The present invention relates in general to fiber capillary assemblies used in laser surgical procedures. The invention relates in particular to methods for improving damage resistance and lifetime of side-firing fiber capillary assemblies used in laser surgical procedures.
In laser surgical procedures where radiation from a laser is delivered to a treatment site by an optical fiber, a common practice is to use a sealed-off capillary encasing the distal (delivery) end of a fiber for protecting the distal end of the fiber from damage by several mechanisms. Such a capillary is particularly useful in a delivery fiber designed to deliver radiation laterally from the fiber in a manner usually referred to in the art as “side-firing,” for reasons discussed further below.
Device 10 is designed for side-firing. Distal end 12B of the fiber is cut or polished (beveled) to form a surface 28 at an angle to the length direction of the fiber. Sealed-off capillary 26 is sealed to fiber 12 by a weld 20 and is arranged to leave a space 24 surrounding angled surface 28 of the optical fiber. Angled surface 28 of optical fiber 12 is ideally made highly reflective for the laser radiation propagating along core 14 of the fiber such that radiation 18 is directed by the angled surface laterally through cladding 16 and through capillary 26 at an external region 22 on the capillary. High reflectivity of angled surface 28 can be provided by a reflective coating on the angled surface, or, preferably, by relying on total internal reflection (TIR) at the angled surface. Reflective coatings may be subject to laser damage dependent, inter alia, on the laser power, materials of the coatings, and method of deposition of the coatings. The sealed space surrounding the angled surface ensures that TIR can be relied on even when the fiber is immersed in a fluid.
In the assembly of
During experiments to test a prior-art fiber assembly 10 for a HoLEP procedure, the outside of capillary 26 at external, (radiation-exit) position 22 became pitted (damaged) over a period of use. It is believed that this pitting could be caused by one or more damage mechanisms, including, inter alia, back-reflection of laser radiation 18, water-vapor bubbles, or ablated material depositing on the capillary.
The pitting of the capillary's external (radiation-exit) position 22 initially led to reduced efficiency of the amount of laser radiation delivered from the capillary, which, at a minimum would require additional time to perform the required surgical procedure. Eventually the pitting could be sufficient to scatter laser radiation in a manner such that the surgical procedure could not be performed. It was estimated that this point could be reached before a HoLEP procedure could be completed. This would require that a replacement device be used to complete the procedure, which could increase the duration and cost of the procedure.
It is believed that the above discussed laser-induced pitting could be at least mitigated by mechanically hardening the outer surface of the capillary, specifically, by creating a relatively high compressive stress in the surface. Inducing compressive stress in glass and silica surfaces has been reported to improve laser damage resistance of those surfaces. Certainly, silica and glass surfaces have been mechanically hardened by inducing compressive stress therein.
Well-known methods of stress hardening glass surfaces include heat tempering and chemical tempering. It is believed, however, that these procedures are not applicable to hardening the surface of a capillary such as above-described capillary 26, for various reasons. Accordingly, there is a need for another compressive-stress-inducing method which can stress-harden the surface of the capillary, with the potential of improved resistance to laser-induced degradation of the capillary during laser surgical procedures.
The present invention is directed to optical apparatus for delivering laser radiation to a treatment site in laser surgical procedures. In one aspect of the invention, the apparatus comprises an optical fiber having a core surrounded by a cladding. The optical fiber has a proximal end into which the laser radiation is input, and a distal end from which the laser radiation is delivered after propagating along the fiber. The distal end of the optical fiber is surrounded by a closed-end capillary arranged such that there is a space between the distal end of the fiber and the closed end of the capillary. The capillary is sealed to the cladding. The capillary includes first and second layers where the first layer is an outermost layer of the capillary and the second layer is adjacent to the first layer. The first layer has a coefficient of thermal expansion (CTE) different from that of the second layer, and the CTE of the second layer is higher than that of the first layer. The capillary is formed in a manner such that the first layer is under compressive stress as a result of the difference in CTE between the first and second layers.
In another aspect of the invention, the capillary is formed from capillary tubing drawn from a preform. In one preferred embodiment, the preform comprises a cylinder including first and second layers, the first layer being an outermost layer of the cylinder, and the second layer being adjacent the first layer. The second layer has a higher coefficient of thermal expansion (CTE) than that of the first layer.
In one example of the preform, the first layer of the preform cylinder is a tube of fused silica having a CTE of about 0.5×10−6/° K. The second layer of the cylinder is a layer of boron-oxide doped fused silica having a CTE of about 2×10−6/° K.
The accompanying drawings, which are incorporated in and constitute a part of the specification, schematically illustrate a preferred embodiment of the present invention, and together with the general description given above and the detailed description of the preferred embodiment given below, serve to explain principles of the present invention.
Referring now to the drawings, wherein like components are designated by like reference numerals,
Outermost layer 32 has a coefficient of thermal expansion (CTE) significantly lower than that of adjacent layer 34. Capillary 30 is formed in a manner such that outermost layer 32 is under compressive stress as a result of the difference in CTE between the outermost and adjacent layers, and because of a preferred process of sealing capillary 30 to fiber 12 at seal 20. In general it is preferred that layer 34 has a thickness at least about twice that of layer 32, and that layer 34 has a CTE at least about twice that of layer 32.
In one example of capillary 30, outermost layer 32 is a layer of fused silica having a thickness of about 0.01 millimetres (mm) and a CTE of about 0.5×10−6/° K. Adjacent layer 34 is a layer of boron-doped (boron-oxide-doped) fused silica having a thickness of about 0.45 mm and a CTE of about 2×10−6/° K. Space 24 has a diameter of about 0.4 mm. A description of a preferred method of forming closed-end capillary 30 is set forth below, beginning with reference to
Here, a preform structure 38 includes an outermost layer 32P and an adjacent layer 34P. The suffix “P” on the reference numerals is added to indicate that those layers become layers 32 and 34 in finished capillary 30. In a preferred example, layer 32P is a fused-silica tube (cylinder) having an outside diameter (OD) of about 16.65 mm and a wall-thickness of about 1.1 mm. Layer 34P is a layer of boron-oxide doped (boron-doped) fused silica having a wall thickness of about 4.725 mm, leaving a hollow interior 40 of the preform having an diameter of about 5.0 mm. Layer 34P is preferably formed on the inside wall of tube 32P by modified chemical vapor deposition (MCVD). Boron oxide (B2O3) doping of the fused silica increases the CTE of fused silica and lowers the refractive index. A preferred boron oxide doping percentage is about 20.0 Mole %. This provides about the above-exemplified CTE of the boron-oxide-doped fused silica.
A lower part of the preform is heated above the softening point of the preform materials and is drawn, then solidifies, to form two-layer capillary tubing 42. The inside diameter of the tubing is selected to be about 20 micrometers (μm) greater than the outside diameter of fiber 12 on which finished capillary 30 of
Referring next to
Computer modeling was used to analyze and model the stress of the aforementioned inventive capillary and fiber. Commercially-available, finite element analysis (FEA) software was used to calculate the stresses in the inventive capillary and fiber. For this modeling, the input parameters were the above discussed materials and exemplary dimensions of the capillary and assumed initial relaxed and final stressed temperatures of 1700° C. and 25° C., respectively. The CTE and Young's modulus of the capillary and fiber materials were assumed to be constant through this temperature range. The FEA software calculated the axial stress of the capillary at the outside surface 44 of outmost layer 32 of inventive capillary 30 (
This application claims priority to U.S. Provisional Application Ser. No. 61/444,010, filed Feb. 17, 2011, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61444010 | Feb 2011 | US |