Delivery devices and methods for leadless cardiac devices

Information

  • Patent Grant
  • 10722723
  • Patent Number
    10,722,723
  • Date Filed
    Wednesday, August 6, 2014
    9 years ago
  • Date Issued
    Tuesday, July 28, 2020
    3 years ago
  • CPC
  • Field of Search
    • US
    • 606 129000
    • 606 108000
    • 607 127000
    • 607 126000
    • 607 036000
    • 607 128000
    • CPC
    • A61N1/3756
    • A61N1/37205
    • A61N1/0573
    • A61N1/362
    • A61N1/057
    • A61N1/357
    • A61N1/056
    • A61N1/059
    • A61N1/05
    • A61N1/37229
    • A61N1/0551
    • A61N1/0553
    • A61N1/0587
    • A61N1/0558
    • A61N1/0568
    • A61N1/0575
    • A61N1/0597
    • A61N1/3605
    • A61N1/3627
    • A61N1/365
    • A61N2001/058
    • A61N2001/0578
    • A61N2001/0585
    • A61F2/966
    • A61F2002/011
    • A61M2025/0024
    • A61M2025/0081
    • A61M2025/0681
    • A61M25/0074
    • A61B17/3468
    • A61B17/3439
    • A61B2017/1205
  • International Classifications
    • A61M25/00
    • A61N1/375
    • Term Extension
      809
Abstract
Delivery devices, systems, and methods for delivering an implantable leadless pacing device having an outer peripheral surface are disclosed. An example delivery device may include a proximal section including a distal end, and a distal holding section extending distally of a distal end of the proximal section. The distal holding section defines a cavity therein for receiving the implantable leadless pacing device, and may be configured to apply a holding force to the implantable leadless pacing device. In some cases, the distal holding section may be configured to apply a compressive force to the outer peripheral surface of the leadless pacing device when the leadless pacing device is disposed in the cavity.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and methods for manufacturing and/or using medical devices. More particularly, the present disclosure pertains to leadless cardiac devices and methods, such as leadless pacing devices and methods, and delivery devices and methods for such leadless devices.


BACKGROUND

A wide variety of medical devices have been developed for medical use, for example, cardiac use. Some of these devices include catheters, leads, pacemakers, and the like, and delivery devices and/or systems used for delivering such devices. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices, delivery system, and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices and delivery devices as well as alternative methods for manufacturing and using medical devices and delivery devices.


BRIEF SUMMARY

This disclosure provides design, material, manufacturing method, and use alternatives for medical devices, including delivery devices. An example medical device includes a delivery device for delivering an implantable leadless pacing device having an outer peripheral surface. The delivery device may include a proximal section including a distal end, and a distal holding section extending distally of a distal end of the proximal section. The distal holding section defines a cavity therein for receiving the implantable leadless pacing device, and may be configured to apply a holding force to the implantable leadless pacing device. In some cases, the distal holding section may be configured to apply a compressive force to the outer peripheral surface of the leadless pacing device when the leadless pacing device is disposed in the cavity. In some embodiments, the distal holding section includes an annular wall having an inner surface defining the cavity, and wherein the inner surface presses circumferentially against the outer peripheral surface of the leadless pacing device when the leadless pacing device is disposed in the cavity. In some cases, the distal holding section comprises a heat shrink material that applies the compressive force to the outer peripheral surface of the leadless pacing device. In some cases, the distal holding section comprises a resilient material that applies the compressive force to the outer peripheral surface of the leadless pacing device, for example a resilient material that elastically deforms when the leadless pacing device is disposed in the cavity. In other cases, the distal holding section may include a material that plastically deforms when the leadless pacing device is disposed in the cavity.


In some embodiments, the cavity of the distal holding section comprises an inner diameter, and the inner diameter is the same as or less than an outer diameter of the leadless pacing device. For example, where the inner diameter is less than an outer diameter of the leadless pacing device, and the holding section may be expandable such that the inner diameter expands when the leadless pacing device is disposed in the cavity.


In some situations, the cavity of the distal holding section comprises a distal portion that has an inner diameter that is less than the outer diameter of the leadless pacing device, and the distal portion may be expandable such that the inner diameter of the distal portion will expand as the leadless pacing device is delivered there through. In some situations, the cavity of the distal holding section includes a proximal section having a first inner diameter that is the same as the an outer diameter of the leadless pacing device, and a distal section that has a second inner diameter that is less than the outer diameter of the leadless pacing device.


In some embodiments, the distal holding section includes an annular wall having an inner surface defining the cavity, the inner surface configured to engage the outer peripheral surface of the leadless pacing device while being free of any gap between the inner surface of the annular wall and outer surface of the leadless pacing device.


In some embodiments, the compressive force applied by the distal holding section to the outer peripheral surface of the leadless pacing device provides circumferential frictional engagement between the distal holding section and the leadless pacing device. In some embodiments, the distal holding section slidably receives the implantable leadless pacing device, which in some cases is a non-expandable, implantable leadless pacing device, for example, an implantable leadless pacing device including a non-expandable housing.


Some embodiments relate to an implantable leadless pacing device system including a delivery device including elements or configurations set forth above, or disclosed herein; and an implantable leadless pacing device disposed within the cavity of the distal holding section of the delivery device.


Some other embodiments relate to methods for delivering an implantable leadless pacing device. The methods may include delivering the implantable leadless pacing device into the heart of a patient using a delivery system or delivery device including elements or configurations set forth above, or disclosed herein.


The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify some of these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:



FIG. 1 is a plan view of an example leadless pacing device implanted within a heart;



FIG. 2 is a plan view of an example delivery device delivering an implantable leadless cardiac pacing device to the heart of a patient;



FIG. 3 is a partial cross-sectional side view of the distal portion of the delivery device of FIG. 2, showing the implantable leadless cardiac pacing device disposed therein prior to deployment;



FIG. 4 is a partial cross-sectional side view of the distal portion of the delivery device of FIG. 2, showing the implantable leadless cardiac pacing device disposed therein in a partially deployed configuration;



FIG. 5 is a partial cross-sectional side view of the distal portion of the delivery device of FIG. 2, showing the implantable leadless cardiac pacing device deployed therefrom;





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following detailed description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.


Cardiac pacemakers provide electrical stimulation to heart tissue to cause the heart to contract and thus pump blood through the vascular system. Conventional pacemakers typically include an electrical lead that extends from a pulse generator implanted subcutaneously or sub-muscularly to an electrode positioned adjacent the inside or outside wall of the cardiac chamber. As an alternative to conventional pacemakers, self-contained or leadless cardiac pacemakers have been proposed. Leadless cardiac pacemakers are small capsules typically fixed to an intracardiac implant site in a cardiac chamber. The small capsule typically includes bipolar pacing/sensing electrodes, a power source (e.g. a battery), and associated electrical circuitry for controlling the pacing/sensing electrodes, and thus provide electrical stimulation to heart tissue and/or sense a physiological condition. It can be readily appreciated that the implantation of a leadless pacing device within a beating heart could become dislodged as the heart functions. Accordingly, it may be desirable for a leadless pacing device to include one or more anchoring mechanism or member to help securing the pacing device to the heart.



FIG. 1 illustrates an example implantable leadless cardiac pacing device 10 (e.g., a leadless pacemaker) is illustrated implanted in a chamber of a heart H, such as the right ventricle RV. The implantable device 10 may include a shell or housing 12 having a proximal end 14, a distal end 16 and an outer peripheral surface 17. The housing 12 may be a non-expandable housing. The implantable device 10 may include a first electrode 20 positioned adjacent to the distal end 16 of the housing 12 and a second electrode 22 positioned adjacent to the proximal end 14 of the housing 12. For example, housing 12 may include a conductive material and may be insulated along a portion of its length. A section along proximal end 14 may be free of insulation so as to define second electrode 22. The electrodes 20, 22 may be sensing and/or pacing electrodes to provide electro-therapy and/or sensing capabilities. The first electrode 20 may be capable of being positioned against or otherwise contact the cardiac tissue of the heart H while the second electrode 22 may be spaced away from the first electrode 20, and thus spaced away from the cardiac tissue.


The implantable device 10 may include a pulse generator (e.g., electrical circuitry) and a power source (e.g., a battery) within the housing 12 to provide electrical signals to the electrodes 20, 22 and thus control the pacing/sensing electrodes 20, 22. Electrical communication between pulse generator and the electrodes 20, 22 may provide electrical stimulation to heart tissue and/or sense a physiological condition.


The implantable device 10 may include a fixation mechanism 24 proximate the distal end 16 of the housing 12 configured to attach the implantable device 10 to a tissue wall of the heart H, or otherwise anchor the implantable device 10 to the anatomy of the patient. As shown in FIG. 1, in some instances, the fixation mechanism 24 may include one or more, or a plurality of hooks 26 anchored into the cardiac tissue of the heart H to attach the implantable device 10 to a tissue wall. In other instances, the fixation mechanism 24 may include one or more, or a plurality of passive tines, configured to entangle with trabeculae within the chamber of the heart H and/or a helical fixation anchor configured to be screwed into a tissue wall to anchor the implantable device 10 to the heart H.


The implantable device 10 may include a docking member 30 proximate the proximal end 14 of the housing 12 configured to facilitate delivery and/or retrieval of the implantable device 10. For example, the docking member 30 may extend from the proximal end 14 of the housing 12 along a longitudinal axis of the housing 12. The docking member 30 may include a head portion 32 and a neck portion 34 extending between the housing 12 and the head portion 32. The head portion 32 may be an enlarged portion relative to the neck portion 34. For example, the head portion 32 may have a radial dimension from the longitudinal axis of the implantable device 10 which is greater than a radial dimension of the neck portion from the longitudinal axis of the implantable device 10. The docking member 30 may be configured to facilitate delivery of the implantable device 10 to the intracardiac site and/or retrieval of the implantable device 10 from the intracardiac site.


One aspect of the current disclosure relates to the delivery device and/or system used, for example, to deliver device 10 to a suitable location within the anatomy (e.g., the heart). As may be appreciated, the delivery device may need to be navigated through relatively tortuous anatomy to deliver the device 10 to a suitable location. For instance, in some embodiments, the delivery device may be advanced through the vasculature to a target region. In some example cases the device may be advanced through a femoral vein, into the inferior vena cava, into the right atrium, through the tricuspid valve, and into the right ventricle. The target region for the delivery of the device 10 may be a portion of the right ventricle, for example, a portion of the right ventricle near the apex of the heart. It may be desirable to provide the delivery system with certain features that may allow for easier or better control for navigation or delivery purposes, and securement of the device 10 with the delivery device or system until deployment is desired. For example, delivery devices with a smaller delivery profile may be desired. It may also be desired to provide for delivery devices that securely hold or maintain the device 10 with, in, or on the delivery device during navigation or positioning of the device 10 to or at the target cite prior to deployment of the device 10, and then allows deployment of the device 10 when desired.



FIG. 2 illustrates an example embodiment of a delivery device 100, such as a catheter, that may be used to deliver the device 10 to a target anatomy, for example, a portion of the right ventricle RV near the apex of the heart H as shown. Delivery device 100 may include a proximal section 140, such as a proximal shaft or tubular member 142, and a distal section and/or holding section 146, attached to the distal end of the proximal section 140. The distal holding section 146 may extend distally of a distal end of the proximal section 140. In some embodiments, the proximal section 140 may include at least a section thereof that has an outer diameter that is less than the outer diameter of at least a portion of the holding section 146. In some cases, the distal holding section comprises a polymer that is softer than that of the proximal section. For example, the distal holding section may comprise a polymer the having a durometer less than that of at least a portion of the proximal section.


The distal holding section 146 may be configured to receive the implantable device 10 therein. For example, the holding section 146 may define a cavity 148 for slidably receiving the implantable device 10, and may include a distal opening 150 for slidable insertion and/or extraction of the implantable device 10 into and/or out of the cavity 148. As will be discussed in more detail below, the distal holding section 146 may be configured to secure or hold the implantable device 10 therein until deployment is desired.


A push member 160 may be disposed (e.g., slidably disposed) within a lumen of the delivery device 100, for example through a lumen of the proximal section 140 of shaft 142. The push member 160 may be engaged by a user near the proximal end of the delivery device 100, and extend through a lumen in the delivery device 100, through the proximal section 140 and into the distal holding section 146. A distal portion 164 of the push member 160 may be capable of engaging the device 10, and the push member 160 may be used to “push” device 10 out from distal holding section 146 so as to deploy and anchor device 10 within a target region (e.g., a region of the heart such as the right ventricle).


As indicated above, the distal holding section 146 may be configured to secure or hold the implantable device 10 therein until deployment is desired. For example, referring to FIG. 3, the distal holding section 146 may be configured in such a way as to provide a holding force to maintain the implantable device 10 when the implantable device 10 is disposed therein. For example, the distal holding section 146 may be configured to provide a holding force between the outer peripheral surface 17 of the implantable device 10 and at least a portion of the distal holding section 146 when the implantable device 10 is disposed therein.


In some embodiments, the distal holding section 146 may be configured to apply a compressive force to the outer peripheral surface 17 of the leadless pacing device 10 when the leadless pacing device is disposed in the cavity 148. This compressive force may act as a holding force to aid in selectively maintaining the implantable device 10 within the cavity 148. For example, in the embodiment shown, the distal holding section 146 may include an annular wall 147 having an inner surface 149 defining the cavity 148. The distal holding section 146 may be configured such that the inner surface 149 applies a compressive force against the outer peripheral surface 17 of the leadless pacing device 10 when the leadless pacing device is disposed in the cavity 148. For example, distal holding section 146 may include structure or materials that biases or predisposes at least a portion of the inner surface 149 to apply a compressive force against the outer surface 17. In some aspects, the inner surface 149 may be configured to grasp, grip, hug, squeeze, or clinch the outer peripheral surface 17 of the leadless pacing device 10. The compressive force may be circumferential about the housing 12 along at least a portion of the length of the housing 12. For example, in some cases, there is no gap or opening between the inner surface 149 and the outer peripheral surface 17 around the entire circumference of the leadless pacing device 10 along at least a portion of the length of the housing 12. In some cases, the compressive force may provide enhanced circumferential frictional engagement between the surfaces 149 and 17.


A number of ways are contemplated to generate such a holding force.


For example, in some embodiments, the distal holding section 146 may include or be made of a shrinkable material, such as a heat shrink material or the like. In some such embodiments, the leadless pacing device 10 may be disposed within the cavity 148, and heat or other activation mechanism may be applied to the shrink material such that at least a portion of the distal holding section 146 shrinks around at least a portion of the outer peripheral surface 17 of the leadless pacing device 10. As such, at least a portion of the inner surface 149 of the distal holding section 146 applies the compressive force to the outer peripheral surface 17 of the leadless pacing device.


In some embodiments, the distal holding section 146 may include or be made of a resilient or elastic material or structure that may apply a compressive force to the outer peripheral surface 17 of the leadless pacing device 10 when disposed therein. Such resilient or elastic material or structures may or may not be shrinkable materials. For example, distal holding section 146 may be made of resilient or elastic material or structure, and may be dimensioned such that in a relaxed state, the cavity 148 has an inner diameter that is the same as or smaller than an outer diameter of the leadless pacing device 10, for example the outer diameter of the housing 12 of the leadless pacing device 10. The leadless pacing device 10 is disposed within the cavity 148, thereby stretching or elastically deforming the distal holding section 146 to receive the leadless pacing device 10. Due to the dimensional differences, and the resilient or elastic properties of the distal holding section 146, a compressive force is applied to the outer peripheral surface 17 of the leadless pacing device 10. Some examples of such elastic material include elastic polymers, metals, or the like or combinations thereof. In a similar manner, some examples of structures that may be incorporated into the distal holding section 146 that may provide resilient or elastic properties thereto include an elastic coil, braid, or other similar structures.


In some other embodiments, the distal holding section 146 may include or be made of a non-resilient or plastically deformable material or structure that applies a holding force to the outer peripheral surface 17 of the leadless pacing device 10. Such non-resilient or plastically deformable material or structure may or may not be shrinkable materials. For example, distal holding section 146 made of non-resilient or plastically deformable material or structure, and may be dimensioned such that the cavity 148 has an inner diameter that is substantially the same as or less than the outer diameter of the leadless pacing device 10. When the leadless pacing device 10 is inserted into the cavity 148 of the distal holding section 146, the distal holding section may plastically deform tightly around the leadless pacing device 10 (in the case where cavity 148 has an inner diameter that less than the outer diameter of the leadless pacing device 10) or simply fit tightly around the leadless pacing device 10 (in the case where cavity 148 has an inner diameter that is substantially the same as the outer diameter of the leadless pacing device 10). The tight dimensional relationship between the leadless pacing device 10 and the distal holding section 146 may provide circumferential frictional engagement between the surfaces 149 and 17, in some cases without applying a compressive force. In some cases, the inner surface 149 of the distal holding section 146, the outer surface 17 of the leadless pacing device 10, or both may include structure, features, or a coating that provides for enhanced frictional engagement between the surfaces 149 and 17.


As can be appreciated, many of these configurations may provide for a delivery device 100 having a smaller or “lower” profile for deliverability purposes. For example, in cases where shrink material or elastic or resilient material are used for the distal holding section 146, all or portions of the holding section 146 can be engineered to have a smaller profile or outer diameter. In some cases, as can be seen in the figures, the distal portion of the holding section 146 (that may extend distally of the leadless pacing device 10 when it is disposed in the cavity) may have a reduced outer diameter. In addition, the tight fit and/or tolerance between the holding section 146 and the device 10 provides for a lower profile.


Referring back to FIG. 3, an example delivery device 100 is shown adjacent a target anatomy (e.g. a portion of the right ventricle RV near the apex of the heart H) with an implantable device 10 disposed in the cavity 148. The distal opening 150 is directed toward the target anatomy, and the distal tip of the delivery device 100 is close to engaging the target anatomy. In this embodiment, the distal holding section 146 may include or be made of a resilient or elastic material or structure that may apply a compressive force to the outer peripheral surface 17 of the leadless pacing device 10 when disposed therein. Such resilient or elastic material or structures may or may not be shrinkable materials, as discussed above. The distal holding section 146 may be dimensioned such that in a relaxed state, the cavity 148 has an inner diameter that is smaller than an outer diameter of the leadless pacing device 10, for example the outer diameter of the housing 12 of the leadless pacing device 10. The leadless pacing device 10 is disposed within the cavity 148, thereby stretching or elastically deforming the distal holding section 146 to receive the leadless pacing device 10. Due to the dimensional differences, and the resilient or elastic properties of the distal holding section 146, a compressive force is applied to the outer peripheral surface 17 of the leadless pacing device 10. As such, in this configuration, with the leadless pacing device 10 disposed in the cavity 148, the distal holding section 146 includes a proximal section 153 having a first inner diameter that is the same as the an outer diameter of the leadless pacing device 10, and a distal section 151 that has a second inner diameter that is less than the outer diameter of the leadless pacing device. Due to the elastic or resilient properties of the distal holding section 146, the distal section 151 may be expandable such that the inner diameter of the distal section 151 will expand as the leadless pacing device 10 is delivered there through.


Moving now to FIG. 4, the system is shown in a partially deployed state. The distal tip of the delivery device 100 is engaging the target anatomy, and the push member 160 has been engaged by a user to engage the device 10, and the push the device 10 distally within the cavity 148. The fixation mechanism (e.g. hooks 26) have anchored into the cardiac tissue of the heart H to attach the implantable device 10 to a tissue wall. As such, in this configuration, due to the elastic nature of the distal holding section 146, the proximal section 153 has relaxed and now has an inner diameter that is less than the outer diameter of the leadless pacing device 10, while the distal section 151 has stretched and now has an inner diameter that is the same as the outer diameter of the leadless pacing device 10.


Finally, FIG. 5 shows the system after full deployment of the leadless pacing device 10. The leadless pacing device 10 has been pushed fully out of the cavity 148, and is deployed and engaged with the target anatomy. The delivery device 100 has been moved proximally off of the leadless pacing device 10. As such, in this configuration, due to the elastic nature of the distal holding section 146, both the proximal section 153 the distal section 151 of the distal holding section 146 have relaxed, and the entire cavity 148 has an inner diameter that is less than the outer diameter of the leadless pacing device 10. After successful delivery, the delivery device 100 can be withdrawn from the anatomy. It should be understood that the same general procedure may be used for any of the delivery devices and/or systems disclosed herein.


The materials that can be used for the various components of the delivery devices, such as delivery device 100 (or other delivery devices disclosed herein) and the various members disclosed herein may include those commonly associated with medical devices. For simplicity purposes, the following discussion makes reference the delivery devices 100 and components of thereof. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other similar delivery systems and/or components of delivery systems or devices disclosed herein.


The delivery device 100 or other components of delivery system may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the polymer can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.


As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.


In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about ˜60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.


In at least some embodiments, portions or all of the delivery device 100 or other components of delivery system may be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the delivery devices 100/100b/200/300/400 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the delivery device 100 to achieve the same result.


In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the delivery device 100. For example, delivery devices 100/100b/200/300/400, or portions or components thereof, may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. The delivery device 100, or portions thereof, may also include and/or be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A delivery system for delivering an implantable leadless pacing device, the delivery system comprising: an implantable leadless pacing device including a housing having a proximal end, a distal end, and a cylindrical outer peripheral surface having a constant outer diameter; anda delivery device including: a proximal section including a distal end,a distal holding section extending distally of the distal end of the proximal section, the distal holding section includes an annular wall having an inner surface defining a cavity therein for receiving the implantable leadless pacing device, the distal holding section being configured to apply a compressive force to and conform to the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity,wherein the inner surface presses circumferentially against the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity, andwherein there is no gap or opening between the inner surface of the distal holding section and an entirety of the cylindrical outer peripheral surface of the housing;wherein when the implantable leadless pacing device is fully disposed in the cavity, the distal holding section includes a distally facing opening distal of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device, the distal opening having an inner diameter that is less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device;wherein the distal opening is configured to expand as the housing of the implantable leadless pacing device passes therethrough.
  • 2. The delivery system of claim 1, wherein the distal holding section comprises a resilient material that applies the compressive force to the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device.
  • 3. The delivery system of claim 1, wherein the distal holding section comprises a resilient material that elastically deforms when the implantable leadless pacing device is disposed in the cavity.
  • 4. The delivery system of claim 1, wherein the cavity of the distal holding section comprises an inner diameter, and the inner diameter of the cavity is the same as or less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed outside of the cavity.
  • 5. The delivery system of claim 4, wherein the inner diameter of the cavity is less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device, and the distal holding section is expandable such that the inner diameter of the cavity expands when the implantable leadless pacing device is disposed in the cavity.
  • 6. The delivery system of claim 1, wherein the cavity of the distal holding section comprises a distal portion extending distal of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device that has an inner diameter that is less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity; wherein the distal portion is expandable such that the inner diameter of the distal portion will expand as the implantable leadless pacing device is delivered therethrough.
  • 7. The delivery system of claim 1, wherein the cavity of the distal holding section includes a proximal section having a first inner diameter that is the same as the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device, and a distal section that has a second inner diameter that is less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device.
  • 8. The delivery system of claim 1, wherein the compressive force applied by the distal holding section to the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device provides circumferential frictional engagement between the distal holding section and the housing of the implantable leadless pacing device.
  • 9. The delivery system of claim 1, wherein when the housing of the implantable leadless pacing device is disposed outside of the distal holding section, the cavity of the distal holding section includes: a proximal portion having a first inner diameter that is less than the outer diameter of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device, anda distal portion that has a second inner diameter at a distal end of the distal portion that is less than the first inner diameter;wherein the proximal portion is configured to radially expand to a third inner diameter greater than the first inner diameter when the housing of the implantable leadless pacing device is disposed therein;wherein the distal portion is configured to radially expand to the third inner diameter when the housing of the implantable leadless pacing device passes therethrough;wherein the distal portion is configured to radially contract to a fourth inner diameter less than the third inner diameter when the implantable leadless pacing device is disposed in the proximal portion.
  • 10. A delivery system for delivering an implantable leadless pacing device, the delivery system comprising: an implantable leadless pacing device including: a housing including electrical circuitry therein, the housing having a cylindrical outer peripheral surface having a constant outer diameter; anda fixation mechanism disposed at a distal end of the housing;a delivery device including: a proximal section including a distal end, anda distal holding section extending distally of a distal end of the proximal section, the distal holding section includes an annular wall having an inner surface defining a cavity therein for receiving the implantable leadless pacing device, the distal holding section being configured to conform to the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity to provide circumferential frictional engagement with the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device,wherein the inner surface circumferentially frictionally engages the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity while being free of any gap between the inner surface and the cylindrical outer peripheral surface of the housing.
  • 11. The delivery system of claim 10, wherein the cavity of the distal holding section is radially expanded when the distal holding section receives the implantable leadless pacing device therein.
  • 12. The delivery system of claim 10, wherein a distal portion of the distal holding section extending distal of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device has an inner diameter less than the outer diameter of the cylindrical outer peripheral surface of the housing when the implantable leadless pacing device is disposed in the cavity.
  • 13. The delivery system of claim 12, wherein the distal portion is expandable such that the inner diameter of the distal portion expands as the housing of the implantable leadless pacing device passes therethrough.
  • 14. The delivery system of claim 10, wherein the distal holding section includes a distal opening at a distal extremity thereof opening into the cavity, the distal opening having a radially collapsed diameter less than the outer diameter of the cylindrical outer peripheral surface of the housing when the implantable leadless pacing device is fully disposed in the cavity, and the distal opening having a radially expanded diameter equal to the outer diameter of the cylindrical outer peripheral surface of the housing as the housing of the implantable leadless pacing device passes through the distal opening.
  • 15. The delivery system of claim 10, wherein the distal holding section includes a proximal portion and a distal portion located distal of the proximal portion, the proximal portion of the distal holding section circumferentially surrounding the cylindrical outer peripheral surface of the housing when the implantable leadless pacing device is fully disposed in the cavity and the distal portion of the distal holding section circumferentially surrounding the fixation mechanism when the implantable leadless pacing device is fully disposed in the cavity, wherein the proximal portion of the distal holding section has an inner diameter equal to the outer diameter of the cylindrical outer peripheral surface of the housing when the implantable leadless pacing device is fully disposed in the cavity, and the distal portion of the distal holding section has an inner diameter less than the inner diameter of the proximal portion of the distal holding section when the implantable leadless pacing device is fully disposed in the cavity.
  • 16. The delivery system of claim 15, wherein the distal portion of the distal holding section gradually tapers down to a smaller diameter in a distal direction from the proximal portion of the distal holding section to a distal extremity of the distal holding section.
  • 17. The delivery system of claim 15, wherein the distal holding section includes a distal opening at a distal extremity thereof opening into the cavity, the distal opening having a radially collapsed diameter less than the inner diameter of the proximal portion of the distal holding section when the implantable leadless pacing device is fully disposed in the cavity, and the distal opening having a radially expanded diameter equal to the inner diameter of the proximal portion of the distal holding section as the implantable leadless pacing device is deployed out through the distal opening.
  • 18. A delivery system for delivering an implantable leadless pacing device, the delivery system comprising: an implantable leadless pacing device including a housing having a cylindrical outer peripheral surface having a constant outer diameter; anda delivery device including: a proximal section including a distal end, anda distal holding section extending distally of the distal end of the proximal section, the distal holding section includes an annular wall having an inner surface defining a cavity therein for receiving the implantable leadless pacing device, the distal holding section having an inner diameter in a relaxed state less than the outer diameter of the housing of the implantable leadless pacing device such that the distal holding section radially expands to engage an entirety of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device around an entire circumference of the housing of the implantable leadless pacing device when the implantable leadless pacing device is disposed in the cavity while being free of any gap between the inner surface and the cylindrical outer peripheral surface of the housing;wherein a distal end of the distal holding section defines a distal opening coaxial with and opening into the cavity of the distal holding section, the distal opening having an inner diameter less than the outer diameter of the housing of the implantable leadless pacing device when the implantable leadless pacing device is fully disposed in the cavity.
  • 19. The delivery system of claim 18, wherein a distal section of the distal holding section extending distal of the cylindrical outer peripheral surface of the housing of the implantable leadless pacing device has an inner diameter less than the outer diameter of the housing when the implantable leadless pacing device is disposed in the cavity.
  • 20. The delivery system of claim 19, wherein the distal section is expandable such that the inner diameter of the distal section expands as the housing of the implantable leadless pacing device passes therethrough.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/866,898 filed Aug. 16, 2013, the complete disclosure of which is herein incorporated by reference.

US Referenced Citations (252)
Number Name Date Kind
721869 Dunning Mar 1903 A
3717151 Collett Feb 1973 A
3754555 Schmitt Aug 1973 A
3814104 Irnich et al. Jun 1974 A
3835864 Rasor et al. Sep 1974 A
3902501 Citron et al. Sep 1975 A
3943936 Rasor Mar 1976 A
3971364 Fletcher et al. Jul 1976 A
3976082 Schmitt Aug 1976 A
4103690 Harris Aug 1978 A
4112952 Thomas et al. Sep 1978 A
4269198 Stokes May 1981 A
4280512 Karr Jul 1981 A
4301815 Doring Nov 1981 A
4402328 Doring Sep 1983 A
4409994 Doring Oct 1983 A
4502492 Bornzin Mar 1985 A
4662382 Sluetz et al. May 1987 A
4898577 Badger et al. Feb 1990 A
4913164 Greene et al. Apr 1990 A
5003990 Osypka Apr 1991 A
5057114 Wittich et al. Oct 1991 A
5129749 Sato Jul 1992 A
5171233 Amplatz et al. Dec 1992 A
5193540 Schulman et al. Mar 1993 A
5257634 Kroll Nov 1993 A
5282845 Bush et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5318528 Heaven et al. Jun 1994 A
5336253 Gordon et al. Aug 1994 A
5405367 Schulman et al. Apr 1995 A
5405374 Stein Apr 1995 A
5411535 Fujii et al. May 1995 A
5425756 Heil et al. Jun 1995 A
5443492 Stokes et al. Aug 1995 A
5492119 Abrams Feb 1996 A
5522875 Gates et al. Jun 1996 A
5522876 Rusink Jun 1996 A
5545201 Helland et al. Aug 1996 A
5545206 Carson Aug 1996 A
5562723 Rugland et al. Oct 1996 A
5575814 Giele et al. Nov 1996 A
5578068 Laske et al. Nov 1996 A
5697936 Shipko et al. Dec 1997 A
5716390 Li Feb 1998 A
5716391 Grandjean Feb 1998 A
5755764 Schroeppel May 1998 A
5776178 Pohndorf et al. Jul 1998 A
5807399 Laske et al. Sep 1998 A
5837006 Ocel et al. Nov 1998 A
5837007 Altman et al. Nov 1998 A
5851226 Skubitz et al. Dec 1998 A
5871531 Struble Feb 1999 A
5908381 Aznoian et al. Jun 1999 A
5908447 Schroeppel et al. Jun 1999 A
6041258 Cigaina et al. Mar 2000 A
6055457 Bonner Apr 2000 A
6074401 Gardnier et al. Jun 2000 A
6078840 Stokes Jun 2000 A
6093177 Javier et al. Jul 2000 A
6129749 Bartig et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6181973 Ceron et al. Jan 2001 B1
6188932 Lindegren Feb 2001 B1
6240322 Peterfeso et al. May 2001 B1
6251104 Kesten et al. Jun 2001 B1
6290719 Garberoglio Sep 2001 B1
6321124 Cigaina Nov 2001 B1
6322548 Payne et al. Nov 2001 B1
RE37463 Altman Dec 2001 E
6358256 Reinhardt Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6381495 Jenkins Apr 2002 B1
6381500 Fischer, Sr. Apr 2002 B1
6408214 Williams et al. Jun 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6477423 Jenkins Nov 2002 B1
6500182 Foster Dec 2002 B2
6510332 Greenstein Jan 2003 B1
6510345 Van Bentem Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6572587 Lerman et al. Jun 2003 B2
6582441 He et al. Jun 2003 B1
6592581 Bowe Jul 2003 B2
6623518 Thompson et al. Sep 2003 B2
6626915 Leveillee Sep 2003 B2
6638268 Niazi Oct 2003 B2
6684109 Osypka Jan 2004 B1
6711443 Osypka Mar 2004 B2
6743240 Smith et al. Jun 2004 B2
6755812 Peterson et al. Jun 2004 B2
6909920 Lokhoff et al. Jun 2005 B2
6944507 Froberg et al. Sep 2005 B2
6953454 Peterson et al. Oct 2005 B2
7027876 Casavant et al. Apr 2006 B2
7082335 Klein et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092765 Geske et al. Aug 2006 B2
7092766 Salys et al. Aug 2006 B1
7120504 Osypka Oct 2006 B2
7149587 Wardle et al. Dec 2006 B2
7158838 Seifert et al. Jan 2007 B2
7162310 Doan Jan 2007 B2
7181288 Rezai et al. Feb 2007 B1
7187982 Seifert et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7212869 Wahlstrom et al. May 2007 B2
7229415 Schwartz Jun 2007 B2
7251532 Hess et al. Jul 2007 B2
7289853 Campbell et al. Oct 2007 B1
7313445 McVenes et al. Dec 2007 B2
7326231 Phillips et al. Feb 2008 B2
7328071 Stehr et al. Feb 2008 B1
7383091 Chitre et al. Jun 2008 B1
7450999 Karicherla et al. Nov 2008 B1
7462184 Worley et al. Dec 2008 B2
7463933 Wahlstrom et al. Dec 2008 B2
7499758 Cates et al. Mar 2009 B2
7509169 Eigler et al. Mar 2009 B2
7515971 Doan Apr 2009 B1
7532939 Sommer et al. May 2009 B2
7558631 Cowan et al. Jul 2009 B2
7634319 Schneider et al. Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7657325 Williams Feb 2010 B2
7678128 Boyle et al. Mar 2010 B2
7717899 Bowe et al. May 2010 B2
7731655 Smith et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7740640 Ginn Jun 2010 B2
7785264 Hettrick et al. Aug 2010 B2
7799037 He et al. Sep 2010 B1
7801624 Flannery et al. Sep 2010 B1
7835801 Sundararajan et al. Nov 2010 B1
7840281 Kveen et al. Nov 2010 B2
7840283 Bush et al. Nov 2010 B1
7860580 Falk et al. Dec 2010 B2
7875049 Eversull et al. Jan 2011 B2
7890186 Wardle et al. Feb 2011 B2
7904179 Rutten et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7993351 Worley et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8036757 Worley Oct 2011 B2
8057486 Hansen Nov 2011 B2
8082035 Glukhovsky Dec 2011 B2
8103361 Moser Jan 2012 B2
8108054 Helland Jan 2012 B2
8142347 Griego et al. Mar 2012 B2
8160722 Rutten et al. Apr 2012 B2
8185213 Kveen et al. May 2012 B2
8219213 Sommer et al. Jul 2012 B2
8233994 Sommer et al. Jul 2012 B2
8252019 Fleming, III Aug 2012 B2
8295939 Jacobson Oct 2012 B2
8313445 Mishima et al. Nov 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8364277 Glukhovsky Jan 2013 B2
8364280 Marnfeldt et al. Jan 2013 B2
8406900 Barlov et al. Mar 2013 B2
8406901 Starkebaum et al. Mar 2013 B2
8428750 Kolberg Apr 2013 B2
8452420 Flach et al. May 2013 B2
8478431 Griswold et al. Jul 2013 B2
8489189 Tronnes Jul 2013 B2
8494650 Glukhovsky et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8518060 Jelich et al. Aug 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8548605 Ollivier Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8634912 Bornzin et al. Jan 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8721587 Berthiaume et al. May 2014 B2
8727996 Allan et al. May 2014 B2
8758365 Bonner et al. Jun 2014 B2
20020077556 Schwartz Jun 2002 A1
20030004537 Boyle Jan 2003 A1
20040176797 Opolski Sep 2004 A1
20050080430 Wright, Jr. Apr 2005 A1
20050090890 Wu et al. Apr 2005 A1
20050267555 Marnfeldt et al. Dec 2005 A1
20060247753 Wenger et al. Nov 2006 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070233218 Kolberg Oct 2007 A1
20070239248 Hastings et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart Nov 2007 A1
20070293904 Gelbart Dec 2007 A1
20080021532 Kveen et al. Jan 2008 A1
20090082828 Ostroff Mar 2009 A1
20090143853 Morris Jun 2009 A1
20090281605 Marnfeldt et al. Nov 2009 A1
20100198288 Ostroff Aug 2010 A1
20110034939 Kveen et al. Feb 2011 A1
20110112548 Fifer et al. May 2011 A1
20110125163 Rutten et al. May 2011 A1
20110190785 Gerber et al. Aug 2011 A1
20110190786 Gerber et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20110307043 Ollivier Dec 2011 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120078336 Helland Mar 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120109002 Mothilal et al. May 2012 A1
20120109079 Asleson et al. May 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120271134 Allan et al. Oct 2012 A1
20120330392 Regnier et al. Dec 2012 A1
20130006261 Lampropoulos et al. Jan 2013 A1
20130006262 Lampropoulos et al. Jan 2013 A1
20130012925 Berthiaume Jan 2013 A1
20130035636 Beasley et al. Feb 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103049 Medtronic Apr 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130296957 Tronnes Nov 2013 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140180306 Grubac et al. Jun 2014 A1
Foreign Referenced Citations (8)
Number Date Country
1003904 Jan 1977 CA
2053919 May 1972 DE
779080 May 2003 EP
05245215 Sep 1993 JP
03032807 Apr 2003 WO
2009039400 Mar 2009 WO
2012092067 Jul 2012 WO
2012092074 Jul 2012 WO
Non-Patent Literature Citations (1)
Entry
Spickler, et al. “Totally Self-Contained Intracardiac Pacemaker” J. Electrocardiology, vol. 3, Nos. 3 & 4, pp. 325-331 (1970).
Related Publications (1)
Number Date Country
20150051613 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61866898 Aug 2013 US