Delivery device and method of delivery

Abstract
A delivery device can provide sequential delivery of a plurality of intraluminal devices or tacks held in a compressed state on the delivery device. Delivery platforms on the delivery device can hold a tack in a compressed position and have a unique shape, such as a non-constant outer diameter, an hourglass shape, a tapered proximal half, ridges, dimples, etc. This unique shape can be positioned between annular pusher bands that may also be radiopaque markers. In some embodiments, the unique shape is provided by a sleeve of flexible material with the unique shape surrounding a harder inner shaft. Further, the annular pusher bands can be made of wire or sections of material to increase flexibility while remaining radiopacity. A tack deployment method can include alignment of radiopaque markers on the outer sheath and the tack to be deployed prior to deployment.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Disclosed herein are delivery devices and methods of delivery. Certain embodiments are described with reference to sequential delivery of multiple intraluminal devices from a delivery device. The delivery devices and methods can be used in procedures to treat atherosclerotic occlusive disease, though they are not limited to these procedures.


Description of the Related Art

There are a number of medical conditions and procedures in which a device such as a stent is placed in the body to create or maintain a passage. There are a wide variety of stents used for different purposes, from expandable coronary, vascular and biliary stents, to plastic stents used to allow the flow of urine between kidney and bladder.


Stents are often placed in the vascular system after a medical procedure, such as balloon angioplasty. Balloon angioplasty is often used to treat atherosclerotic occlusive disease. Atherosclerotic occlusive disease is the primary cause of stroke, heart attack, limb loss, and death in the US and the industrialized world. Atherosclerotic plaque forms a hard layer along the wall of an artery and can be comprised of calcium, cholesterol, compacted thrombus and cellular debris. As the atherosclerotic disease progresses, the blood supply intended to pass through a specific blood vessel is diminished or even prevented by the occlusive process. One of the most widely utilized methods of treating clinically significant atherosclerotic plaque is balloon angioplasty, which may be followed with stent placement.


SUMMARY OF THE INVENTION

Currently available stents and stent delivery systems have many limitations and drawbacks. There exists a continuing need for improvement in intraluminal devices and associated delivery devices.


According to certain embodiments, a delivery device can be provided for sequential delivery of a plurality of intraluminal devices (e.g. stents, tacks, staples, etc.) held in a compressed state on the delivery device. For purposes of this disclosure the word tack will be used to describe one of many intraluminal devices which can be deployed from a delivery device. The delivery device can comprise a plurality of delivery platforms, each delivery platform configured for holding a tack in a compressed position on the delivery device and having a unique shape, such as a non-constant outer diameter, an hourglass shape, a tapered proximal half, ridges, dimples, etc. This unique shape can be positioned between annular pusher bands that may also be radiopaque markers.


In some embodiments, the unique shape is provided by a sleeve of flexible material with the unique shape surrounding a harder inner shaft. Further, the annular pusher bands can be made of wire or sections of material to increase flexibility while remaining radiopacity.


A tack deployment method can include alignment of radiopaque markers on the outer sheath and the tack to be deployed prior to deployment.


A method of marker band alignment and intraluminal device or tack delivery can be performed. The method can include: advancing a delivery device with a plurality of tacks in a compressed state to a treatment area; each tack comprising a plurality of struts and a radiopaque marker positioned in a central region of the tack, each tack being a same size with the radiopaque marker positioned in a same location; the delivery device comprising an inner core having a plurality of delivery platforms, each delivery platform having one of the plurality of tacks, and an outer sheath covering the inner core and the delivery platforms, the outer sheath having a radiopaque marker band positioned proximally from a distal end; withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on a first tack to be delivered are aligned; aligning these two radiopaque markers with a treatment area such as a tissue dissection or lesion to be treated before release of the tack; then withdrawing the outer sheath to release the tack.


In some embodiments, a delivery device can comprise an inner shaft, a delivery platform and an outer sheath. The delivery platform can include a pair of annular bands around the inner shaft, both of the annular bands having a first outer diameter and a sleeve. The sleeve can be secured to the inner shaft and positioned between the annular bands. The sleeve can have a lower durometer than the inner shaft and optimally also lower than the pair of annular bands. The sleeve can further have a non-constant outer diameter being less than the first outer diameter of the annular bands. The delivery platform can be configured to receive an intraluminal device for deployment from the delivery device into a vessel and to receive the intraluminal device between the annular bands and on the sleeve. The outer sheath can be positioned on and slidable over the inner shaft and the delivery platform, the outer sheath having a pre-deployment position covering the delivery platform and at least one delivery position where the outer sheath is withdrawn exposing at least one of the annular bands and the sleeve of the delivery platform.


According to some embodiments, a plurality of additional delivery platforms can be included for sequential delivery of a plurality of intraluminal devices. Each additional delivery platform can comprise an additional sleeve and an additional annular band. Each of the annular bands can have a radius on a proximal end and/or comprise a radiopaque helical coil. The radiopaque helical coil can be encased in a polymer having a higher durometer than a polymer that forms the sleeve.


The sleeve can include any number of different shapes and sizes, and can include ridges, dots, dimples, etc.


In some embodiments, a delivery device can comprise an inner shaft, the inner shaft having a nose cone on the distal tip; a delivery platform; and an outer sheath. The delivery platform can comprise a pair of annular bands secured to the inner shaft, both of the annular bands having a first outer diameter; and a sleeve secured to the inner shaft and positioned between the annular bands. The sleeve can have a lower durometer than the inner shaft and optionally also the pair of annular bands. The sleeve may further have a first constant outer diameter section and a second constant outer diameter section having a larger outer diameter than the first, but less than the first outer diameter of the annular bands, and the second constant outer diameter section having a shorter axial length than the first constant outer diameter section, the sleeve further having a smooth tapered transition between the first and second constant outer diameter sections. The delivery platform can be configured to receive an intraluminal device for deployment from the delivery device into a vessel and configured to receive the intraluminal device between the annular bands and on the sleeve. The outer sheath can be positioned on and slidable over the inner shaft and the delivery platform. The outer sheath can have a pre-deployment position covering the delivery platform and at least one delivery position where the outer sheath is withdrawn exposing at least one of the annular bands and the sleeve of the delivery platform.


An intraluminal device deployment method can include one or more of the following steps. Advancing a delivery device with a plurality of intraluminal devices in a compressed state to a treatment area. Each of the plurality of intraluminal devices can comprise a plurality of struts and a radiopaque marker positioned in a central region of the intraluminal device. Each of the plurality of intraluminal devices can be a same size with the radiopaque marker positioned in a same location. The delivery device can comprise an inner shaft having a plurality of delivery platforms, each intraluminal device of the plurality of intraluminal devices positioned at a respective delivery platform of the plurality of delivery platforms, and an outer sheath covering the inner shaft and the plurality of delivery platforms, the outer sheath having a radiopaque marker band positioned proximally from a distal end of the outer sheath. Withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on a first intraluminal device to be delivered of the plurality of intraluminal devices are aligned. Aligning the aligned radiopaque marker band and the radiopaque marker with the treatment area before release of the first intraluminal device. Withdrawing the outer sheath to release the first intraluminal device. Withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on a second intraluminal device to be delivered of the plurality of intraluminal devices are aligned.


In some embodiments of the method, aligning the aligned radiopaque marker band and the radiopaque marker with the treatment area can comprise centering the aligned radiopaque marker band and the radiopaque marker at a tissue dissection before release of the first intraluminal device. In some embodiments of the method, withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on the first intraluminal device to be delivered of the plurality of intraluminal devices are aligned can comprise withdrawing the outer sheath until a distal-most end of the outer sheath and a distal-most end of the first intraluminal device are aligned. In some embodiments of the method, withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on the first intraluminal device to be delivered of the plurality of intraluminal devices are aligned can comprise withdrawing the outer sheath until the radiopaque marker band is positioned at a middle of the first intraluminal device. In some embodiments of the method, the first intraluminal device can have a single column of radiopaque markers and withdrawing the outer sheath until the radiopaque marker band on the outer sheath and radiopaque marker on the first intraluminal device to be delivered of the plurality of intraluminal devices are aligned can comprise withdrawing the outer sheath until the radiopaque marker band encircles the single column of radiopaque markers.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the inventions, in which like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1 is a side view of a delivery device that has been shortened to facilitate illustration.



FIG. 2 shows a view of the distal end of the delivery device with an outer sheath withdrawn.



FIG. 3 shows an embodiment of intraluminal device or tack.



FIG. 3A shows a flattened section of the tack of FIG. 3.



FIG. 4 illustrates a detail view of the distal end of the delivery device with the outer sheath partially withdrawn.



FIG. 5 is a cross section of a delivery device showing an embodiment of delivery platform.



FIGS. 6A-E illustrate various embodiments of delivery platforms having different shapes.



FIGS. 7A-C illustrate certain steps of a deployment method.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A delivery device 10 can be used as part of a procedure to treat atherosclerotic occlusive disease. The delivery device can be used to deliver one or more intraluminal devices 2, such as tacks, to a site of plaque accumulation. The tacks can stabilize the site and/or hold pieces of plaque out of the way of blood flow. It will be understood that though the delivery devices and methods described herein are described primarily with reference to vascular procedures, they can also be used in treatments for other parts of the body.



FIGS. 1 and 2 illustrate an embodiment of delivery device 10 that can be used for sequential delivery of multiple intraluminal devices 2. The delivery device 10 can be used in procedures to treat atherosclerotic occlusive disease, though it is not limited to these procedures.


The delivery device 10 of FIG. 1, which has been shortened to facilitate illustration, highlights the distal 4 and proximal ends 6. The proximal end 6 can be held by a physician or other medical professional during a medical procedure. It is used to control delivery of one or more intraluminal devices or tacks 2. FIG. 2 shows the distal end 4 with six (6) intraluminal devices 2, each positioned at a dedicated delivery platform 8. Comparing FIGS. 1 and 2, it can be seen that an outer sheath 12 has been withdrawn from the distal end in FIG. 2. This reveals the delivery platforms 8 and the respective intraluminal devices 2. The intraluminal devices 2 are preferably self-expandable and are shown in their compressed position to represent how they would fit in the delivery platforms. In typical use, the outer sheath 12 would be covering the intraluminal devices 2 when in this position. As will be discussed in more detail below, the outer sheath 12 can be withdrawn in a systematic manner to deploy one intraluminal device 2 at a time at a desired treatment location.


Relatively small intraluminal devices 2, for example with only one (FIGS. 3 & 3A) or two columns of cells, can be delivered at precise treatment locations and space appropriately to not overlap. FIG. 3A shows a flattened section of the tack of FIG. 3. It can be seen that a single column of cells 14 are formed by two concentric rings of undulating struts 16 connected by bridge members 18. The bridge members 18 have a pair of anchors 20 and a radiopaque marker 22. Multiple small intraluminal devices 2 can be used to treat a single or multiple lesions. This can minimize the amount of foreign material in the body, while providing needed holding forces. Various embodiments of intraluminal devices and delivery devices are described in more detail in applicants' related patent application Ser. No. 13/179,458 filed Jul. 8, 2011, published as US 2012/0035705 (IVAS.002P4) and patent application Ser. No. 13/749,643 filed Jan. 24, 2013, published as US 2013/0144375 (IVAS.002P6), both of which are incorporated by reference herein and made a part of this specification.


It will be understood, that the delivery devices and methods can also be used for other intraluminal devices 2, including larger devices, and are not limited to use with intraluminal devices 2 having only one or two columns of cells.


Returning now to FIG. 1, the proximal end 6 of the illustrated embodiment will now be described. The delivery device 10 can include an outer sheath 12, a proximal housing 24, and an inner shaft 26. The outer sheath 12 can be constructed as a laminate of polymer extrusions and braided wires embedded in the polymer extrusions. Flexibility and stiffness can be controlled through the number of braid wires, the braid pattern and pitch of the braid. In other embodiments, the outer sheath can be formed of a hypotube, such as a metal or plastic hypotube. Flexibility and stiffness of the sheath can be controlled by many features such as the slope and frequency of a spiral cut along the length of the hypotube. The outer sheath may also include a radiopaque (RO) marker 28 at or near the distal end. In some embodiments, the radiopaque marker 28 can be an annular band spaced from the distal-most end.


As shown, the outer sheath 12 is a braided shaft and the proximal housing 24 is a bifurcation luer that connects to the outer sheath through a strain relief 30. The strain relief 30 can take any form, such as being made of polyolefin or other similar material.


The bifurcation luer 24 has a main arm to receive the inner shaft 26 and a side arm. The bifurcation luer can be disposed at the proximal end of the outer sheath. The side arm includes a flushing port that is used to flush out air and increase lubricity in the space between the sheath and the inner shaft.


A tuohy borst adapter, hemostatic valve, or other sealing arrangement 32 can be provided proximal of or integrated into the bifurcation luer 24 to receive and seal the proximal end of the space between the inner shaft 26 and the outer sheath 12. The tuohy borst adapter can also provide a locking interface, such as a screw lock, to secure the relationship between the outer sheath and the inner shaft. This can allow the physician to properly place the distal end without prematurely deploying a tack.


The inner shaft is shown with a proximal luer hub 34 and deployment reference marks 36. The deployment reference marks 36 can correspond with the delivery platforms 8, such that the spacing between each deployment reference mark can be the same as the spacing between features of the delivery platforms. For example, the space between deployment reference marks can be the same as the distance between the centers of the delivery platforms.


In some embodiments, a distal most deployment reference mark, or a mark that is different from the others, such as having a wider band or different color, can indicate a primary or home position. For example a deployment reference mark with a wider band than the others can be aligned with the proximal end of the bifurcation luer 24 or hemostatic valve 32. This can indicate to a physician that the outer sheath is in a position completely covering the inner shaft 26 proximal of the nose cone 38. In some embodiments, this alignment can also translate to alignment of the RO marker 28 on the outer sheath to a RO marker on the distal end of the inner shaft 26.


In some embodiments, one or more of the deployment reference marks 36 can represent the number of tacks that are within the system. Thus, once a tack is released, the deployment reference mark 36 will be covered up and the physician can know that the remaining deployment reference marks correspond with the remaining number of tacks available for use. In such an embodiment, the proximal end of the bifurcation luer 24 or hemostatic valve 32 can be advanced to be centered approximately between two reference marks to indicate deployment.


Looking now to FIG. 4, a detail view of the distal end 4 of the delivery device 10 is shown. Features of the illustrated embodiment include the inner shaft 26 with a distal soft tip 38. The tip 38 can be a tapered nose cone. The nose cone 38 serve as a dilating structure to atraumatically displace tissue and help to guide the delivery device through the vasculature. The tip 38 itself may be radiopaque, or a radiopaque element 27 can be incorporated into or near the tip. A guidewire lumen 40 can be seen that extends through the inner shaft 26 to the proximal luer hub 34 (FIG. 1). The guidewire lumen 40 is configured for receipt and advancement of a guidewire therein.


Parts of a delivery platform 8 are also shown. The delivery platforms 8 are identical in the illustrated embodiment, though other embodiments can have different sizes and constructions between different delivery platforms. A crimped or compressed tack 2 is shown in the delivery platform 8.


As can be seen in FIGS. 2 and 4, one or more delivery platforms 8 can be disposed on the inner shaft 26 adjacent the distal end 4 of the delivery device 10. Each of the delivery platforms 8 can comprise a recess 42 extending positioned between a pair of annular pusher bands 44. FIG. 5 shows a cross section of a delivery device at one embodiment of delivery platform 8A. In the illustrated embodiment, the proximal annular pusher band 44A of a first platform 8A is also the distal annular pusher band 44A of the platform 8B located immediately proximal (only partially shown). The annular pusher band 44 has a larger outer diameter as compared to the delivery platform at the recess 42. In some embodiments, the recess can be defined as the smaller diameter region next to, or between, one or two annular pusher bands and/or an additional feature on the inner shaft 26.


One or more of the annular pusher bands 44 can be radiopaque marker bands. For example, proximal and distal radiopaque marker bands 44 can be provided to make the ends of the platform 8 visible using standard visualization techniques. The annular marker bands 44 can take any suitable form, for example including one more of tantalum, iridium, and platinum materials. In some embodiments, the pusher bands 44 can be 4 mm long with 6.75 mm recesses between them. A tack of 6.5 mm can be positioned between the pusher bands 44. In some embodiments, the pusher bands can be between 50-70% of the size of the recess and/or the tack. In some embodiments, the pusher bands are about 60%. In other embodiments, the pusher bands can be much smaller, at between 10-20% of the size of the recess and/or the tack. This may be the case especially with longer tacks. In some embodiments, at least the proximal ends of the pusher bands 44 can have a radius to help reduce potential for catching on deployed tacks during retraction of the delivery device.


Reducing the difference in length between the recess and the tack can increase the precision of placement of the tack, especially with tacks having only one or two columns of cells. In some embodiments, the recess can be less than 1, 0.5, 0.4, 0.3, 0.25, or 0.2 mm longer than the tack. The tack can be any number of different sizes, such as 4, 5, 6, 6.5, 8, 10, or 12 mm in length.


The outer sheath 12 can be made of polyether block amide (PEBA), a thermoplastic elastomer (TPE) available under the trade name PEBAX. In some embodiments, the outer sheath 12 can have a thinner inner liner made of a polytetrafluoroethylene (PTFE) such as TEFLON. Any radiopaque marker band(s) 28 or other radiopaque material may be positioned between these two layers. In other embodiments, the radiopaque marker band(s) 28, or other radiopaque material can be embedded within one or more layers of the outer sheath 12. The radiopaque marker band(s) 28 can range from 0.5 mm to 5 mm wide and be located from 0.5 mm to 10 mm proximal from the distal-most tip 52. In some embodiments, the radiopaque marker band(s) 28 can be 1 mm wide and 3 mm proximal from the distal-most tip 52.


In the cross section of FIG. 5 it can be seen that a sleeve 46 is positioned around the inner shaft 26 between the two annular bands 44. In some embodiments, a delivery platform 8 can comprise a sleeve 46 surrounding a shaft 26, where the sleeve 46 is made of a different material, or has different material properties, than the shaft 26. In some embodiments, the sleeve provides a material having a tackiness, a grip, a tread pattern, and/or other features to help the tack stay in place in the delivery platform. In some embodiments, the sleeve can be made of PEBA. The inner shaft according to some embodiments is a composite extrusion made of a PTFE/polyimide composite. The sleeve can be softer than (a lower durometer than) the inner shaft and/or the pusher bands 44. This may be the case even if made of similar types of materials. In some embodiments, the sleeve can be a material having a tackiness, a grip, a tread pattern, and/or other features to help the tack stay in place (e.g. longitudinal position with respect to the inner shaft) while the outer sleeve 12 is withdrawn. This can increase the amount of control during deployment and reduce the likelihood that the tack will shoot out distally from the delivery platform (known in the industry as watermelon seeding). In some cases the outer sheath can be partially removed thereby partially exposing an intraluminal device whereby the intraluminal device can partially expand while being securely retained by the delivery prior to full release.


The sleeve 46 can be sized so that with the tack 2 in the delivery platform 8 there is minimal to no space between the tack and the outer sheath. In some embodiments, the sleeve 46 can be co-molded with or extruded onto the inner shaft 26. In some embodiments, the delivery device 10 can be formed with a single sleeve 46 extending over a length of the inner shaft 26. For example, the sleeve can extend from the first delivery platform to the last delivery platform. The annular bands 44 may surround distinct sections of sleeve 46, or they may be encased by the sleeve 46. In some embodiments, each delivery platform 8 has a separate sleeve 46 positioned in the recess 42. The annular bands 44 may be encased by a different material, or may not be encased at all.


As will be understood from FIG. 5, the sleeve 46 can be cylindrical with a circular cross-section that is maintained across a portion of or the entire length of sleeve. In other embodiments, the sleeve has a unique shape and may include one or more of the following: tapering (FIGS. 6A-E), an hourglass shape (FIG. 6A), ridges (FIG. 6B), dimples (FIG. 6C), dots (FIG. 6D), two or more different diameters (FIG. 6E), etc. Features such as ridges, dots, and dimples can be positioned in in number of different patterns or groupings. In addition, the sleeve (FIGS. 6B-D), or a section of the sleeve (FIG. 6E) can extend along less than the entire recess. In some embodiments, the length of the sleeve or larger outer diameter section can correspond to the length of the tack. For example, the sleeve or larger diameter section can extend ¾, ⅔, ½, ⅖, ⅓, ¼ of the recess and/or tack. Further, the length of the sleeve or larger outer diameter section can be related to the size of struts in the undulating ring 16, such as a proximal most undulating ring. For example, it can extend along the entire, ⅘, ¾, ⅔, or ½ of the length of a strut or the length of the proximal most undulating ring. A short sleeve, or a larger outer diameter section of a sleeve, preferably extends from the proximal end of the recess distally (FIGS. 6D-E), but can also be centered in the recess, positioned on at the distal end (FIG. 6C), or at other positions within the recess.


The sleeve of FIG. 6E is shown having two different constant outer diameter sections with a short taper between them. The sleeve can be formed from two separate sections that are thermally bonded together. The tapered portion can also be created by thermal bonding so that there is a smooth transition between the two constant outer diameter sections. As has been mentioned, the larger constant outer diameter section preferably extends from the proximal end of the recess distally. This larger outer diameter section that may or may not have a constant outer diameter can extend along less than the entire recess as has been discussed above.


In some embodiments, an inner shaft 26 can have a lower durometer sleeve 46 between pushers 44. A tack 2 can be crimped onto the sleeve 46 and an outer sheath 12 can constrain the crimped tack in place. The clearance between the sleeve 46 and the outer sheath 12 can result in a slight interference fit between the crimped tack 2 and the inner and outer elements. This slight interference allows the delivery system to constrain the crimped tack during deployment until it is almost completely unsheathed allowing the distal portion of the tack to “flower petal” open and engage the vessel wall, reducing the potential for jumping.


According to some embodiments, the inner shaft 26 can be made of a polyimide-PEBA combination and the lower durometer PEBA sleeve 46 can be thermally bonded in between pushers 44. A tack 2 can be crimped onto the sleeve 46 and a PTFE lined outer sheath 12 can constrain the crimped tack in place.


Returning to FIG. 5, a feature of certain embodiments of radiopaque marker band 44 is shown. As has been mentioned, the sleeve 46 may encase the annular bands 44. Alternatively, another material can encase the metallic bands to form the annular marker bands 44. The annular marker bands 44 can be made of wire 48 or multiple pieces of material or having slits to increase flexibility while remaining radiopacity. In some embodiments the wire can form a helical coil that is wrapped around the inner shaft 26.


Moving now to FIGS. 7A-C, certain methods of deployment will now be described. A delivery device 10 can be used as part of a procedure to treat atherosclerotic occlusive disease. The delivery device can be used to deliver one or more intraluminal devices 2, such as tacks, to a site of plaque accumulation. The tacks can stabilize the site and/or hold pieces of plaque out of the way of blood flow.


The tacks are preferably self-expandable. Thus, withdrawing the sheath 12 to reveal a tack 2 allows the tack to deploy from the delivery device 10 by self-expansion. The sheath can be withdrawn in small increments to sequentially deliver tacks at desired locations in a blood vessel. In some embodiments, the small increments can correspond with the deployment reference marks 36. The deployment reference marks 36 can be spaced apart at least the length of the tack, so that each tack can be deployed at once, rather than the gradual release typical of a longer stent. This can allow for more precise placement of the tack.


Balloon angioplasty is an accepted method of opening blocked or narrowed blood vessels in every vascular bed in the body. Balloon angioplasty is performed with a balloon angioplasty catheter. The balloon angioplasty catheter consists of a cigar shaped, cylindrical balloon attached to a catheter. The balloon angioplasty catheter is placed into the artery from a remote access site that is created either percutaneously or through open exposure of the artery. The catheter is passed along the inside of the blood vessel over a wire that guides the way of the catheter. The portion of the catheter with the balloon attached is placed at the location of the atherosclerotic plaque that requires treatment. The balloon is inflated to a size that is consistent with the original diameter of the artery prior to developing occlusive disease. In some instances the balloon is coated with, or otherwise configured to deliver, a drug or biologic to the tissue. When the balloon is inflated, the plaque is broken. Cleavage planes form within the plaque, permitting the plaque to expand in diameter with the expanding balloon. Frequently, a segment of the plaque is more resistant to dilatation than the remainder of the plaque. When this occurs, greater pressure pumped into the balloon results in full dilatation of the balloon to its intended size. The balloon is deflated and removed and the artery segment is reexamined. The process of balloon angioplasty is one of uncontrolled plaque disruption. The lumen of the blood vessel at the site of treatment is usually somewhat larger, but not always and not reliably.


Some of the cleavage planes created by fracture of the plaque with balloon angioplasty can form a dissection. More generally, a dissection occurs when a portion of the plaque or tissue is lifted away from the artery, is not fully adherent to the artery and may be mobile or loose. The plaque or tissue that has been disrupted by dissection protrudes into the flow stream. If the plaque or tissue lifts completely in the direction of blood flow, it may impede flow or cause acute occlusion of the blood vessel. There is evidence that dissection after balloon angioplasty must be treated to prevent occlusion and to resolve residual stenosis. There is also evidence that in some circumstances, it is beneficial to place a metal retaining structure, such as a stent or other intraluminal device to hold open the artery after angioplasty and/or force the dissected material back against the wall of the blood vessel to create an adequate lumen for blood flow.


A variety of delivery methodologies and devices can be used to deploy an intraluminal device, such as a tack 2, some of which are described below. For example, a tack can be delivered into the blood vessel with an endovascular insertion. The delivery devices for the different embodiments of plaque tacks can be different or the same and can have features specifically designed to deliver the specific tack. The tack and installation procedure may be designed in a number of ways that share a common methodology of utilizing an expansion force of the delivery mechanism (such as balloon expansion) and/or the expansion force of an undulating ring to enable the tack to be moved into position in the blood vessel, then released to an expanded state within the blood vessel. A tack deployment method can include alignment of radiopaque markers on the outer sheath and the tack to be deployed prior to deployment.


Referring now FIG. 7A, a delivery device 10 with an outer sheath 12 is shown in a first pre-deployment state. Multiple tacks 2 can be held by the outer sheath 12 in a compressed state within the delivery device 10. In some embodiments, the tacks 2 are flash frozen in their compressed state to facilitate loading onto the delivery device. The tacks can extend over a given length of the delivery device as has been described.


The delivery device can be advanced over a guidewire 50 in a patient's vasculature to a treatment site. The guidewire 50 can be the same guidewire used in a prior step of a procedure, such as the guidewire used to position an angioplasty balloon. Once positioned at the treatment location, the outer sheath 12 can be withdrawn or retracted to second pre-deployment position (FIG. 7B). The second pre-deployment position can be used to adjust the position of the outer sheath to account for any stretching, tortuosity, etc. that may require some adjustment before releasing a tack. In the second pre-deployment position, the distal end 52 of the outer sheath can be positioned at, or slightly distal of the distal end of a tack to be deployed.


According to some embodiments, the outer sheath 12 can have a radiopaque annular marker band 28 and the tack can also have one or more radiopaque markers 22. The radiopaque markers 22 can be positioned in a column around the tack. The distance “L” from the distal end of the tack to the radiopaque marker 22 can be the same as the distance from the distal end 52 of the outer sheath 12 to the radiopaque annular marker band 28. In some embodiments, this distance is to the center of the markers 22 and marker band 28. In some embodiments, the length “L” on the outer sheath is at least as long as the length “L” on the tack, if not slightly longer. The outer sheath can be free from other radiopaque markers. In addition, the tack can also be free from other radiopaque markers or columns of radiopaque markers. Thus, the outer sheath can have only a single marker band 28 at the distal end that is spaced from the distal-most end 52 of the outer sheath 12 by at least a distance from the distal-most end of the tack 2 to a radiopaque marker 22 or column of radiopaque markers. In the illustrated embodiment, the radiopaque marker 22 or column of radiopaque markers are positioned in the middle of the device. The radiopaque markers are also positioned on bridge members 18 that connect adjacent rings of undulating struts 16. In some embodiments, the radiopaque marker 22 or column of radiopaque markers can be spaced from the distal-most end of the tack by at least one ring of undulating struts 16. In the illustrated embodiment, the radiopaque marker 22 or column of radiopaque markers is not at the distal-most end of the tack 2, but is spaced therefrom.


Having corresponding radiopaque markers 22, 28 on the tack and the outer sheath can allow the physician to align the markers 22, 28 prior to deployment of the tack. Further, the physician can align the aligned markers with the desired area to be treated. As will be understood, all of this alignment can be done using standard visualization techniques. As has been mentioned, the annular pusher bands 44 on the inner shaft can also be radiopaque. In some embodiments, the pusher bands 44 can be identical and can appear different under visualization than both the marker on the outer sheath and the marker on the tack. Thus, it can be clear to the physician where all of the markers are and which is which. For example, the pusher bands 44 can be axially longer than the marker 28 on the outer sheath and the marker on the tack. Further, the markers on the delivery device can be bands, while the marker(s) on the tack can be dots.


Looking to FIG. 7B, it can be seen that the marker 28 on the outer sheath 12 and the markers 22 on the first tack 2 are aligned and that the distal end of the sheath is positioned at the distal end of the first tack. The delivery device can now be positioned with respect to the lesion for treatment, such as by centering the radiopaque markers at desired location. The sheath can then be withdrawn to place the tack in the desired location.


In some embodiments, the delivery device can have a marker band on the outer sheath positioned proximally from the distal end-one at least half the length of the tack, the tack having a single column of markers at the middle of the device. A method of deployment can include withdrawing the outer sheath until the marker on the outer sheath and the tack to be delivered are aligned, and then aligning these two markers with the middle of the lesion to be treated (or other treatment area) before release of the tack, the release being affected by further withdrawing the outer sheath. It will be understood that markers on the pusher bands 44 can also be used to help align the delivery device before deployment.


The method can be repeated to deliver multiple tacks (see FIG. 7C with tack shown in the compressed state for reference only). In between tack deployment, the delivery device may be moved to a completely different lesion or treatment area, or simply repositioned to ensure space between adjacent tacks once placed.


As discussed previously, in some embodiments, simultaneous placement of the entire tack can result upon release of the tack from the delivery device. Further, multiple tacks can placed as desired in a distal to proximal placement within the treatment segment of the vessel.


In some embodiments an expandable tack, such as that shown in FIGS. 3 & 3A, can exert a relatively constant force to a wide range of vessel lumen diameters, thereby allowing a single delivery catheter to deploy multiple tacks to varying sized vessels. Ideally the tack can be designed to treat vessels ranging in size from 2 to 8 mm, although other sized tacks could be delivered. It is desirable that the force applied by the tack to the vessel varies 5N or less over a 3 mm expansion range. More ideally the force applied will vary 1.5N or less over a 3 mm expansion range.


There are instances where drug coated balloons are being used as an alternative to placing a stent in the vessel. The balloon can dilate narrowing in the vessel and the drug helps to minimize post inflation inflammatory response which can lead to a re-narrowing of the artery. There is clinical evidence that the combination of a balloon and drug can provide an alternative to the implantation of a typical stent which have been historically used to provide both short term and long term scaffolding. Drug coated balloons are desirable in that there is no long term implant placed in the vessel. There are instances however when the expansion of a drug coated balloon may cause damage to the vessel in the form of a tissue dissection in which case a flap or piece of tissue extends into the lumen of the vessel. The dissection can occur within the balloon treatment zone as well as outside of or adjacent to the treatment zone. In these instances it is helpful to tack the dissected tissue against the arterial wall. A tack having a low outward force can beneficially be used to treat the dissection where a stent may not be appropriate, or desirable.


In some embodiments, the precise placement of the tack can be set upon positioning of the catheter within the vessel based on the position of a marker. Once positioned, one or more tacks can then be deployed while maintaining the catheter in place and slowly removing the outer sheath.


In some embodiments, one or more tacks can be deployed at a dissection of tissue. When an angioplasty procedure is performed there are typically one of three outcomes: 1) an optimal outcome, no further stenting or over treatment needs to be performed, 2) residual stenosis, usually requiring the placement of a stent to prop open or scaffold the vessel so that it remains open and does not return to the prior occluded or partially occluded state, and 3) a tissue dissection. A tissue dissection can be where the vessel experiences trauma such as the disruption of an arterial wall resulting in separation of the intimal layer. This may or may not be flow limiting. One or more tacks can beneficially be deployed at such a tissue dissection. Small tacks allow for the treatment of a subset of the portion of the blood vessel treated by the balloon angioplasty procedure thereby providing a treatment therapy with does not require the implantation of long metal stents over the entire angioplasty treatment area. Ideally, one or more tacks could be used to treat 60% or less of the length of vessel in the angioplasty treatment area. Small tacks having a single (illustrated) or double column of cells, have been shown to cause less injury and to have shorter recovery times than commonly available stents in treating tissue dissections.


Upon placement of the tack, an intravascular construct is formed in situ. The in situ placement can be in any suitable vessel, such as in any peripheral artery. The construct need not be limited to just two tacks. In fact, a plurality of at least three intravascular tacks can be provided in an intravascular construct formed in situ. In one embodiment each tack has a length of no more than about 8 mm, e.g., about 6 mm in an uncompressed state. In one configuration, at least one of, e.g., each of, the tacks are spaced apart from an adjacent tack by at least about 4 mm, or between about 4 mm and 8 mm or between about 6 mm and 8 mm. Although certain embodiments have a length of 8 mm or less, other embodiments can be longer, e.g., up to about 12 or 15 mm long. Also, neighboring tacks can be positioned as close as 2 mm apart, particularly in vessels that are less prone to bending or other movements. In some embodiments, a delivery device can be preloaded with six tacks, each about 6.5 mm long, and can be used to treat lesions up to 15 cm in length.


In the various delivery devices described herein, the spacing between implanted tacks can be controlled to maintain a set or a minimum distance between each tack. As can be seen, the delivery devices and/or tacks can include features that help maintain the desired distance between tacks. Maintaining proper inter-tack spacing can help ensure that the tacks are distributed over a desired length without contacting each other or bunching up in a certain region of the treated vessel. This can help to prevent kinking of the vessel in which they are disposed.


While a three tack construct formed in situ may be suitable for certain indications, an intravascular construct having at least 5 intravascular tacks may be advantageous for treating loose plaque, vessel flaps, dissections or other maladies that are significantly more elongated (non-focal). For example, while most dissections are focal (e.g., axially short), a series of dissections may be considered and treated as a more elongated malady.


In some cases, even shorter axial length tacks can be used to treat even more spaced apart locations. For example, a plurality of tacks, each having a length of no more than about 7 mm, can be placed in a vessel to treat a tackable malady. At least some of the tacks can be spaced apart from an adjacent tack by at least about 5 mm. In some cases, it may be preferred to provide gaps between adjacent tacks that can range from about 6 mm to about 10 mm.


Optionally, once the tacks are in place, the angioplasty balloon can be returned to the treatment site and inflated to expand the tacks to the desired state of expansion.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A delivery device comprising: an inner shaft;at least two raised shoulders fixed to and circumferentially surrounding the inner shaft, the at least two raised shoulders comprising at least one proximal raised shoulder and at least one distal raised shoulder;a sleeve surrounding at least a portion of the inner shaft, the sleeve having a non-constant outer diameter comprising a first cylindrical section and a second cylindrical section having an outer diameter larger than the first cylindrical section and smaller than the at least two raised shoulders, the sleeve extending between and contacting at least one of the distal edge of the proximal raised shoulder and the proximal edge of a distal raised shoulder, wherein the sleeve comprises a material different than a material of the inner shaft, wherein a distal edge of the proximal raised shoulder, a proximal edge of a distal raised shoulder, and at least one of the inner shaft and the sleeve form at least one recessed delivery platform surrounding the inner shaft and being configured to accept and hold an intraluminal device;an outer sheath positioned on and slidable over the inner shaft, the at least two raised shoulders, and the recessed delivery platform, wherein the outer sheath has a pre-deployment position covering every recessed delivery platform of the at least one recessed delivery platform and a deployment position exposing at least one recessed delivery platform of the at least one recessed delivery platform.
  • 2. The delivery device of claim 1, further comprising at least one additional raised shoulder forming at least one additional recessed delivery platform surrounding the inner shaft and being configured to accept and hold an intraluminal device, wherein each additional recessed delivery platform of the at least one additional recessed delivery platform surrounding the inner shaft comprises an additional sleeve surrounding at least a portion of each additional recessed delivery platform of the at least one additional recessed delivery platform.
  • 3. The delivery device of claim 1, wherein the material of the sleeve has a lower durometer than the material of the inner shaft.
  • 4. The delivery device of claim 1, wherein the sleeve comprises a material having at least one of: a higher tackiness than a material of the inner shaft, a higher grip than a material of the inner shaft, and more surface texture than a material of the inner shaft.
  • 5. The delivery device of claim 1, wherein the sleeve and outer sheath are configured to engage an intraluminal device so that a distal end of the intraluminal device may partially expand when a distal end of the outer sheath covers only a proximal end of the intraluminal device contained within the at least one recessed delivery platform surrounding the inner shaft.
  • 6. The delivery device of claim 1, wherein the sleeve further comprises at least one of ridges, dimples, and dots.
  • 7. The delivery device of claim 1, wherein the sleeve extends between and contacts each of the at least two raised shoulders fixed to and circumferentially surrounding the inner shaft.
  • 8. The delivery device of claim 1, wherein the sleeve extends from only one of the at least two raised shoulders fixed to and circumferentially surrounding the inner shaft.
  • 9. The delivery device of claim 1, wherein the sleeve extends at least one of ¾, ⅔, ½, ⅖, ⅓, and ¼, of a length of the at least one recessed delivery platform surrounding the inner shaft.
  • 10. The delivery device of claim 1, wherein the sleeve has a circular cross-section and at least one of the following axial profiles: a proximally faced-taper, a distally faced taper, an hourglass shape, or at least one step.
  • 11. A delivery device comprising: an inner shaft;at least one recessed delivery platform comprising a distal raised shoulder and a proximal raised shoulder;a sleeve surrounding at least a portion of the at least one recessed delivery platform, the sleeve extending between and contacting at least one of the distal raised shoulder and the proximal raised shoulder, the sleeve having a non-constant outer diameter comprising a first cylindrical section and a second cylindrical section having an outer diameter larger than the first cylindrical section and smaller than both the distal raised shoulder and the proximal raised shoulder;an outer sheath positioned on and slidable over the inner shaft and the at least one recessed delivery platform, wherein the outer sheath has a pre-deployment position covering the at least one recessed delivery platform and a deployment position exposing at least one recessed delivery platform of the at least one recessed delivery platform, wherein the outer sheath is configured hold at least one intraluminal device within the at least one recessed delivery platform, between the distal raised shoulder and the proximal raised shoulder, and in contact with at least a portion of the sleeve.
  • 12. The delivery device of claim 11 further comprising at least one additional recessed delivery platform and at least one additional sleeve surrounding at least a portion of the at least one additional recessed delivery platform.
  • 13. The delivery device of claim 11, wherein the sleeve and the outer sheath are configured to engage an intraluminal device so that a distal end of the intraluminal device may partially expand when a distal end of the outer sheath covers only a proximal end of the intraluminal device contained within the at least one recessed delivery platform surrounding the inner shaft.
  • 14. The delivery device of claim 11, wherein the sleeve is configured to provide frictional engagement with an intraluminal device to prevent at least one of distal movement and premature deployment of the intraluminal device as the outer sheath is moved from the pre-deployment position to the deployment position.
  • 15. The delivery device of claim 11, wherein the sleeve is configured to maintain a longitudinal position of an intraluminal device as the outer sheath is slid proximally.
  • 16. The delivery device of claim 11, wherein the sleeve extends from the proximal raised shoulder to the distal raised shoulder.
  • 17. The delivery device of claim 11, wherein the sleeve extends from only one of the proximal raised shoulder, distally, and the distal raised shoulder, proximally.
  • 18. The delivery device of claim 11, wherein the sleeve has a circular cross-section and at least one of the following axial profiles: a proximally faced-taper, a distally faced taper, an hourglass shape, or at least one step.
  • 19. The delivery device of claim 11, wherein the sleeve comprises at least one of ridges, dimples, and dots.
  • 20. A delivery device comprising: an inner shaft;at least one delivery platform configured to accept and retain a self-expanding intraluminal device, the at least one delivery platform comprising: a pair of raised annular bands around the inner shaft; anda sleeve distinct from and surrounding at least a portion of the inner shaft, the sleeve extending between and contacting the pair of raised annular bands, the sleeve having a non-constant outer diameter comprising a first cylindrical section and a second cylindrical section having an outer diameter greater than the first cylindrical section and less than the pair of raised annular bands;an outer sheath positioned on and slidable over the inner shaft and the at least one delivery platform, wherein the outer sheath has a pre-deployment position covering every recessed delivery platform of the at least one recessed delivery platform and a deployment position exposing at least one recessed delivery platform of the at least one recessed delivery platform, wherein the sleeve surrounding at least a portion of the inner shaft is configured to prevent at least one of longitudinal movement and premature deployment of a self-expanding intraluminal device as the outer sheath is moved from the pre-deployment position to the deployment position.
  • 21. The delivery device of claim 20, wherein a material of the sleeve comprises at least one of: a lower durometer than a material of the inner shaft, a higher tackiness than a material of the inner shaft, a higher grip than a material of the inner shaft, and more surface texture than a material of the inner shaft.
  • 22. The delivery device of claim 20, wherein the sleeve has a circular cross-section and at least one of the following axial profiles: a proximally faced-taper, a distally faced taper, an hourglass shape, or at least one step.
  • 23. The delivery device of claim 1, wherein the sleeve has a smooth tapered transition between the first cylindrical section and the second cylindrical section.
  • 24. The delivery device of claim 1, wherein each of the raised shoulders comprises a radiopaque helical coil.
  • 25. The delivery device of claim 11, wherein the sleeve has a smooth tapered transition between the first cylindrical section and the second cylindrical constant outer diameter section.
  • 26. The delivery device of claim 20, wherein the sleeve has a smooth tapered transition between the first cylindrical section and the second cylindrical section.
  • 27. The delivery device of claim 20, wherein each of the raised annular bands comprises a radiopaque helical coil.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/935,154, filed on Nov. 6, 2015, which is a continuation of U.S. patent application Ser. No. 14/656,462, filed Mar. 12, 2015, which claims the benefit of priority of U.S. Provisional Appl. No. 62/109,534, filed Jan. 29, 2015. All of the above applications are incorporated by reference herein and are to be considered a part of this specification. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (602)
Number Name Date Kind
3051172 Bruchhaus Aug 1962 A
3221746 Noble Dec 1965 A
3635223 Klieman Jan 1972 A
4292974 Fogarty et al. Oct 1981 A
4446867 Leveen et al. May 1984 A
4465072 Taheri Aug 1984 A
4515587 Schiff May 1985 A
4545367 Tucci Oct 1985 A
4545390 Leary Oct 1985 A
4552127 Schiff Nov 1985 A
4576591 Kay et al. Mar 1986 A
4589412 Kensey May 1986 A
4641654 Samson et al. Feb 1987 A
4651738 Demer et al. Mar 1987 A
4687465 Prindle et al. Aug 1987 A
4723550 Bales et al. Feb 1988 A
4723936 Buchbinder et al. Feb 1988 A
4723938 Goodin et al. Feb 1988 A
4726374 Bales et al. Feb 1988 A
4758223 Rydell Jul 1988 A
4762130 Fogarty et al. Aug 1988 A
4781192 Demer Nov 1988 A
4784636 Rydell Nov 1988 A
4846174 Willard et al. Jul 1989 A
4848342 Kaltenbach Jul 1989 A
RE33166 Samson Feb 1990 E
4921484 Hillstead May 1990 A
4994065 Gibbs et al. Feb 1991 A
5009659 Hamlin et al. Apr 1991 A
5024668 Peters et al. Jun 1991 A
5042707 Taheri Aug 1991 A
5047015 Foote et al. Sep 1991 A
5102390 Crittenden et al. Apr 1992 A
5160341 Brenneman et al. Nov 1992 A
5196024 Barath Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5242452 Inoue Sep 1993 A
5246420 Kraus et al. Sep 1993 A
5250029 Lin et al. Oct 1993 A
5250060 Carbo et al. Oct 1993 A
5263962 Johnson et al. Nov 1993 A
5269758 Taheri Dec 1993 A
5304121 Sahatjian Apr 1994 A
5318529 Kontos Jun 1994 A
5336234 Virgil et al. Aug 1994 A
5344397 Heaven et al. Sep 1994 A
5383890 Miraki et al. Jan 1995 A
5397305 Kawula et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5421955 Lau et al. Jun 1995 A
5423851 Samuels Jun 1995 A
5423885 Williams Jun 1995 A
5443477 Marin et al. Aug 1995 A
5501689 Green et al. Mar 1996 A
5534007 St. Germain et al. Jul 1996 A
5536252 Imran et al. Jul 1996 A
5540659 Teirstein Jul 1996 A
5545135 Iacob et al. Aug 1996 A
5562728 Lazarus et al. Oct 1996 A
5569272 Reed et al. Oct 1996 A
5571135 Fraser et al. Nov 1996 A
5591197 Orth et al. Jan 1997 A
5593417 Rhodes Jan 1997 A
5601568 Chevillon et al. Feb 1997 A
5616149 Barath Apr 1997 A
5618300 Marin et al. Apr 1997 A
5634928 Fischell et al. Jun 1997 A
5643312 Fischell et al. Jul 1997 A
5645559 Hachtman et al. Jul 1997 A
5665116 Chaisson et al. Sep 1997 A
5681346 Orth et al. Oct 1997 A
5704913 Abele et al. Jan 1998 A
5707376 Kavteladze et al. Jan 1998 A
5725572 Lam et al. Mar 1998 A
5728158 Lau et al. Mar 1998 A
5741270 Hansen et al. Apr 1998 A
5743874 Fischell et al. Apr 1998 A
5746716 Vigil et al. May 1998 A
5746764 Green et al. May 1998 A
5776161 Globerman Jul 1998 A
5797951 Mueller Aug 1998 A
5800526 Anderson et al. Sep 1998 A
5813977 Hinchliffe et al. Sep 1998 A
5817152 Birdsall et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833694 Poncet Nov 1998 A
5843033 Ropiak Dec 1998 A
5911725 Boury Jun 1999 A
5925061 Ogi et al. Jul 1999 A
5928247 Barry et al. Jul 1999 A
5944727 Ahari et al. Aug 1999 A
5954742 Osypka Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5968088 Hansen et al. Oct 1999 A
5972023 Tanner et al. Oct 1999 A
5980552 Pinchasik et al. Nov 1999 A
6004328 Solar Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6009614 Morales Jan 2000 A
6013854 Moriuchi Jan 2000 A
6022374 Imran Feb 2000 A
6036725 Avellanet Mar 2000 A
6048360 Khosravi et al. Apr 2000 A
6053941 Lindenberg et al. Apr 2000 A
6053943 Edwin et al. Apr 2000 A
6080177 Igaki Jun 2000 A
6090135 Plaia et al. Jul 2000 A
6110198 Fogarty et al. Aug 2000 A
6123722 Fogarty et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6143016 Bleam et al. Nov 2000 A
6146358 Rowe Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6157852 Selmon et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6187034 Frantzen Feb 2001 B1
6197013 Reed Mar 2001 B1
6197103 Davies et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6221102 Baker et al. Apr 2001 B1
6238402 Sullivan et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6254628 Wallace et al. Jul 2001 B1
6258117 Camrud et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6270524 Kim Aug 2001 B1
6273909 Kugler et al. Aug 2001 B1
6290728 Phelps et al. Sep 2001 B1
6312444 Barbut Nov 2001 B1
6312460 Drasler et al. Nov 2001 B2
6325824 Limon Dec 2001 B2
6331189 Wolinsky et al. Dec 2001 B1
6338739 Datta et al. Jan 2002 B1
6344053 Boneau Feb 2002 B1
6364901 Inoue Apr 2002 B1
6364904 Smith Apr 2002 B1
6371962 Ellis et al. Apr 2002 B1
6387113 Hawkins et al. May 2002 B1
6391050 Broome May 2002 B1
6402760 Fedida Jun 2002 B1
6402777 Globerman Jun 2002 B1
6409752 Boatman et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6425915 Khosravi et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6428566 Holt Aug 2002 B1
6475237 Drasler et al. Nov 2002 B2
6485507 Walak et al. Nov 2002 B1
6485508 McGuinness Nov 2002 B1
6485510 Camrud et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6508822 Peterson et al. Jan 2003 B1
6514261 Randall et al. Feb 2003 B1
6517573 Pollock et al. Feb 2003 B1
6520934 Lee et al. Feb 2003 B1
6520983 Colgan et al. Feb 2003 B1
6520984 Garrison et al. Feb 2003 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6547817 Fischell et al. Apr 2003 B1
6551353 Baker et al. Apr 2003 B1
6599296 Gillick et al. Jul 2003 B1
6607551 Sullivan Aug 2003 B1
6623521 Steinke et al. Sep 2003 B2
6629994 Gomez et al. Oct 2003 B2
6635083 Cheng et al. Oct 2003 B1
6648911 Sirhan et al. Nov 2003 B1
6660031 Tran et al. Dec 2003 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6692504 Kurz et al. Feb 2004 B2
6699274 Stinson Mar 2004 B2
6699277 Freidberg et al. Mar 2004 B1
6706061 Fischell et al. Mar 2004 B1
6716240 Fischell et al. Apr 2004 B2
6719775 Slaker et al. Apr 2004 B2
6723119 Pinchasik et al. Apr 2004 B2
6730116 Wolinsky et al. May 2004 B1
6746475 Rivelli, Jr. Jun 2004 B1
6752828 Thornton Jun 2004 B2
6755854 Gillick et al. Jun 2004 B2
6786922 Schaeffer Sep 2004 B2
6790221 Monroe et al. Sep 2004 B2
6790227 Burgermeister Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6814752 Chuter Nov 2004 B1
6827731 Armstrong et al. Dec 2004 B2
6843400 Lee Jan 2005 B1
6846323 Yip et al. Jan 2005 B2
6849087 Chuter Feb 2005 B1
6863685 Davila et al. Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6896697 Yip et al. May 2005 B1
6899718 Gifford, III et al. May 2005 B2
6899914 Schaldach et al. May 2005 B2
6911039 Shiu et al. Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6942680 Grayzel et al. Sep 2005 B2
6942689 Majercak Sep 2005 B2
6945992 Goodson, IV et al. Sep 2005 B2
6951554 Johansen et al. Oct 2005 B2
6986784 Weiser et al. Jan 2006 B1
6989021 Bosma et al. Jan 2006 B2
7001422 Escamilla et al. Feb 2006 B2
7001424 Patel et al. Feb 2006 B2
7007698 Thornton Mar 2006 B2
7018402 Vito et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037330 Rivelli, Jr. et al. May 2006 B1
7041130 Santini, Jr. et al. May 2006 B2
7052511 Weldon May 2006 B2
7087088 Berg et al. Aug 2006 B2
7105016 Shiu et al. Sep 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7137993 Acosta et al. Nov 2006 B2
7147655 Chermoni Dec 2006 B2
7147656 Andreas et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7150745 Stern et al. Dec 2006 B2
7160312 Saadat Jan 2007 B2
7163552 Diaz Jan 2007 B2
7166125 Baker et al. Jan 2007 B1
7169158 Sniffin et al. Jan 2007 B2
7169163 Becker Jan 2007 B2
7172617 Colgan et al. Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7179284 Khosravi et al. Feb 2007 B2
7182779 Acosta et al. Feb 2007 B2
7192440 Andreas et al. Mar 2007 B2
7201770 Johnson et al. Apr 2007 B2
7208002 Shelso Apr 2007 B2
7211101 Carley et al. May 2007 B2
7243408 Vietmeier Jul 2007 B2
7258697 Cox et al. Aug 2007 B1
7261731 Patel et al. Aug 2007 B2
7267684 Rolando et al. Sep 2007 B2
7270668 Andreas et al. Sep 2007 B2
7270673 Yee et al. Sep 2007 B2
7273492 Cheng et al. Sep 2007 B2
7279007 Nikolic et al. Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7300456 Andreas et al. Nov 2007 B2
7294146 Chew et al. Dec 2007 B2
7303572 Meisheimer et al. Dec 2007 B2
7303580 Parker Dec 2007 B2
7306617 Majercak Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7309350 Landreville et al. Dec 2007 B2
7309353 Krivoruchko Dec 2007 B2
7316711 Allen et al. Jan 2008 B2
7320702 Hammersmark et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7323007 Sano Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329279 Haug et al. Feb 2008 B2
7331987 Cox Feb 2008 B1
7331990 Gianotti Feb 2008 B2
7331992 Randall et al. Feb 2008 B2
7351255 Andreas Apr 2008 B2
7399307 Evans et al. Jul 2008 B2
7402168 Sanderson et al. Jul 2008 B2
7419501 Chiu et al. Sep 2008 B2
7431729 Chanduszko Oct 2008 B2
7445631 Salaheih et al. Nov 2008 B2
7476245 Abbate Jan 2009 B2
7479158 Gregorich Jan 2009 B2
7500986 Lye et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7537607 Gerberding May 2009 B2
7550001 Dorn et al. Jun 2009 B2
7553324 Andreas et al. Jun 2009 B2
7556647 Drews et al. Jul 2009 B2
7578840 Schaeffer Aug 2009 B2
7591848 Allen Sep 2009 B2
7604662 Cambronne et al. Oct 2009 B2
7611497 Wollschlager Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7618432 Pedersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7625398 Clifford et al. Dec 2009 B2
7625399 Case et al. Dec 2009 B2
7628803 Pavcnik et al. Dec 2009 B2
7637935 Pappas et al. Dec 2009 B2
7655033 Fearnot et al. Feb 2010 B2
7655034 Mitchell et al. Feb 2010 B2
7658759 Case et al. Feb 2010 B2
7666216 Hogendijk et al. Feb 2010 B2
7674282 Wu et al. Mar 2010 B2
7686824 Konstantino et al. Mar 2010 B2
7686843 Moore Mar 2010 B2
7695507 Rivelli, Jr. et al. Apr 2010 B2
7720521 Chang et al. May 2010 B2
7736387 Pollock et al. Jun 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758625 Wu et al. Jul 2010 B2
7758627 Richter Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7763063 Arbefeuille et al. Jul 2010 B2
7780716 Pappas et al. Aug 2010 B2
7794489 Shumer et al. Sep 2010 B2
7799065 Pappas Sep 2010 B2
7806918 Nissl et al. Oct 2010 B2
7810223 Hemerick et al. Oct 2010 B2
7828834 Garbe Nov 2010 B2
7833262 McGuckin, Jr. et al. Nov 2010 B2
7842080 Chouinard Nov 2010 B2
7846194 Hartley et al. Dec 2010 B2
7867267 Sullivan et al. Jan 2011 B2
7871431 Gurm et al. Jan 2011 B2
7883537 Grayzel et al. Feb 2011 B2
7896911 Schneider et al. Mar 2011 B2
7905913 Chew et al. Mar 2011 B2
7918880 Austin Apr 2011 B2
7922755 Acosta et al. Apr 2011 B2
7933660 Carr Apr 2011 B2
7942920 Majercak May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7963987 Melsheimer et al. Jun 2011 B2
7967855 Furst et al. Jun 2011 B2
7971333 Gale et al. Jul 2011 B2
7972373 Contiliano et al. Jul 2011 B2
7981149 Contiliano et al. Jul 2011 B2
7993383 Hartley et al. Aug 2011 B2
8002725 Hogendijk Aug 2011 B2
8016870 Chew et al. Sep 2011 B2
8024851 Barr et al. Sep 2011 B2
8034099 Pellegrini Oct 2011 B2
8043354 Greenberg et al. Oct 2011 B2
8043357 Hartley Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052738 Craven Nov 2011 B2
8057543 O'Brien et al. Nov 2011 B2
8062344 Dorn et al. Nov 2011 B2
8075607 Melsheimer et al. Dec 2011 B2
8092468 Hansen Jan 2012 B2
8100958 Fischer et al. Jan 2012 B2
8127422 Wu Mar 2012 B2
8128677 Schneider et al. Mar 2012 B2
8157851 Andreas Apr 2012 B2
8157857 Case et al. Apr 2012 B2
8177831 Andreas May 2012 B2
8221489 Issenmann et al. Jul 2012 B2
8236044 Robaina Aug 2012 B2
8236045 Benichou et al. Aug 2012 B2
8292938 Case Oct 2012 B2
8308790 Arbefeuille et al. Nov 2012 B2
8317859 Snow et al. Nov 2012 B2
8323243 Schneider et al. Dec 2012 B2
8328864 Niermann Dec 2012 B2
8353945 Andreas et al. Jan 2013 B2
8366766 Berreklouw Feb 2013 B2
8382813 Shumer Feb 2013 B2
8394139 Roeder et al. Mar 2013 B2
8403978 Schlun et al. Mar 2013 B2
8409267 Berez et al. Apr 2013 B2
8414636 Nabulsi et al. Apr 2013 B2
8414637 Chouinard Apr 2013 B2
8460357 McGarry et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8486128 Jen et al. Jul 2013 B2
8486132 Snow et al. Jul 2013 B2
8496698 Abunassar Jul 2013 B2
8500787 Simpson et al. Aug 2013 B2
8500789 Wuebbeling et al. Aug 2013 B2
8523935 Fliedner Sep 2013 B2
8540760 Paul, Jr. et al. Sep 2013 B2
8585747 Andreas et al. Nov 2013 B2
8636793 Hoerstrup et al. Jan 2014 B2
8641755 Davis et al. Feb 2014 B2
8652198 Andreas et al. Feb 2014 B2
8663310 Greenberg et al. Mar 2014 B2
8734502 Orr May 2014 B2
8740973 Furst et al. Jun 2014 B2
8745842 Wu Jun 2014 B2
8771335 Griego et al. Jul 2014 B2
8778010 Venturelli et al. Jul 2014 B2
8784467 Connelly et al. Jul 2014 B2
8834556 Papp et al. Sep 2014 B2
8864811 Kao Oct 2014 B2
8888834 Hansen et al. Nov 2014 B2
8888841 Pandelidis et al. Nov 2014 B2
8900289 Thompson Dec 2014 B2
8911487 Bennett et al. Dec 2014 B2
8926689 Bogert Jan 2015 B2
8956398 George et al. Feb 2015 B2
8961583 Hojeibane et al. Feb 2015 B2
8966736 Wu Mar 2015 B2
8968383 Johnson et al. Mar 2015 B1
8969383 Noguchi Mar 2015 B2
8986362 Snow et al. Mar 2015 B2
9005265 Lootz et al. Apr 2015 B2
9005274 Seguin et al. Apr 2015 B2
9023095 Bueche et al. May 2015 B2
9050181 Hartley Jun 2015 B2
9056351 Krivoruchko et al. Jun 2015 B2
9095461 Schaeffer Aug 2015 B2
9101500 Feld et al. Aug 2015 B2
9101503 Lowe et al. Aug 2015 B2
9101506 Arbefeuille et al. Aug 2015 B2
9113999 Taylor et al. Aug 2015 B2
9119717 Wang et al. Sep 2015 B2
9125765 Melsheimer Sep 2015 B2
9149379 Keady et al. Oct 2015 B2
9192492 Seguin et al. Nov 2015 B2
9192496 Robinson Nov 2015 B2
9198783 Douk et al. Dec 2015 B2
9216082 Von Segesser et al. Dec 2015 B2
9237959 Cage Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9301864 Kao Apr 2016 B2
9314327 Orr Apr 2016 B2
9314360 Kao Apr 2016 B2
9339404 Snow et al. May 2016 B2
9345597 Pacetti May 2016 B2
9364350 Pacetti et al. Jun 2016 B2
9370437 Chuter et al. Jun 2016 B2
9375327 Giasolli et al. Jun 2016 B2
9375336 Longo et al. Jun 2016 B1
9398967 Cornelius Jul 2016 B2
9408731 Hartley et al. Aug 2016 B2
9421115 Wübbeling et al. Aug 2016 B2
9427340 Yadin Aug 2016 B2
9439795 Wang et al. Sep 2016 B2
9445929 Longo et al. Sep 2016 B2
9452067 Wu Sep 2016 B2
9480826 Schneider et al. Nov 2016 B2
9498296 Hingston et al. Nov 2016 B2
9498322 Thomas Nov 2016 B2
9539130 Farag et al. Jan 2017 B2
9545322 Schneider et al. Jan 2017 B2
9566179 Andreas et al. Feb 2017 B2
9585777 Pacetti Mar 2017 B2
9597213 Green Mar 2017 B2
9603696 Hartley et al. Mar 2017 B2
9603730 Giasolli et al. Mar 2017 B2
9603980 Zhao Mar 2017 B2
9662231 Ngo et al. May 2017 B2
9668892 Shalev et al. Jun 2017 B2
9700448 Snow et al. Jul 2017 B2
9707115 Masakazu Jul 2017 B2
9724224 Gillick et al. Aug 2017 B2
9730818 Giasolli et al. Aug 2017 B2
9737368 Lumauig Aug 2017 B2
9867699 Straubinger et al. Jan 2018 B2
9877828 Straubinger et al. Jan 2018 B2
9895243 Kariniemi et al. Feb 2018 B2
9908297 Pacetti et al. Mar 2018 B2
9918835 Guyenot et al. Mar 2018 B2
9943428 Burkart et al. Apr 2018 B2
9974670 Schneider et al. May 2018 B2
9987154 Pacetti et al. Jun 2018 B2
10022250 Giasolli et al. Jul 2018 B2
10098764 Pacetti Oct 2018 B2
10111741 Michalak Oct 2018 B2
10117762 Giasolli et al. Nov 2018 B2
10137013 Giasolli et al. Nov 2018 B2
10166127 Giasolli et al. Jan 2019 B2
10188533 Schneider et al. Jan 2019 B2
10231853 Weber Mar 2019 B2
10231854 Wack Mar 2019 B2
10238339 Dlugach et al. Mar 2019 B2
10245167 Longo Apr 2019 B2
10245168 Amendt et al. Apr 2019 B2
10271973 Giasolli et al. Apr 2019 B2
10278839 Giasolli et al. May 2019 B2
10285831 Giasolli et al. May 2019 B2
10292845 Higashi et al. May 2019 B2
10299945 Schneider et al. May 2019 B2
10390977 Giasolli et al. Aug 2019 B2
10660771 Giasolli et al. May 2020 B2
20020099435 Stinson Jul 2002 A1
20020120323 Thompson Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020165599 Nasralla Nov 2002 A1
20020169495 Gifford et al. Nov 2002 A1
20030055491 Schwartz et al. Mar 2003 A1
20030069630 Burgermeister et al. Apr 2003 A1
20030130720 DePalma et al. Jul 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20030225446 Hartley Dec 2003 A1
20030225448 Gerberding Dec 2003 A1
20040010307 Grad et al. Jan 2004 A1
20040059407 Escamilla Mar 2004 A1
20040098081 Landreville May 2004 A1
20040186551 Kao et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040215324 Vonderwalde et al. Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20040267281 Harari et al. Dec 2004 A1
20040267348 Gunderson et al. Dec 2004 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050021123 Dorn et al. Jan 2005 A1
20050096731 Looi et al. May 2005 A1
20050149163 Sahota Jul 2005 A1
20050246008 Hogendijk et al. Nov 2005 A1
20050251164 Gifford, III et al. Nov 2005 A1
20050273151 Fulkerson Dec 2005 A1
20050278011 Peckham Dec 2005 A1
20050288764 Snow et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060047297 Case Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074478 Feller, III Apr 2006 A1
20060111769 Murray May 2006 A1
20060184225 Pryor Aug 2006 A1
20060184227 Rust Aug 2006 A1
20060206190 Chermoni Sep 2006 A1
20060248698 Hanson et al. Nov 2006 A1
20060265040 Murray Nov 2006 A1
20060282149 Kao Dec 2006 A1
20070088420 Andreas et al. Apr 2007 A1
20070093744 Elmaleh Apr 2007 A1
20070142892 Dave et al. Jun 2007 A1
20070156223 Vaughan Jul 2007 A1
20070156224 Cioanta et al. Jul 2007 A1
20070156225 George et al. Jul 2007 A1
20070156226 Chew et al. Jul 2007 A1
20070179587 Acosta et al. Aug 2007 A1
20070191926 Nikanorov et al. Aug 2007 A1
20070233235 Chouinard Oct 2007 A1
20080033522 Grewe et al. Feb 2008 A1
20080051867 Davila et al. Feb 2008 A1
20080077229 Andreas et al. Mar 2008 A1
20080082154 Tseng et al. Apr 2008 A1
20080132999 Mericle et al. Jun 2008 A1
20080188207 Lee Aug 2008 A1
20080208327 Rowe Aug 2008 A1
20080221658 Martin et al. Sep 2008 A1
20080255653 Schkolnik Oct 2008 A1
20080264102 Berra Oct 2008 A1
20080269865 Snow et al. Oct 2008 A1
20080319528 Yribarren et al. Dec 2008 A1
20090076594 Sabaria Mar 2009 A1
20090082841 Zacharias et al. Mar 2009 A1
20090099641 Wu et al. Apr 2009 A1
20090149943 Tower Jun 2009 A1
20090214615 Zhao Aug 2009 A1
20090216284 Chin et al. Aug 2009 A1
20090248139 Pellegrini Oct 2009 A1
20090248141 Shandas et al. Oct 2009 A1
20090270965 Sinha et al. Oct 2009 A1
20090270967 Fleming, III et al. Oct 2009 A1
20090276031 Kao Nov 2009 A1
20100042121 Schneider et al. Feb 2010 A1
20100131045 Globerman et al. May 2010 A1
20100137966 Magnuson Jun 2010 A1
20100145431 Wu et al. Jun 2010 A1
20100228333 Drasler et al. Sep 2010 A1
20100318173 Kolandaivelu et al. Dec 2010 A1
20110004237 Schneider et al. Jan 2011 A1
20110077731 Lee et al. Mar 2011 A1
20110125248 George et al. May 2011 A1
20110152992 Schneider et al. Jun 2011 A1
20110230954 Schneider et al. Sep 2011 A1
20110307049 Kao Dec 2011 A1
20120016457 Chobotov et al. Jan 2012 A1
20120035705 Giasolli et al. Feb 2012 A1
20120065722 Pacetti Mar 2012 A1
20120083872 Schneider et al. Apr 2012 A1
20120172963 Ryan et al. Jul 2012 A1
20120191176 Nagl et al. Jul 2012 A1
20120226343 Vo et al. Sep 2012 A1
20120283811 Neilan Nov 2012 A1
20130144375 Giasolli et al. Jun 2013 A1
20140081380 Giasolli et al. Mar 2014 A1
20140088565 Vongphakdy et al. Mar 2014 A1
20140194967 Schneider et al. Jul 2014 A1
20140288629 Amendt Sep 2014 A1
20150297378 Senness et al. Oct 2015 A1
20160192942 Strauss et al. Jul 2016 A1
20160220401 Longo et al. Aug 2016 A1
20160242943 Riedy et al. Aug 2016 A1
20170000629 Giasolli et al. Jan 2017 A1
20170181873 Schneider et al. Jun 2017 A1
20170231751 Barthold et al. Aug 2017 A1
20170281375 Longo et al. Oct 2017 A1
20170296366 Giasolli et al. Oct 2017 A1
20170319361 Giasolli et al. Nov 2017 A1
20170319364 Jung et al. Nov 2017 A1
20170367856 Tanaka et al. Dec 2017 A1
20180028306 Gonzalez et al. Feb 2018 A1
20180110634 Giasolli et al. Apr 2018 A1
20180154123 Werneth et al. Jun 2018 A1
20180200085 Giasolli et al. Jul 2018 A1
20180200086 Giasolli et al. Jul 2018 A1
20180200087 Giasolli et al. Jul 2018 A1
20180207008 Giasolli et al. Jul 2018 A1
20180272044 Hossainy et al. Sep 2018 A1
20180303640 Schneider et al. Oct 2018 A1
20180318116 Eli et al. Nov 2018 A1
20190069985 Nennig et al. Mar 2019 A1
20190070025 Fu et al. Mar 2019 A1
20190192319 Giasolli et al. Jun 2019 A1
20190192321 Schneider et al. Jun 2019 A1
20190282381 Giasolli et al. Sep 2019 A1
Foreign Referenced Citations (123)
Number Date Country
2008335140 Nov 2012 AU
2011274392 Nov 2013 AU
2014201067 Mar 2014 AU
2010259907 Aug 2015 AU
2013212056 Jul 2016 AU
2015207895 May 2017 AU
2014280976 Jul 2017 AU
2705275 Jul 2013 CA
1856280 Nov 2006 CN
101102728 Jan 2008 CN
101262835 Sep 2008 CN
101754727 Jun 2010 CN
101909552 Dec 2010 CN
102292036 Dec 2011 CN
102573701 Jul 2012 CN
102724931 Oct 2012 CN
103313682 Sep 2013 CN
104220026 Dec 2014 CN
104887365 Sep 2015 CN
103313682 Aug 2016 CN
104220026 Sep 2016 CN
106466205 Mar 2017 CN
106473786 Mar 2017 CN
106473849 Mar 2017 CN
107028691 Aug 2017 CN
107157632 Sep 2017 CN
107205834 Sep 2017 CN
104887365 Dec 2017 CN
107427375 Dec 2017 CN
60030705 May 2007 DE
10 2009 041 025 Mar 2011 DE
20 2011 107 781 Dec 2011 DE
20 2011 110 714 Dec 2015 DE
10 2014 016 588 May 2016 DE
20 2011 110 818 Sep 2016 DE
2775968 Dec 2017 DK
0497620 Aug 1992 EP
0714640 Jun 1996 EP
0855883 Aug 1998 EP
0812580 Feb 2004 EP
1393766 Mar 2004 EP
1236446 Aug 2005 EP
1803423 Jul 2007 EP
1894545 Mar 2008 EP
1452151 Oct 2008 EP
1567093 Jan 2009 EP
1378212 Sep 2009 EP
2219535 Aug 2010 EP
2440155 Apr 2012 EP
1729682 Apr 2013 EP
1786367 Apr 2013 EP
1973502 Apr 2014 EP
2806826 Dec 2014 EP
2881086 Jun 2015 EP
2699207 Oct 2015 EP
2590602 Dec 2015 EP
3015078 May 2016 EP
3058900 Aug 2016 EP
1689327 Sep 2016 EP
3072463 Sep 2016 EP
2775968 Sep 2017 EP
3217927 Sep 2017 EP
2967830 Nov 2017 EP
3250159 Dec 2017 EP
3421010 Jan 2019 EP
2714816 Jul 1995 FR
201106757 Jun 2011 GB
H06-000221 Jan 1994 JP
H08-332229 Dec 1996 JP
H11-501526 Feb 1999 JP
H11-506665 Jun 1999 JP
2002-513298 May 2002 JP
2007-503923 Mar 2007 JP
2007-504897 Mar 2007 JP
2007-508112 Apr 2007 JP
2008-504078 Feb 2008 JP
2008-507376 Mar 2008 JP
2008-510587 Apr 2008 JP
2008-246214 Oct 2008 JP
2008-537891 Oct 2008 JP
2009-532115 Sep 2009 JP
2010-516333 May 2010 JP
2012-523922 Oct 2012 JP
2015-506760 Mar 2015 JP
2016-135278 Jul 2016 JP
2016-147051 Aug 2016 JP
6006808 Oct 2016 JP
10-2017-0084214 Jul 2017 KR
WO 1996002211 Feb 1996 WO
WO 1996009013 Mar 1996 WO
WO 1996037167 Nov 1996 WO
WO 1998007390 Feb 1998 WO
WO 1999048440 Sep 1999 WO
WO 1999049440 Sep 1999 WO
WO 2000066034 Nov 2000 WO
WO 2001076509 Oct 2001 WO
WO 2002034163 May 2002 WO
WO 2003047651 Jun 2003 WO
WO 2003101310 Dec 2003 WO
WO 2004006983 Jan 2004 WO
WO 2004032799 Apr 2004 WO
WO 2005039449 May 2005 WO
WO 2006005082 Jan 2006 WO
WO 2006014767 Feb 2006 WO
WO 2006026371 Mar 2006 WO
WO 2006026377 Mar 2006 WO
WO 2006110258 Oct 2006 WO
WO 2007088549 Aug 2007 WO
WO 2007109621 Sep 2007 WO
WO 2007118005 Oct 2007 WO
WO 2009076517 Jun 2009 WO
WO 2010037141 Apr 2010 WO
WO 2010118432 Oct 2010 WO
WO 2010144845 Dec 2010 WO
WO 2011153110 Dec 2011 WO
WO 2012006602 Jan 2012 WO
WO 2012143731 Oct 2012 WO
WO 2013068127 May 2013 WO
WO 2013112768 Aug 2013 WO
WO 2004091441 Oct 2014 WO
WO 2016074799 May 2016 WO
WO 2016122947 Aug 2016 WO
WO 2018175048 Sep 2018 WO
Non-Patent Literature Citations (83)
Entry
International Search Report and Written Opinion, re PCT Application No. PCT/US2016/014161, dated Apr. 12, 2016.
Bosiers, M. et al., “Results from the Tack Optimized Balloon Angioplasty (TOBA) study demonstrate the benefits of minimal metal implants for dissection repair after angioplasty”, Journal of Vascular Surgery, vol. 64, Jul. 2016, in 8 pages.
Kokkinidis, D. et al., “Emerging and Future Therapeutic Options for Femoropopliteal and Infrapopliteal Endovascular Intervention”, Interventional Cardiology Clinics, vol. 6, 2017, in 17 pages.
Shishehbor, M. et al., “Endovascular Treatment of Femoropopliteal Lesions”, Journal of the American College of Cardiology, vol. 66, 2015, in 4 pages.
Zeller, T. et al., “Novel Approaches to the Management of Advanced Peripheral Artery Disease: Perspectives on Drug-Coated Balloons, Drug-Eluting Stents, and Bioresorbable Scaffolds”, Current Cardiology Reports, vol. 17, Sep. 2015, in 6 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2008/086396, dated Jun. 15, 2010.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2011/038468, dated Dec. 13, 2012.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2011/043471, dated Jan. 17, 2013.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2013/023030, dated Aug. 7, 2014.
Colombo et al., “Intravascular Ultrasound-Guided Percutaneous Transluminal Coronary Angioplasty With Provisional Spot Stenting for Treatment of Long Coronary Lesions”, Journal of the American College of Cardiology, vol. 38, No. 5, Nov. 1, 2001.
Mosseri et al., “New Indicator for Stent Covering Area”, in Catheterization and Cardiovascular Diagnosis, 1998, vol. 44, pp. 188-192.
Australian Office Action (Notice of Acceptance), re AU Application No. 2011274392, dated Nov. 14, 2013, including accepted (allowed) claims.
Australian Office Action, re AU Application No. 2008335140, dated Apr. 21, 2011.
Australian Office Action, re AU Application No. 2008335140, dated Mar. 15, 2011.
Australian Office Action, re AU Application No. 2011274392, dated May 3, 2013.
European Office Action and Supplemental European Search Report, re EP Application No. 11804455.1, dated Jun. 11, 2014.
European Office Action and Supplementary Partial European Search Report, re EP Application No. 08858824.9, dated Sep. 27, 2012.
International Search Report and Written Opinion, re PCT Application No. PCT/US2010/038379, dated Feb. 25, 2011.
International Search Report and Written Opinion, re PCT Application No. PCT/US2011/038468, dated Jan. 18, 2012.
International Search Report and Written Opinion, re PCT Application No. PCT/US2013/023030, dated Apr. 16, 2013.
International Search Report and Written Opinion, re PCT Application PCT/US2008/086396, dated Jul. 27, 2009.
International Search Report and Written Opinion, re PCT Application PCT/US2011/043471, dated Feb. 9, 2012.
International Search Report, re PCT Application No. PCT/US2013/023030, dated Apr. 16, 2013.
Japanese Office Action and translation in Japanese Patent Application No. 2016-014565 dated Feb. 3, 2017 in 12 pages.
English translation of the first Office Action and Search Report in Chinese Application No. 201610546800.2 in 5 pages dated Sep. 28, 2017.
English translation of the first Office Action and Search Report in Chinese Application No. 201610546643.5 in 5 pages dated Oct. 17, 2017.
U.S. Appl. No. 15/921,464, filed Mar. 14, 2018, Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 15/921,459, filed Mar. 14, 2018, Endovascular Implant.
U.S. Appl. No. 15/415,167, filed Jan. 25, 2017, Delivery Device and Method of Delivery.
U.S. Appl. No. 13/038,175 (U.S. Pat. No. 9,545,322), filed Mar. 1, 2011 (Jan. 17, 2017), Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 16/998,168, filed Aug. 20, 2020, Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 16/998,190, filed Aug. 20, 2020, Endovascular Implant.
U.S. Appl. No. 16/998,196, filed Aug. 20, 2020, Endoluminal Device and Method.
U.S. Appl. No. 15/914,410, filed Jun. 27, 2016, Delivery Device and Method of Delivery.
U.S. Appl. No. 11/955,331 (U.S. Pat. No. 7,896,911), filed Dec. 12, 2007 (Mar. 1, 2011), (Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 13/038,175 (U.S. Pat. No. 9,545,322), filed Mar. 1, 2011 (Mar. 1, 2011), Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 15/375,026, filed Dec. 9, 2016, Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 12/483,193 (U.S. Pat. No. 8,128,677), filed Jun. 11, 2009 (Mar. 6, 2012), Device and Method for Tacking Plaque to a Blood Vessel Wall.
U.S. Appl. No. 13/246,776 (U.S. Pat. No. 9,974,670), filed Sep. 27, 2011, (May 22, 2018), Method of Treating Atherosclerotic Occlusive Disease.
U.S. Appl. No. 15/984,111 (U.S. Pat. No. 10,299,945), filed May 18, 2018, (May 28, 2019), Method of Treating Atherosclerotic Occlusive Disease.
U.S. Appl. No. 14/102,411, filed Dec. 10, 2013, Method of Treating Atherosclerotic Occlusive Disease.
U.S. Appl. No. 12/790,819 (U.S. Pat. No. 10,188,533), filed May 29, 2010 (Jan. 29, 2019), Minimal Surface Area Contact Device for Holding Plaque to Blood Vessel Wall.
U.S. Appl. No. 16/259,146, filed Jan. 28, 2019, Minimal Surface Area Contact Device for Holding Plaque to Blood Vessel Wall.
U.S. Appl. No. 13/118,388, filed May 28, 2011, Stent Device Having Focal Elevating Elements for Minimal Surface Area Contact With Lumen Walls.
U.S. Appl. No. 13/179,458 (U.S. Pat. No. 10,022,250), filed Jul. 8, 2011 (Jul. 17, 2018), Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 15/815,515, filed Nov. 16, 2017, Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 15/921,464 (U.S. Pat. No. 10,660,771), filed Mar. 14, 2018 (May 26, 2020), Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 16/881,385, filed May 22, 2020, Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 13/153,257 (U.S. Pat. No. 9,375,327), filed Jun. 3, 2011 (Jun. 28, 2016), Endovascular Implant.
U.S. Appl. No. 15/170,772 (U.S. Pat. No. 10,278,839), filed Jun. 1, 2016 (May 7, 2019), Endovascular Implant.
U.S. Appl. No. 15/640,095, filed Jun. 30, 2017, Endovascular Implant.
U.S. Appl. No. 15/921,448 (U.S. Pat. No. 10,285,831), filed Mar. 14, 2018 (May 14, 2019), Endovascular Implant.
U.S. Appl. No. 15/921,459 (U.S. Pat. No. 10,390,977), filed Mar. 14, 2018 (Aug. 27, 2019), Endovascular Implant.
U.S. Appl. No. 15/921,477 (U.S. Pat. No. 10,271,973), filed Mar. 14, 2018 (Apr. 30, 2019), Endovascular Implant.
U.S. Appl. No. 16/426,627, filed May 30, 2019, Endovascular Implant and Deployment Devices.
U.S. Appl. No. 13/749,643 (U.S. Pat. No. 9,730,818), filed Jan. 24, 2013 (Aug. 15, 2017), Endoluminal Device and Method.
U.S. Appl. No. 14/089,703 (U.S. Pat. No. 9,603,730), filed Nov. 25, 2013 (Mar. 28, 2017), Endoluminal Device and Method.
U.S. Appl. No. 15/472,215, filed Mar. 28, 2017, Endoluminal Device and Method.
U.S. Appl. No. 15/654,586 (U.S. Pat. No. 10,117,762), filed Jul. 19, 2017 (Nov. 6, 2018), Endoluminal Device and Method.
U.S. Appl. No. 15/837,870 (U.S. Pat. No. 10,137,013), filed Dec. 11, 2017 (Nov. 27, 2018), Endoluminal Device and Method.
U.S. Appl. No. 15/921,541 (U.S. Pat. No. 10,166,127), filed Mar. 14, 2018 (Jan. 1, 2019), Endoluminal Device and Method.
U.S. Appl. No. 16/225,528, filed Dec. 19, 2018, Endoluminal Device and Method.
U.S. Appl. No. 13/939,019, filed Jul. 10, 2013, Systems and Methods for Attaching Radiopaque Markers to a Medical Device.
U.S. Appl. No. 14/746,636 (U.S. Pat. No. 9,192,500), filed Jun. 22, 2015 (Nov. 24, 2015), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/885,295 (U.S. Pat. No. 9,375,337), filed Oct. 16, 2015 (Jun. 28, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,709, filed Apr. 20, 2016, Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,087 (U.S. Pat. No. 9,345,603), filed Nov. 6, 2015 (May 24, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,751 (U.S. Pat. No. 9,602,786), filed Apr. 20, 2016 (Mar. 21, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,121 (U.S. Pat. No. 9,320,632), filed Nov. 6, 2015 (Apr. 26, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,158 (U.S. Pat. No. 9,584,777), filed Apr. 19, 2016 (Feb. 28, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/011,321 (U.S. Pat. No. 9,456,914), filed Jan. 29, 2016 (Oct. 4, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/134,315 (U.S. Pat. No. 9,585,782), filed Apr. 20, 2016 (Mar. 7, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/415,167 (U.S. Pat. No. 10,610,392), filed Jan. 25, 2017 (Apr. 7, 2020), Delivery Device and Method of Delivery.
U.S. Appl. No. 16/821,578, filed Mar. 17, 2020, Delivery Device and Method of Delivery.
U.S. Appl. No. 14/656,462 (U.S. Pat. No. 9,375,336), filed Mar. 12, 2015 (Jun. 28, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,154 (U.S. Pat. No. 9,445,929), filed Nov. 6, 2015 (Sep. 20, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/194,410, filed Jun. 27, 2016, Delivery Device and Method of Delivery.
U.S. Appl. No. 15/000,437 (U.S. Pat. No. 9,433,520), filed Jan. 19, 2016 (Sep. 6, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/227,757 (U.S. Pat. No. 10,245,167), filed Aug. 3, 2016 (Apr. 2, 2019), Delivery Device and Method of Delivery.
U.S. Appl. No. 16/372,224, filed Apr. 1, 2019, Delivery Device and Method of Delivery.
U.S. Appl. No. 16/067,082, filed Jun. 28, 2018, Delivery Device and Method of Delivery.
U.S. Appl. No. 15/705,793, filed Sep. 15, 2017, Delivery Device and Method of Delivery.
U.S. Appl. No. 16/632,841, filed Jan. 21, 2020, Delivery Device and Method of Delivery.
Related Publications (1)
Number Date Country
20160374839 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62109534 Jan 2015 US
Continuations (2)
Number Date Country
Parent 14935154 Nov 2015 US
Child 15194410 US
Parent 14656462 Mar 2015 US
Child 14935154 US