Dec 2010 | B2 |
8303648 | Grewe et al. | Nov 2012 | B2 |
8366768 | Zhang | Feb 2013 | B2 |
8491650 | Wiemeyer et al. | Jul 2013 | B2 |
8568474 | Yeung et al. | Oct 2013 | B2 |
8641752 | Holm et al. | Feb 2014 | B1 |
8696743 | Holecek et al. | Apr 2014 | B2 |
8728153 | Bishop et al. | May 2014 | B2 |
8758395 | Kleshinski et al. | Jun 2014 | B2 |
8846390 | Dove et al. | Sep 2014 | B2 |
8876892 | Tran et al. | Nov 2014 | B2 |
8900295 | Migliazza et al. | Dec 2014 | B2 |
8915958 | Braido | Dec 2014 | B2 |
8926690 | Kovalsky | Jan 2015 | B2 |
8926692 | Dwork | Jan 2015 | B2 |
8926694 | Costello | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8956404 | Bortlein et al. | Feb 2015 | B2 |
8986370 | Annest et al. | Mar 2015 | B2 |
9011524 | Eberhardt | Apr 2015 | B2 |
9017399 | Gross et al. | Apr 2015 | B2 |
9050188 | Schweich, Jr. et al. | Jun 2015 | B2 |
9072604 | Melnick et al. | Jul 2015 | B1 |
9119714 | Shandas et al. | Sep 2015 | B2 |
9216076 | Mitra et al. | Dec 2015 | B2 |
9232995 | Kovalsky et al. | Jan 2016 | B2 |
9241792 | Benichou et al. | Jan 2016 | B2 |
9248016 | Oba et al. | Feb 2016 | B2 |
9259215 | Chou et al. | Feb 2016 | B2 |
9277990 | Klima et al. | Mar 2016 | B2 |
9289282 | Olson et al. | Mar 2016 | B2 |
9289296 | Braido et al. | Mar 2016 | B2 |
9295547 | Costello et al. | Mar 2016 | B2 |
9301839 | Stante et al. | Apr 2016 | B2 |
9308086 | Ho | Apr 2016 | B2 |
9339367 | Carpenter et al. | May 2016 | B2 |
9370418 | Pintor et al. | Jun 2016 | B2 |
9381083 | Costello | Jul 2016 | B2 |
9387075 | Bortlein et al. | Jul 2016 | B2 |
9393111 | Ma et al. | Jul 2016 | B2 |
9414915 | Lombardi et al. | Aug 2016 | B2 |
9433500 | Chau et al. | Sep 2016 | B2 |
9440054 | Bishop et al. | Sep 2016 | B2 |
9456899 | Yeung et al. | Oct 2016 | B2 |
9468525 | Kovalsky et al. | Oct 2016 | B2 |
9474604 | Centola et al. | Oct 2016 | B2 |
9486306 | Tegels et al. | Nov 2016 | B2 |
9510941 | Bishop et al. | Dec 2016 | B2 |
9554902 | Braido et al. | Jan 2017 | B2 |
9579196 | Morriss et al. | Feb 2017 | B2 |
9579200 | Lederman et al. | Feb 2017 | B2 |
9610159 | Christianson et al. | Apr 2017 | B2 |
9615925 | Subramanian et al. | Apr 2017 | B2 |
9629719 | Rothstein | Apr 2017 | B2 |
9636222 | Oslund | May 2017 | B2 |
9649191 | Savage et al. | May 2017 | B2 |
9662202 | Quill et al. | May 2017 | B2 |
9662203 | Sheahan et al. | May 2017 | B2 |
9662209 | Gross et al. | May 2017 | B2 |
9675454 | Vidlund et al. | Jun 2017 | B2 |
9675485 | Essinger et al. | Jun 2017 | B2 |
9687343 | Bortlein et al. | Jun 2017 | B2 |
9707076 | Stack et al. | Jul 2017 | B2 |
9713530 | Cabiri et al. | Jul 2017 | B2 |
9750607 | Ganesan et al. | Sep 2017 | B2 |
9763778 | Eidenschink et al. | Sep 2017 | B2 |
9763779 | Bortlein et al. | Sep 2017 | B2 |
9788946 | Bobo, Jr. et al. | Oct 2017 | B2 |
9839511 | Ma et al. | Dec 2017 | B2 |
9849011 | Zimmerman et al. | Dec 2017 | B2 |
9855384 | Cohen et al. | Jan 2018 | B2 |
9861464 | Azimpour et al. | Jan 2018 | B2 |
9895219 | Costello et al. | Feb 2018 | B2 |
9901330 | Akpinar | Feb 2018 | B2 |
9918838 | Ring | Mar 2018 | B2 |
9943409 | Kim et al. | Apr 2018 | B2 |
9949825 | Braido et al. | Apr 2018 | B2 |
9968444 | Millwee et al. | May 2018 | B2 |
9968445 | Kheradvar | May 2018 | B2 |
9980815 | Nitzan et al. | May 2018 | B2 |
9987121 | Blanzy | Jun 2018 | B2 |
10010411 | Peter | Jul 2018 | B2 |
10010412 | Taft et al. | Jul 2018 | B2 |
10022054 | Najafi et al. | Jul 2018 | B2 |
10022222 | Groothuis et al. | Jul 2018 | B2 |
10022223 | Bruchman | Jul 2018 | B2 |
10028821 | Centola et al. | Jul 2018 | B2 |
10028831 | Morin et al. | Jul 2018 | B2 |
10034667 | Morris et al. | Jul 2018 | B2 |
10034747 | Harewood | Jul 2018 | B2 |
10039638 | Bruchman et al. | Aug 2018 | B2 |
10058315 | Rafiee et al. | Aug 2018 | B2 |
10058411 | Fifer et al. | Aug 2018 | B2 |
10058421 | Eberhardt et al. | Aug 2018 | B2 |
10058426 | Barbarino | Aug 2018 | B2 |
10064405 | Dale et al. | Sep 2018 | B2 |
10080653 | Conklin et al. | Sep 2018 | B2 |
10085835 | Thambar et al. | Oct 2018 | B2 |
10105224 | Buchbinder et al. | Oct 2018 | B2 |
10117741 | Schweich, Jr. et al. | Nov 2018 | B2 |
10123874 | Khairkhahan et al. | Nov 2018 | B2 |
10130331 | Stigall et al. | Nov 2018 | B2 |
10130467 | Braido et al. | Nov 2018 | B2 |
10149685 | Kizuka | Dec 2018 | B2 |
10154905 | Duffy | Dec 2018 | B2 |
10179043 | Cohen-Tzemach et al. | Jan 2019 | B2 |
10182908 | Tubishevitz et al. | Jan 2019 | B2 |
10182911 | Hillukka | Jan 2019 | B2 |
10206775 | Kovalsky et al. | Feb 2019 | B2 |
10219895 | Wagner et al. | Mar 2019 | B2 |
10219896 | Sandstrom et al. | Mar 2019 | B2 |
10220192 | Drasler et al. | Mar 2019 | B2 |
10226178 | Cohen et al. | Mar 2019 | B2 |
10226335 | Cartledge et al. | Mar 2019 | B2 |
10245142 | Bonhoeffer | Apr 2019 | B2 |
10258467 | Hou et al. | Apr 2019 | B2 |
10265173 | Griffin et al. | Apr 2019 | B2 |
10321987 | Wang et al. | Jun 2019 | B2 |
10321995 | Christianson et al. | Jun 2019 | B1 |
10327895 | Lozonschi et al. | Jun 2019 | B2 |
10327899 | Sandstrom et al. | Jun 2019 | B2 |
10329066 | Kruetzfeldt et al. | Jun 2019 | B2 |
10350047 | Rajpara et al. | Jul 2019 | B2 |
10357361 | Rafi et al. | Jul 2019 | B2 |
10368989 | Duffy et al. | Aug 2019 | B2 |
10398550 | Chalekian et al. | Sep 2019 | B2 |
10426611 | Hariton et al. | Oct 2019 | B2 |
10433957 | Khouengboua et al. | Oct 2019 | B2 |
10433960 | Sutherland et al. | Oct 2019 | B1 |
10463489 | Christianson et al. | Nov 2019 | B2 |
10485976 | Streeter et al. | Nov 2019 | B2 |
10595994 | Christianson et al. | Mar 2020 | B1 |
10631983 | Christianson et al. | Apr 2020 | B1 |
10653522 | Vidlund et al. | May 2020 | B1 |
10758346 | Christianson et al. | Sep 2020 | B1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030153901 | Herweck et al. | Aug 2003 | A1 |
20030166990 | Trauthen et al. | Sep 2003 | A1 |
20030171801 | Bates | Sep 2003 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040116996 | Freitag | Jun 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20050010246 | Streeter et al. | Jan 2005 | A1 |
20050107811 | Starksen et al. | May 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20060015167 | Armstrong et al. | Jan 2006 | A1 |
20060190075 | Jordan et al. | Aug 2006 | A1 |
20060195180 | Kheradvar et al. | Aug 2006 | A1 |
20060271098 | Peacock, III | Nov 2006 | A1 |
20060276887 | Brady et al. | Dec 2006 | A1 |
20070027535 | Purdy, Jr. et al. | Feb 2007 | A1 |
20070032850 | Ruiz et al. | Feb 2007 | A1 |
20070038295 | Case et al. | Feb 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070208417 | Agnew | Sep 2007 | A1 |
20070213805 | Schaeffer et al. | Sep 2007 | A1 |
20070233176 | Gilson et al. | Oct 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070288087 | Fearnot et al. | Dec 2007 | A1 |
20080004686 | Hunt et al. | Jan 2008 | A1 |
20080020013 | Reyes et al. | Jan 2008 | A1 |
20080071287 | Goto | Mar 2008 | A1 |
20080132999 | Mericle et al. | Jun 2008 | A1 |
20080140181 | Reynolds et al. | Jun 2008 | A1 |
20080200977 | Paul et al. | Aug 2008 | A1 |
20080200980 | Robin et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080262592 | Jordan et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275550 | Kheradvar et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090094189 | Stephens | Apr 2009 | A1 |
20090192586 | Tabor et al. | Jul 2009 | A1 |
20090254174 | Case et al. | Oct 2009 | A1 |
20090264991 | Paul, Jr. et al. | Oct 2009 | A1 |
20090287290 | Macaulay et al. | Nov 2009 | A1 |
20100049294 | Zukowski et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100160773 | Cohen et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100174363 | Castro | Jul 2010 | A1 |
20100179583 | Carpenter et al. | Jul 2010 | A1 |
20100179584 | Carpenter et al. | Jul 2010 | A1 |
20100179647 | Carpenter et al. | Jul 2010 | A1 |
20100280591 | Shin et al. | Nov 2010 | A1 |
20100305685 | Millwee et al. | Dec 2010 | A1 |
20110029071 | Zlotnick et al. | Feb 2011 | A1 |
20110071613 | Wood et al. | Mar 2011 | A1 |
20110098804 | Yeung et al. | Apr 2011 | A1 |
20110125145 | Mody et al. | May 2011 | A1 |
20110160836 | Behan | Jun 2011 | A1 |
20110172764 | Badhwar | Jul 2011 | A1 |
20110224785 | Hacohen et al. | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110245917 | Savage et al. | Oct 2011 | A1 |
20110251675 | Dwork | Oct 2011 | A1 |
20110257721 | Tabor | Oct 2011 | A1 |
20110264191 | Rothstein | Oct 2011 | A1 |
20120022605 | Jahns et al. | Jan 2012 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120022644 | Reich et al. | Jan 2012 | A1 |
20120035701 | To | Feb 2012 | A1 |
20120065723 | Drasler et al. | Mar 2012 | A1 |
20120123531 | Tsukashima et al. | May 2012 | A1 |
20120137521 | Millwee et al. | Jun 2012 | A1 |
20120165928 | Nitzan et al. | Jun 2012 | A1 |
20120172981 | DuMontelle | Jul 2012 | A1 |
20120203336 | Annest | Aug 2012 | A1 |
20120209375 | Madrid et al. | Aug 2012 | A1 |
20120232574 | Kim et al. | Sep 2012 | A1 |
20120277853 | Rothstein | Nov 2012 | A1 |
20120310327 | McHugo | Dec 2012 | A1 |
20130055941 | Holecek et al. | Mar 2013 | A1 |
20130131714 | Wang et al. | May 2013 | A1 |
20130131792 | Miller et al. | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130184742 | Ganesan et al. | Jul 2013 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130197621 | Ryan et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130238010 | Johnson et al. | Sep 2013 | A1 |
20130238089 | Lichtenstein et al. | Sep 2013 | A1 |
20130253570 | Bates | Sep 2013 | A1 |
20130274618 | Hou et al. | Oct 2013 | A1 |
20130274855 | Stante et al. | Oct 2013 | A1 |
20130282110 | Schweich, Jr. | Oct 2013 | A1 |
20130297010 | Bishop et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140000112 | Braido et al. | Jan 2014 | A1 |
20140005540 | Merhi | Jan 2014 | A1 |
20140005768 | Thomas et al. | Jan 2014 | A1 |
20140012372 | Chau et al. | Jan 2014 | A1 |
20140018915 | Baidillah et al. | Jan 2014 | A1 |
20140039511 | Morris et al. | Feb 2014 | A1 |
20140039611 | Lane et al. | Feb 2014 | A1 |
20140081383 | Eberhardt et al. | Mar 2014 | A1 |
20140088680 | Costello et al. | Mar 2014 | A1 |
20140107758 | Glazier | Apr 2014 | A1 |
20140110279 | Kruetzfeldt et al. | Apr 2014 | A1 |
20140114403 | Dale et al. | Apr 2014 | A1 |
20140121763 | Duffy et al. | May 2014 | A1 |
20140135895 | Andress et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140172070 | Seguin | Jun 2014 | A1 |
20140180069 | Millett | Jun 2014 | A1 |
20140180070 | Millett et al. | Jun 2014 | A1 |
20140194704 | Millett et al. | Jul 2014 | A1 |
20140214069 | Franklin | Jul 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222137 | Miller et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140249566 | Quinn et al. | Sep 2014 | A1 |
20140257466 | Board et al. | Sep 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140276616 | Smith et al. | Sep 2014 | A1 |
20140276971 | Kovach | Sep 2014 | A1 |
20140277342 | Roeder et al. | Sep 2014 | A1 |
20140277388 | Skemp | Sep 2014 | A1 |
20140277408 | Folan | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140303718 | Tegels et al. | Oct 2014 | A1 |
20140303724 | Bluestein et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140324161 | Tegels et al. | Oct 2014 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20140371789 | Hariton et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150005808 | Chouinard et al. | Jan 2015 | A1 |
20150005874 | Vidlund et al. | Jan 2015 | A1 |
20150039081 | Costello | Feb 2015 | A1 |
20150045880 | Hacohen | Feb 2015 | A1 |
20150051687 | Dickerhoff et al. | Feb 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150112188 | Stigall et al. | Apr 2015 | A1 |
20150119982 | Quill et al. | Apr 2015 | A1 |
20150127093 | Hosmer et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150173898 | Drasler et al. | Jun 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150196391 | Dwork | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150216661 | Hacohen et al. | Aug 2015 | A1 |
20150230919 | Chau et al. | Aug 2015 | A1 |
20150245934 | Lombardi et al. | Sep 2015 | A1 |
20150257878 | Lane et al. | Sep 2015 | A1 |
20150257880 | Bortlein et al. | Sep 2015 | A1 |
20150257882 | Bortlein et al. | Sep 2015 | A1 |
20150265400 | Eidenschink et al. | Sep 2015 | A1 |
20150272731 | Racchini et al. | Oct 2015 | A1 |
20150282922 | Hingston et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150289971 | Costello et al. | Oct 2015 | A1 |
20150289975 | Costello | Oct 2015 | A1 |
20150297241 | Yodfat et al. | Oct 2015 | A1 |
20150305867 | Liu et al. | Oct 2015 | A1 |
20150313701 | Krahbichler | Nov 2015 | A1 |
20150335424 | McLean et al. | Nov 2015 | A1 |
20150342717 | O'Donnell et al. | Dec 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150351910 | Gilmore et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20160008130 | Hasin | Jan 2016 | A1 |
20160008131 | Christianson et al. | Jan 2016 | A1 |
20160022417 | Karapetian et al. | Jan 2016 | A1 |
20160030165 | Mitra et al. | Feb 2016 | A1 |
20160030167 | Delaloye et al. | Feb 2016 | A1 |
20160038283 | Divekar et al. | Feb 2016 | A1 |
20160045165 | Braido et al. | Feb 2016 | A1 |
20160045306 | Agrawal et al. | Feb 2016 | A1 |
20160045309 | Valdez et al. | Feb 2016 | A1 |
20160067031 | Kassab et al. | Mar 2016 | A1 |
20160081799 | Leo et al. | Mar 2016 | A1 |
20160095703 | Thomas et al. | Apr 2016 | A1 |
20160095704 | Whitman | Apr 2016 | A1 |
20160113764 | Sheahan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160143721 | Rosenbluth et al. | May 2016 | A1 |
20160143730 | Kheradvar | May 2016 | A1 |
20160143735 | Subramanian et al. | May 2016 | A1 |
20160143739 | Horgan et al. | May 2016 | A1 |
20160158004 | Kumar et al. | Jun 2016 | A1 |
20160158007 | Centola et al. | Jun 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160166382 | Nguyen | Jun 2016 | A1 |
20160184488 | Toyoda et al. | Jun 2016 | A1 |
20160194425 | Mitra et al. | Jul 2016 | A1 |
20160213470 | Ahlberg et al. | Jul 2016 | A1 |
20160213473 | Hacohen et al. | Jul 2016 | A1 |
20160220367 | Barrett | Aug 2016 | A1 |
20160220372 | Medema et al. | Aug 2016 | A1 |
20160220734 | Dyamenahalli et al. | Aug 2016 | A1 |
20160228250 | Casley et al. | Aug 2016 | A1 |
20160235530 | Thomas et al. | Aug 2016 | A1 |
20160256269 | Cahalane et al. | Sep 2016 | A1 |
20160256270 | Folan et al. | Sep 2016 | A1 |
20160270911 | Ganesan et al. | Sep 2016 | A1 |
20160303804 | Grbic et al. | Oct 2016 | A1 |
20160310274 | Gross et al. | Oct 2016 | A1 |
20160317301 | Quadri et al. | Nov 2016 | A1 |
20160324639 | Nguyen et al. | Nov 2016 | A1 |
20160331534 | Buchbinder et al. | Nov 2016 | A1 |
20160354201 | Keogh | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20160361184 | Tabor et al. | Dec 2016 | A1 |
20160367360 | Cartledge et al. | Dec 2016 | A1 |
20160367364 | Torrianni et al. | Dec 2016 | A1 |
20170000603 | Conklin et al. | Jan 2017 | A1 |
20170000604 | Conklin et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170035562 | Quadri et al. | Feb 2017 | A1 |
20170035568 | Lombardi et al. | Feb 2017 | A1 |
20170056166 | Ratz et al. | Mar 2017 | A1 |
20170056171 | Cooper et al. | Mar 2017 | A1 |
20170071733 | Ghione et al. | Mar 2017 | A1 |
20170071736 | Zhu et al. | Mar 2017 | A1 |
20170076014 | Bressloff | Mar 2017 | A1 |
20170079786 | Li et al. | Mar 2017 | A1 |
20170079795 | Morrissey | Mar 2017 | A1 |
20170100246 | Rust et al. | Apr 2017 | A1 |
20170112620 | Curley et al. | Apr 2017 | A1 |
20170128208 | Christianson et al. | May 2017 | A1 |
20170143488 | Lashinski | May 2017 | A1 |
20170143489 | Lashinski | May 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170172737 | Kuetting et al. | Jun 2017 | A1 |
20170181851 | Annest | Jun 2017 | A1 |
20170189177 | Schweich, Jr. et al. | Jul 2017 | A1 |
20170196690 | Racchini et al. | Jul 2017 | A1 |
20170209266 | Lane et al. | Jul 2017 | A1 |
20170209268 | Cunningham et al. | Jul 2017 | A1 |
20170216026 | Quill et al. | Aug 2017 | A1 |
20170216030 | Jonsson | Aug 2017 | A1 |
20170224480 | Garde et al. | Aug 2017 | A1 |
20170224486 | Delaloye et al. | Aug 2017 | A1 |
20170231755 | Gloss et al. | Aug 2017 | A1 |
20170231760 | Lane et al. | Aug 2017 | A1 |
20170239047 | Quill et al. | Aug 2017 | A1 |
20170245993 | Gross et al. | Aug 2017 | A1 |
20170245994 | Khairkhahan et al. | Aug 2017 | A1 |
20170252163 | Kheradvar | Sep 2017 | A1 |
20170258584 | Chang et al. | Sep 2017 | A1 |
20170258585 | Marquez et al. | Sep 2017 | A1 |
20170273784 | Racchini et al. | Sep 2017 | A1 |
20170281337 | Campbell | Oct 2017 | A1 |
20170281341 | Lim et al. | Oct 2017 | A1 |
20170296340 | Gross et al. | Oct 2017 | A1 |
20170325948 | Wallace et al. | Nov 2017 | A1 |
20170325976 | Nguyen et al. | Nov 2017 | A1 |
20170333184 | Ryan | Nov 2017 | A1 |
20170333240 | Stangenes et al. | Nov 2017 | A1 |
20170348099 | Mendelson et al. | Dec 2017 | A1 |
20170348100 | Lane et al. | Dec 2017 | A1 |
20170360558 | Ma | Dec 2017 | A1 |
20170360561 | Bell et al. | Dec 2017 | A1 |
20180021130 | Danino | Jan 2018 | A1 |
20180035971 | Brenner et al. | Feb 2018 | A1 |
20180042549 | Ho et al. | Feb 2018 | A1 |
20180042723 | Yellin et al. | Feb 2018 | A1 |
20180043133 | Wong | Feb 2018 | A1 |
20180049875 | Iflah et al. | Feb 2018 | A1 |
20180049876 | Miraki | Feb 2018 | A1 |
20180055628 | Patel et al. | Mar 2018 | A1 |
20180055633 | Costello et al. | Mar 2018 | A1 |
20180056045 | Donoghue et al. | Mar 2018 | A1 |
20180056046 | Kiersey et al. | Mar 2018 | A1 |
20180071088 | Badhwar et al. | Mar 2018 | A1 |
20180078367 | Saar et al. | Mar 2018 | A1 |
20180078368 | Vidlund et al. | Mar 2018 | A1 |
20180078370 | Kovalsky et al. | Mar 2018 | A1 |
20180085219 | Krivoruchko | Mar 2018 | A1 |
20180098837 | Shahriari | Apr 2018 | A1 |
20180099124 | McLoughlin et al. | Apr 2018 | A1 |
20180116793 | Salahieh et al. | May 2018 | A1 |
20180116843 | Schreck et al. | May 2018 | A1 |
20180125642 | White et al. | May 2018 | A1 |
20180125654 | Duffy | May 2018 | A1 |
20180126127 | Devereux et al. | May 2018 | A1 |
20180133000 | Scheinblum et al. | May 2018 | A1 |
20180133006 | Jones et al. | May 2018 | A1 |
20180133011 | Perouse | May 2018 | A1 |
20180140417 | Sciscio et al. | May 2018 | A1 |
20180147041 | Chouinard et al. | May 2018 | A1 |
20180147055 | Vidlund et al. | May 2018 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180161158 | Kovalsky et al. | Jun 2018 | A1 |
20180161161 | Yellin et al. | Jun 2018 | A1 |
20180168793 | Lees et al. | Jun 2018 | A1 |
20180177580 | Shemesh et al. | Jun 2018 | A9 |
20180177594 | Patel et al. | Jun 2018 | A1 |
20180185153 | Bishop et al. | Jul 2018 | A1 |
20180193138 | Vidlund | Jul 2018 | A1 |
20180200049 | Chambers et al. | Jul 2018 | A1 |
20180214141 | Mendez | Aug 2018 | A1 |
20180221016 | Conklin et al. | Aug 2018 | A1 |
20180243071 | Eigler et al. | Aug 2018 | A1 |
20180243532 | Willard et al. | Aug 2018 | A1 |
20180256322 | Zhang et al. | Sep 2018 | A1 |
20180256327 | Perszyk et al. | Sep 2018 | A1 |
20180263767 | Chau et al. | Sep 2018 | A1 |
20180263773 | Poppe et al. | Sep 2018 | A1 |
20180280174 | Dwork | Oct 2018 | A1 |
20180289474 | Rajagopal et al. | Oct 2018 | A1 |
20180289475 | Chung et al. | Oct 2018 | A1 |
20180289485 | Rajagopal et al. | Oct 2018 | A1 |
20180296335 | Miyashiro | Oct 2018 | A1 |
20180296337 | Duhay et al. | Oct 2018 | A1 |
20180303488 | Hill | Oct 2018 | A1 |
20180311037 | Morriss et al. | Nov 2018 | A1 |
20180311474 | Tyler, II et al. | Nov 2018 | A1 |
20180318073 | Tseng et al. | Nov 2018 | A1 |
20180318078 | Willard | Nov 2018 | A1 |
20180325665 | Gurovich et al. | Nov 2018 | A1 |
20180325671 | Abunassar et al. | Nov 2018 | A1 |
20180338832 | Ganesan et al. | Nov 2018 | A1 |
20180344456 | Barash et al. | Dec 2018 | A1 |
20180353293 | Colavito et al. | Dec 2018 | A1 |
20180353295 | Cooper et al. | Dec 2018 | A1 |
20180360439 | Niland et al. | Dec 2018 | A1 |
20180360599 | Drasler et al. | Dec 2018 | A1 |
20190000619 | Quijano et al. | Jan 2019 | A1 |
20190008640 | Cooper et al. | Jan 2019 | A1 |
20190015188 | Eigler et al. | Jan 2019 | A1 |
20190021834 | Nir et al. | Jan 2019 | A1 |
20190029823 | Nguyen et al. | Jan 2019 | A1 |
20190038404 | Iamberger et al. | Feb 2019 | A1 |
20190038405 | Iamberger et al. | Feb 2019 | A1 |
20190053894 | Levi et al. | Feb 2019 | A1 |
20190053895 | Levi | Feb 2019 | A1 |
20190053897 | Levi et al. | Feb 2019 | A1 |
20190053898 | Maimon et al. | Feb 2019 | A1 |
20190053899 | Levi | Feb 2019 | A1 |
20190060051 | Scheeff et al. | Feb 2019 | A1 |
20190060057 | Cohen et al. | Feb 2019 | A1 |
20190060059 | Delgado et al. | Feb 2019 | A1 |
20190060069 | Maimon et al. | Feb 2019 | A1 |
20190060071 | Lane et al. | Feb 2019 | A1 |
20190070003 | Siegel et al. | Mar 2019 | A1 |
20190076233 | Fish | Mar 2019 | A1 |
20190076249 | Khairkhahan et al. | Mar 2019 | A1 |
20190083085 | Gilmore et al. | Mar 2019 | A1 |
20190091005 | Fifer et al. | Mar 2019 | A1 |
20190091015 | Dienno et al. | Mar 2019 | A1 |
20190091018 | Hariton et al. | Mar 2019 | A1 |
20190091022 | Yellin et al. | Mar 2019 | A1 |
20190099265 | Braido et al. | Apr 2019 | A1 |
20190099270 | Morrissey et al. | Apr 2019 | A1 |
20190105153 | Barash et al. | Apr 2019 | A1 |
20190117223 | Abunassar et al. | Apr 2019 | A1 |
20190117387 | Li et al. | Apr 2019 | A1 |
20190117391 | Humair | Apr 2019 | A1 |
20190117400 | Medema et al. | Apr 2019 | A1 |
20190117401 | Cortez, Jr. et al. | Apr 2019 | A1 |
20190125287 | Itou et al. | May 2019 | A1 |
20190125536 | Prabhu et al. | May 2019 | A1 |
20190133528 | Kassab et al. | May 2019 | A1 |
20190133756 | Zhang et al. | May 2019 | A1 |
20190133757 | Zhang et al. | May 2019 | A1 |
20190133765 | Yellin et al. | May 2019 | A1 |
20190142566 | Lansky et al. | May 2019 | A1 |
20190142582 | Drasler et al. | May 2019 | A1 |
20190150867 | Itou et al. | May 2019 | A1 |
20190151509 | Kheradvar et al. | May 2019 | A1 |
20190167423 | Hariton et al. | Jun 2019 | A1 |
20190167429 | Stearns et al. | Jun 2019 | A1 |
20190175338 | White et al. | Jun 2019 | A1 |
20190175339 | Vidlund | Jun 2019 | A1 |
20190175344 | Khairkhahan | Jun 2019 | A1 |
20190183639 | Moore | Jun 2019 | A1 |
20190183644 | Hacohen | Jun 2019 | A1 |
20190183648 | Trapp et al. | Jun 2019 | A1 |
20190192287 | Sandstrom et al. | Jun 2019 | A1 |
20190192296 | Schwartz et al. | Jun 2019 | A1 |
20190209317 | Zhang et al. | Jul 2019 | A1 |
20190209320 | Drasler et al. | Jul 2019 | A1 |
20190231523 | Lombardi et al. | Aug 2019 | A1 |
20190240020 | Rafiee et al. | Aug 2019 | A1 |
20190240022 | Rafiee et al. | Aug 2019 | A1 |
20190247050 | Goldsmith | Aug 2019 | A1 |
20190254815 | Bruchman et al. | Aug 2019 | A1 |
20190254816 | Anderson et al. | Aug 2019 | A1 |
20190262118 | Eigler et al. | Aug 2019 | A1 |
20190262129 | Cooper et al. | Aug 2019 | A1 |
20190269413 | Yodfat et al. | Sep 2019 | A1 |
20190269504 | Wang et al. | Sep 2019 | A1 |
20190269839 | Wilson et al. | Sep 2019 | A1 |
20190282360 | Colavito et al. | Sep 2019 | A1 |
20190290426 | Maimon et al. | Sep 2019 | A1 |
20190290427 | Mantanus et al. | Sep 2019 | A1 |
20190307563 | Sandstrom et al. | Oct 2019 | A1 |
20190307589 | Goldberg et al. | Oct 2019 | A1 |
20190388219 | Lane et al. | Dec 2019 | A1 |
20200121452 | Saikrishnan et al. | Apr 2020 | A1 |
20200121458 | Vidlund et al. | Apr 2020 | A1 |
20200179146 | Christianson et al. | Jun 2020 | A1 |
20200188097 | Perrin et al. | Jun 2020 | A1 |
20200237506 | Christianson et al. | Jul 2020 | A1 |
20200289259 | Christianson et al. | Sep 2020 | A1 |
20200289263 | Christianson et al. | Sep 2020 | A1 |
20210000592 | Christianson et al. | Jan 2021 | A1 |
20210137677 | Christianson et al. | May 2021 | A1 |
20210154011 | Christianson et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2006203686 | Nov 2008 | AU |
2009219415 | Sep 2009 | AU |
2011238752 | Oct 2012 | AU |
2011240940 | Oct 2012 | AU |
2012272855 | Jan 2014 | AU |
2011236036 | Jun 2014 | AU |
2011248657 | Dec 2014 | AU |
2016228261 | Apr 2017 | AU |
2017210659 | Aug 2017 | AU |
2013245201 | Oct 2017 | AU |
2014360294 | Oct 2017 | AU |
2016249819 | Nov 2017 | AU |
2016371525 | May 2018 | AU |
2016366783 | Jun 2018 | AU |
2017214672 | Oct 2018 | AU |
2017285993 | Jan 2019 | AU |
2014201920 | Feb 2019 | AU |
2015411406 | Feb 2019 | AU |
2019202290 | Apr 2019 | AU |
2017388857 | Aug 2019 | AU |
PI0909379 | Sep 2019 | BR |
2531528 | Jan 2005 | CA |
2609800 | Jan 2007 | CA |
2822636 | Oct 2008 | CA |
2398948 | Aug 2009 | CA |
2813419 | Apr 2012 | CA |
2856088 | May 2013 | CA |
2866315 | Sep 2013 | CA |
2922123 | Apr 2015 | CA |
2504258 | Jun 2015 | CA |
2677648 | Oct 2015 | CA |
2815331 | Oct 2015 | CA |
2986584 | Nov 2015 | CA |
2975294 | Aug 2016 | CA |
2995603 | Feb 2017 | CA |
2753853 | Apr 2017 | CA |
2702615 | Jun 2017 | CA |
2744395 | Aug 2017 | CA |
3020238 | Nov 2017 | CA |
3033666 | Feb 2018 | CA |
3031572 | Mar 2018 | CA |
3022641 | May 2018 | CA |
3044062 | Jun 2018 | CA |
3048893 | Jul 2018 | CA |
3049792 | Jul 2018 | CA |
3046693 | Aug 2018 | CA |
2778944 | Aug 2019 | CA |
2855366 | Jan 2007 | CN |
100584292 | Jan 2010 | CN |
101677820 | Mar 2010 | CN |
101677851 | Mar 2010 | CN |
102858272 | Jan 2013 | CN |
102869320 | Jan 2013 | CN |
102892384 | Jan 2013 | CN |
103118630 | May 2013 | CN |
103189015 | Jul 2013 | CN |
103228231 | Jul 2013 | CN |
103298426 | Sep 2013 | CN |
103370035 | Oct 2013 | CN |
103391756 | Nov 2013 | CN |
102245120 | Aug 2014 | CN |
104220027 | Dec 2014 | CN |
102917668 | Jan 2015 | CN |
104394803 | Mar 2015 | CN |
104582637 | Apr 2015 | CN |
102905647 | Jul 2015 | CN |
103648570 | Sep 2015 | CN |
104884000 | Sep 2015 | CN |
104160076 | Dec 2015 | CN |
105380730 | Mar 2016 | CN |
105451687 | Mar 2016 | CN |
105520792 | Apr 2016 | CN |
105530893 | Apr 2016 | CN |
102458309 | May 2016 | CN |
103200900 | May 2016 | CN |
105555232 | May 2016 | CN |
105578992 | May 2016 | CN |
103338709 | Jun 2016 | CN |
105658178 | Jun 2016 | CN |
105792780 | Jul 2016 | CN |
103347467 | Aug 2016 | CN |
103648439 | Aug 2016 | CN |
103889472 | Aug 2016 | CN |
105899150 | Aug 2016 | CN |
103153232 | Sep 2016 | CN |
106061437 | Oct 2016 | CN |
106068109 | Nov 2016 | CN |
106073946 | Nov 2016 | CN |
106255475 | Dec 2016 | CN |
103917194 | Feb 2017 | CN |
106456324 | Feb 2017 | CN |
106456325 | Feb 2017 | CN |
105073068 | Mar 2017 | CN |
106470641 | Mar 2017 | CN |
105451684 | Apr 2017 | CN |
106573129 | Apr 2017 | CN |
103945792 | May 2017 | CN |
106659394 | May 2017 | CN |
106716098 | May 2017 | CN |
106794063 | May 2017 | CN |
106890035 | Jun 2017 | CN |
106943207 | Jul 2017 | CN |
106999054 | Aug 2017 | CN |
106999281 | Aug 2017 | CN |
104114127 | Sep 2017 | CN |
107115161 | Sep 2017 | CN |
107249482 | Oct 2017 | CN |
107260366 | Oct 2017 | CN |
104918582 | Nov 2017 | CN |
107374783 | Nov 2017 | CN |
107427364 | Dec 2017 | CN |
106255476 | Jan 2018 | CN |
107530157 | Jan 2018 | CN |
107530167 | Jan 2018 | CN |
107530177 | Jan 2018 | CN |
107613908 | Jan 2018 | CN |
104869948 | Feb 2018 | CN |
107714240 | Feb 2018 | CN |
107920897 | Apr 2018 | CN |
104853696 | Jun 2018 | CN |
108135696 | Jun 2018 | CN |
108430392 | Aug 2018 | CN |
108472142 | Aug 2018 | CN |
106726007 | Nov 2018 | CN |
109124829 | Jan 2019 | CN |
109199641 | Jan 2019 | CN |
109561962 | Apr 2019 | CN |
109567991 | Apr 2019 | CN |
109862835 | Jun 2019 | CN |
109906063 | Jun 2019 | CN |
109996581 | Jul 2019 | CN |
110013358 | Jul 2019 | CN |
110290764 | Sep 2019 | CN |
102014102648 | Sep 2015 | DE |
102014102650 | Sep 2015 | DE |
102014102718 | Sep 2015 | DE |
102014102722 | Sep 2015 | DE |
202017104793 | Nov 2018 | DE |
202016008737 | Apr 2019 | DE |
2549953 | Feb 2017 | DK |
2254514 | Dec 2018 | DK |
027348 | Jul 2017 | EA |
0902704 | Mar 1999 | EP |
1301225 | Apr 2003 | EP |
1684666 | Aug 2006 | EP |
1996246 | Dec 2008 | EP |
2211779 | Aug 2010 | EP |
2254513 | Dec 2010 | EP |
2263605 | Dec 2010 | EP |
2273947 | Jan 2011 | EP |
2296744 | Mar 2011 | EP |
2379008 | Oct 2011 | EP |
2400926 | Jan 2012 | EP |
2427145 | Mar 2012 | EP |
1582178 | Sep 2012 | EP |
2542186 | Jan 2013 | EP |
2558030 | Feb 2013 | EP |
2560579 | Feb 2013 | EP |
2575681 | Apr 2013 | EP |
2603172 | Jun 2013 | EP |
2637607 | Sep 2013 | EP |
2651337 | Oct 2013 | EP |
2658476 | Nov 2013 | EP |
2699201 | Feb 2014 | EP |
2405966 | Apr 2014 | EP |
2055263 | Jun 2014 | EP |
2741711 | Jun 2014 | EP |
2793763 | Oct 2014 | EP |
2822503 | Jan 2015 | EP |
2538879 | Apr 2015 | EP |
2444031 | Jul 2015 | EP |
1702247 | Aug 2015 | EP |
2772228 | Nov 2015 | EP |
2943160 | Nov 2015 | EP |
2470098 | Dec 2015 | EP |
1991168 | Jan 2016 | EP |
2254512 | Jan 2016 | EP |
2964152 | Jan 2016 | EP |
2967853 | Jan 2016 | EP |
2967860 | Jan 2016 | EP |
2994073 | Mar 2016 | EP |
3001978 | Apr 2016 | EP |
3003187 | Apr 2016 | EP |
3007649 | Apr 2016 | EP |
3010447 | Apr 2016 | EP |
3017792 | May 2016 | EP |
3019092 | May 2016 | EP |
2563236 | Jun 2016 | EP |
3027143 | Jun 2016 | EP |
3037064 | Jun 2016 | EP |
2211758 | Jul 2016 | EP |
3052053 | Aug 2016 | EP |
3060140 | Aug 2016 | EP |
3062745 | Sep 2016 | EP |
3071149 | Sep 2016 | EP |
2282700 | Nov 2016 | EP |
2967854 | Nov 2016 | EP |
1998713 | Dec 2016 | EP |
3099271 | Dec 2016 | EP |
3100701 | Dec 2016 | EP |
3141219 | Mar 2017 | EP |
3157469 | Apr 2017 | EP |
2538880 | May 2017 | EP |
2967852 | Jun 2017 | EP |
3174503 | Jun 2017 | EP |
3182931 | Jun 2017 | EP |
2830536 | Aug 2017 | EP |
2830537 | Sep 2017 | EP |
2720642 | Oct 2017 | EP |
3232941 | Oct 2017 | EP |
3256076 | Dec 2017 | EP |
3281608 | Feb 2018 | EP |
2608815 | Mar 2018 | EP |
3310302 | Apr 2018 | EP |
3311778 | Apr 2018 | EP |
3337412 | Jun 2018 | EP |
3340931 | Jul 2018 | EP |
3344188 | Jul 2018 | EP |
3344197 | Jul 2018 | EP |
3345573 | Jul 2018 | EP |
2822473 | Aug 2018 | EP |
3354208 | Aug 2018 | EP |
3370649 | Sep 2018 | EP |
3372198 | Sep 2018 | EP |
3372199 | Sep 2018 | EP |
3375411 | Sep 2018 | EP |
2928538 | Nov 2018 | EP |
3399947 | Nov 2018 | EP |
3400913 | Nov 2018 | EP |
3406224 | Nov 2018 | EP |
2555709 | Dec 2018 | EP |
3417813 | Dec 2018 | EP |
3426188 | Jan 2019 | EP |
3429507 | Jan 2019 | EP |
3431040 | Jan 2019 | EP |
3432825 | Jan 2019 | EP |
3432834 | Jan 2019 | EP |
3437669 | Feb 2019 | EP |
3448312 | Mar 2019 | EP |
3454787 | Mar 2019 | EP |
2663259 | May 2019 | EP |
3302364 | May 2019 | EP |
3478224 | May 2019 | EP |
3484411 | May 2019 | EP |
3487420 | May 2019 | EP |
2560580 | Jun 2019 | EP |
3508113 | Jul 2019 | EP |
3518748 | Aug 2019 | EP |
3522830 | Aug 2019 | EP |
3528749 | Aug 2019 | EP |
3288495 | Sep 2019 | EP |
3538024 | Sep 2019 | EP |
3538025 | Sep 2019 | EP |
3019123 | Oct 2019 | EP |
3552584 | Oct 2019 | EP |
3552655 | Oct 2019 | EP |
2369241 | Nov 2011 | ES |
2647777 | Dec 2017 | ES |
2664243 | Apr 2018 | ES |
2675726 | Jul 2018 | ES |
2539444 | Dec 2016 | GB |
2003530956 | Oct 2003 | JP |
2005521513 | Jul 2005 | JP |
2008506459 | Mar 2008 | JP |
2008512211 | Apr 2008 | JP |
2009148579 | Jul 2009 | JP |
2009525138 | Jul 2009 | JP |
2009527316 | Jul 2009 | JP |
2009254864 | Nov 2009 | JP |
4426182 | Mar 2010 | JP |
2010518947 | Jun 2010 | JP |
2010537680 | Dec 2010 | JP |
2011510797 | Apr 2011 | JP |
2013503009 | Jan 2013 | JP |
2013505082 | Feb 2013 | JP |
2013508027 | Mar 2013 | JP |
2013512765 | Apr 2013 | JP |
2013523261 | Jun 2013 | JP |
2013527010 | Jun 2013 | JP |
2013543399 | Dec 2013 | JP |
2014501563 | Jan 2014 | JP |
2014505537 | Mar 2014 | JP |
5527850 | Jun 2014 | JP |
2014518697 | Aug 2014 | JP |
2014522678 | Sep 2014 | JP |
2015503948 | Feb 2015 | JP |
2015510819 | Apr 2015 | JP |
2015517854 | Jun 2015 | JP |
5767764 | Aug 2015 | JP |
5803010 | Nov 2015 | JP |
2015531283 | Nov 2015 | JP |
2015534887 | Dec 2015 | JP |
2016503710 | Feb 2016 | JP |
2016506794 | Mar 2016 | JP |
2016508858 | Mar 2016 | JP |
2016517748 | Jun 2016 | JP |
2016520391 | Jul 2016 | JP |
2016526438 | Sep 2016 | JP |
2016530046 | Sep 2016 | JP |
2016533787 | Nov 2016 | JP |
2016540617 | Dec 2016 | JP |
2017000729 | Jan 2017 | JP |
2017504410 | Feb 2017 | JP |
2017515609 | Jun 2017 | JP |
2017516536 | Jun 2017 | JP |
2017516609 | Jun 2017 | JP |
2017131738 | Aug 2017 | JP |
2017159055 | Sep 2017 | JP |
2017529908 | Oct 2017 | JP |
2018501001 | Jan 2018 | JP |
2018501901 | Jan 2018 | JP |
2018506412 | Mar 2018 | JP |
6329570 | May 2018 | JP |
2018515306 | Jun 2018 | JP |
2018118136 | Aug 2018 | JP |
2018532556 | Nov 2018 | JP |
2018535074 | Nov 2018 | JP |
2019500952 | Jan 2019 | JP |
2019501696 | Jan 2019 | JP |
2019501712 | Jan 2019 | JP |
6466853 | Feb 2019 | JP |
6480343 | Mar 2019 | JP |
2019507664 | Mar 2019 | JP |
6506813 | Apr 2019 | JP |
6526043 | Jun 2019 | JP |
2019103821 | Jun 2019 | JP |
2019514490 | Jun 2019 | JP |
2019516527 | Jun 2019 | JP |
2019517346 | Jun 2019 | JP |
6568213 | Aug 2019 | JP |
2019134972 | Aug 2019 | JP |
2019523090 | Aug 2019 | JP |
2019155178 | Sep 2019 | JP |
2019526303 | Sep 2019 | JP |
20010013991 | Feb 2001 | KR |
20120101625 | Sep 2012 | KR |
101223313 | Jan 2013 | KR |
101354189 | Jan 2014 | KR |
20140139060 | Dec 2014 | KR |
20150097757 | Aug 2015 | KR |
20160024992 | Mar 2016 | KR |
177405 | Feb 2018 | RU |
WO-0044308 | Aug 2000 | WO |
WO-03072287 | Sep 2003 | WO |
WO-2004093728 | Nov 2004 | WO |
WO-2006029062 | Mar 2006 | WO |
WO-2006066150 | Jun 2006 | WO |
WO-2007047945 | Apr 2007 | WO |
WO-2007054015 | May 2007 | WO |
WO-2007095233 | Aug 2007 | WO |
WO-2007129220 | Nov 2007 | WO |
WO-2008013915 | Jan 2008 | WO |
WO-2008091925 | Jul 2008 | WO |
WO-2008103280 | Aug 2008 | WO |
WO-2009081396 | Jul 2009 | WO |
WO-2009094188 | Jul 2009 | WO |
WO-2009094189 | Jul 2009 | WO |
WO-2009094197 | Jul 2009 | WO |
WO-2009094501 | Jul 2009 | WO |
WO-2009100242 | Aug 2009 | WO |
WO-2010029190 | Mar 2010 | WO |
WO-2010119110 | Oct 2010 | WO |
WO-2011112706 | Sep 2011 | WO |
WO-2011137531 | Nov 2011 | WO |
WO-2012009558 | Jan 2012 | WO |
WO 2012035279 | Mar 2012 | WO |
WO-2012063228 | May 2012 | WO |
WO-2012063242 | May 2012 | WO |
WO-2012112469 | Aug 2012 | WO |
WO-2012145545 | Oct 2012 | WO |
WO-2012161786 | Nov 2012 | WO |
WO-2012175483 | Dec 2012 | WO |
WO-2012178115 | Dec 2012 | WO |
WO-2013021375 | Feb 2013 | WO |
WO-2013085719 | Jun 2013 | WO |
WO-2013103612 | Jul 2013 | WO |
WO-2013116785 | Aug 2013 | WO |
WO-2013128436 | Sep 2013 | WO |
WO-2013148019 | Oct 2013 | WO |
WO-2013166356 | Nov 2013 | WO |
WO-2013177684 | Dec 2013 | WO |
WO-2013184945 | Dec 2013 | WO |
WO-2014011330 | Jan 2014 | WO |
WO-2014064695 | May 2014 | WO |
WO-2014121042 | Aug 2014 | WO |
WO-2014133667 | Sep 2014 | WO |
WO-2014137805 | Sep 2014 | WO |
WO-2014140230 | Sep 2014 | WO |
WO-2014162306 | Oct 2014 | WO |
WO-2014164151 | Oct 2014 | WO |
WO-2014168655 | Oct 2014 | WO |
WO-2015004173 | Jan 2015 | WO |
WO-2015014960 | Feb 2015 | WO |
WO-2015017075 | Feb 2015 | WO |
WO-2015055605 | Apr 2015 | WO |
WO-2015057735 | Apr 2015 | WO |
WO-2015058039 | Apr 2015 | WO |
WO-2015061021 | Apr 2015 | WO |
WO-2015117025 | Aug 2015 | WO |
WO-2015120122 | Aug 2015 | WO |
WO-2015123607 | Aug 2015 | WO |
WO-2015127264 | Aug 2015 | WO |
WO-2015142834 | Sep 2015 | WO |
WO-2015153755 | Oct 2015 | WO |
WO-2016011267 | Jan 2016 | WO |
WO-2016025733 | Feb 2016 | WO |
WO-2016083351 | Jun 2016 | WO |
WO-2016097337 | Jun 2016 | WO |
WO-2016100799 | Jun 2016 | WO |
WO-2016118851 | Jul 2016 | WO |
WO-2016130913 | Aug 2016 | WO |
WO-2016148777 | Sep 2016 | WO |
WO-2016149083 | Sep 2016 | WO |
WO-2016150806 | Sep 2016 | WO |
WO-2016189391 | Dec 2016 | WO |
WO-2017040684 | Mar 2017 | WO |
WO-2017096157 | Jun 2017 | WO |
WO-2017114928 | Jul 2017 | WO |
WO-2017120404 | Jul 2017 | WO |
WO-2017121193 | Jul 2017 | WO |
WO-2017121194 | Jul 2017 | WO |
WO-2017121195 | Jul 2017 | WO |
WO-2017136596 | Aug 2017 | WO |
WO-2017151292 | Sep 2017 | WO |
WO-2017155892 | Sep 2017 | WO |
WO-2017156352 | Sep 2017 | WO |
WO-2017161204 | Sep 2017 | WO |
WO-2017165842 | Sep 2017 | WO |
WO-2017196511 | Nov 2017 | WO |
WO-2017201082 | Nov 2017 | WO |
WO-2017202042 | Nov 2017 | WO |
WO-2017210356 | Dec 2017 | WO |
WO-2017218375 | Dec 2017 | WO |
WO-2018008019 | Jan 2018 | WO |
WO-2018026445 | Feb 2018 | WO |
WO-2018026904 | Feb 2018 | WO |
WO-2018035105 | Feb 2018 | WO |
WO-2018040244 | Mar 2018 | WO |
WO-2018042439 | Mar 2018 | WO |
WO-2018045156 | Mar 2018 | WO |
WO-2018071115 | Apr 2018 | WO |
WO-2018077143 | May 2018 | WO |
WO-2018077146 | May 2018 | WO |
WO-2018080328 | May 2018 | WO |
WO-2018083493 | May 2018 | WO |
WO-2018090576 | May 2018 | WO |
WO-2018098032 | May 2018 | WO |
WO-2018106460 | Jun 2018 | WO |
WO-2018119304 | Jun 2018 | WO |
WO-2018138658 | Aug 2018 | WO |
WO-2018145055 | Aug 2018 | WO |
WO-2018156767 | Aug 2018 | WO |
WO-2018156922 | Aug 2018 | WO |
WO-2018158747 | Sep 2018 | WO |
WO-2018160790 | Sep 2018 | WO |
WO-2018165358 | Sep 2018 | WO |
WO-2018170149 | Sep 2018 | WO |
WO-2018175220 | Sep 2018 | WO |
WO-2018175619 | Sep 2018 | WO |
WO-2018178208 | Oct 2018 | WO |
WO-2018178977 | Oct 2018 | WO |
WO-2018183832 | Oct 2018 | WO |
WO-2018184225 | Oct 2018 | WO |
WO-2018184226 | Oct 2018 | WO |
WO-2018187495 | Oct 2018 | WO |
WO-2018187753 | Oct 2018 | WO |
WO-2018191681 | Oct 2018 | WO |
WO-2018200531 | Nov 2018 | WO |
WO-2018200942 | Nov 2018 | WO |
WO-2018201111 | Nov 2018 | WO |
WO-2018201212 | Nov 2018 | WO |
WO-2018204106 | Nov 2018 | WO |
WO-2018209302 | Nov 2018 | WO |
WO-2018213209 | Nov 2018 | WO |
WO-2018217525 | Nov 2018 | WO |
WO-2018222799 | Dec 2018 | WO |
WO-2018226628 | Dec 2018 | WO |
WO-2019003221 | Jan 2019 | WO |
WO-2019006383 | Jan 2019 | WO |
WO-2019010458 | Jan 2019 | WO |
WO-2019014473 | Jan 2019 | WO |
WO-2019018319 | Jan 2019 | WO |
WO-2019023385 | Jan 2019 | WO |
WO-2019026059 | Feb 2019 | WO |
WO-2019032992 | Feb 2019 | WO |
WO-2019037579 | Feb 2019 | WO |
WO-2019040357 | Feb 2019 | WO |
WO-2019042472 | Mar 2019 | WO |
WO-2019046099 | Mar 2019 | WO |
WO-2019046205 | Mar 2019 | WO |
WO-2019051168 | Mar 2019 | WO |
WO-2019051180 | Mar 2019 | WO |
WO-2019051587 | Mar 2019 | WO |
WO-2019055577 | Mar 2019 | WO |
WO-2019058178 | Mar 2019 | WO |
WO-2019067219 | Apr 2019 | WO |
WO-2019081689 | May 2019 | WO |
WO-2019081985 | May 2019 | WO |
WO-2019086958 | May 2019 | WO |
WO-2019089136 | May 2019 | WO |
WO-2019089821 | May 2019 | WO |
WO-2019093387 | May 2019 | WO |
WO-2019095049 | May 2019 | WO |
WO-2019096033 | May 2019 | WO |
WO-2019099722 | May 2019 | WO |
WO-2019116322 | Jun 2019 | WO |
WO-2019119674 | Jun 2019 | WO |
WO-2019126518 | Jun 2019 | WO |
WO-2019131148 | Jul 2019 | WO |
WO-2019136162 | Jul 2019 | WO |
WO-2019140293 | Jul 2019 | WO |
WO-2019143775 | Jul 2019 | WO |
WO-2019144036 | Jul 2019 | WO |
WO-2019147585 | Aug 2019 | WO |
WO-2019165213 | Aug 2019 | WO |
WO-2019173475 | Sep 2019 | WO |
WO 2019195860 | Oct 2019 | WO |
WO-2019190800 | Oct 2019 | WO |
WO-2019191102 | Oct 2019 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 16/435,687, dated Aug. 7, 2019, 19 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/051615, dated Mar. 2, 2020, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/051957, dated Apr. 30, 2020, 16 pages. |
Office Action for U.S. Appl. No. 16/155,890, dated Feb. 8, 2019, 13 pages. |
Office Action for U.S. Appl. No. 16/448,108, dated Jan. 21, 2020, 14 pages. |
Office Action for U.S. Appl. No. 16/448,108, dated Sep. 1, 2020, 14 pages. |
Office Action for U.S. Appl. No. 16/455,417, dated Sep. 23, 2019, 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/067010, dated Mar. 10, 2020, 17 pages. |
Office Action for U.S. Appl. No. 16/455,740, dated Jul. 24, 2020, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/015231, dated Apr. 23, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/021300, dated Oct. 7, 2020, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/031390, dated Aug. 3, 2020, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/013240, dated Jun. 3, 2020, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/022828, dated May 19, 2020, 12 pages. |
Office Action for U.S. Appl. No. 16/442,504, dated Jan. 14, 2020, 11 pages. |
Office Action for U.S. Appl. No. 16/445,210, dated Jan. 28, 2020, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/045195, dated Jan. 8, 2021, 18 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2020/047162, dated Dec. 30, 2020, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2019/028822, dated Oct. 24, 2019, 14 pages. |
Office Action for U.S. Appl. No. 17/167,983, dated Apr. 13, 2021, 20 pages. |
Office Action for U.S. Appl. No. 16/448,108, dated Mar. 8, 2021, 8 pages. |
Office Action for U.S. Appl. No. 16/163,577, dated Mar. 8, 2021, 10 pages. |
Office Action for U.S. Appl. No. 17/154,227, dated Mar. 29, 2021, 6 pages. |
Office Action for U.S. Appl. No. 17/154,438, dated May 3, 2021, 16 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2021/013570, dated Apr. 1, 2021, 9 pages. |
Office Action for U.S. Appl. No. 16/449,420, dated Sep. 1, 2021, 16 pages. |
Office Action for U.S. Appl. No. 17/167,988, dated Sep. 22, 2021, 19 pages. |
Office Action for U.S. Appl. No. 17/221,547, dated Aug. 4, 2021, 11 pages. |
Office Action for U.S. Appl. No. 17/222,182, dated Sep. 2, 2021, 23 pages. |
Office Action for U.S. Appl. No. 17/236,219, dated Aug. 4, 2021, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20210186693 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62889327 | Aug 2019 | US | |
62891964 | Aug 2019 | US | |
63027345 | May 2020 | US | |
63038807 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/047162 | Aug 2020 | US |
Child | 17193936 | US |