This invention generally relates to a bone cement mixing and delivery system. More specifically, the present invention relates to a mixing cartridge for receiving liquid and powder components of bone cement to be mixed, a mixing device for mixing the components, and a delivery gun for discharging the bone cement from the mixing cartridge into an anatomical site of a patient
Bone cement mixing and delivery systems are well known for mixing liquid and powder components of bone cement and delivering the prepared bone cement to an anatomical site during various surgical procedures. Bone cement is particularly useful in orthopedic procedures in which a prosthetic device is fixed to a bone or joint structure to improve the strength, rigidity, and movement of the structure. In a total hip arthroplasty (THA) procedure, in which a hip joint is replaced with a prosthetic device, bone cement is used to fix the prosthetic device in place in a medullary canal of a femur.
Typically, the bone cement is prepared in a mixing cartridge. The mixing cartridge includes a cylinder having proximal and distal ends with a mixing chamber defined between the ends. The mixing cartridge further includes a cap covering the proximal end of the cylinder and a piston disposed in the distal end of the cylinder such that the mixing chamber is further defined between the cap and the piston. The piston may be releasably secured in a locked position in the cylinder by a cotter pin. The cap supports a mixing device, i.e., a mixing shaft and blade, for mixing the liquid and powder components of the bone cement in the mixing chamber.
Once the bone cement is mixed, the mixing cartridge is prepared for inserting into a delivery gun to discharge the bone cement. This may include disengaging the mixing shaft and coupling a nozzle to the cap to provide a discharge point for the bone cement. At the same time, the piston is released from the locked position in the distal end of the cylinder by pulling the cotter pin. This allows the piston to be driven by the delivery gun through the mixing chamber to discharge the bone cement from the nozzle. An alternative solution for securing and releasing the piston is shown in U.S. Pat. No. 5,328,262 to Lidgren et al.
In Lidgren et al., the piston is releasably secured in the locked position in the distal end of the cylinder by a gripping portion in the form of a flange, which extends along only a portion of an inner periphery of the cylinder. The piston in Lidgren et al. has a corresponding gripping portion in the form of an outwardly directed lip that protrudes behind the flange. The lip defines a groove with an outer surface of the piston to receive the flange. To release the piston from the locked position, the flange is rotated through the groove until the flange has been rotated past the lip. Lidgren et al. discloses a base that is used to secure the piston from rotation while a user rotates the cylinder relative to the piston to release the piston from the locked position. This method of releasing the piston from the locked position, much like pulling the cotter pin, requires additional manipulation by a user.
Once the piston is released from the locked position, the mixing cartridge is inserted into the delivery gun. A typical delivery gun includes a ram disk that engages the piston and drives the piston through the mixing chamber to discharge the bone cement from the nozzle. The delivery gun includes a cradle for supporting the mixing cartridge and a casing for supporting a drive rod that engages the ram disk and advances the ram disk to drive the piston. The drive rod includes a plurality of teeth and a pawl member engages the teeth to advance the drive rod. A trigger supports the pawl member and the casing rotatably supports the trigger. Actuation of the trigger relative to the casing urges the pawl member against the teeth to advance the drive rod.
An example of such a delivery gun is illustrated in U.S. Pat. No. 5,431,654 to Nic. In the '654 patent to Nic, two pawl members are used to independently advance the drive rod and the ram disk. The pawl members provide high speed/low force and low speed/high force advancement of the drive rod. A switch is used to select between the speeds. When high speed is selected, both pawl members engage the drive rod, while only the high-speed pawl member actually advances the drive rod. When low 1′ speed is selected, the high-speed pawl member is isolated from the teeth such that only the low speed pawl member engages the teeth to advance the drive rod. However, in Nic, the trigger directly supports each of the pawl members which results in a low mechanical advantage to advance the drive rod and ram disk.
A mixing cartridge for receiving liquid and powder components of bone cement to be mixed for medical use. The mixing cartridge comprises a cylinder having proximal and distal ends with a mixing chamber defined therebetween. The cylinder includes a cylinder wall extending between the ends about a longitudinal axis of the cylinder. A piston is disposed in the cylinder at the distal end such that the mixing chamber is further defined between the proximal end and the piston. A locking member is coupled to the piston to lock the piston in the distal end. The locking member includes a male portion engaging a female portion in the cylinder wall to place the piston in a locked position at the distal end of the cylinder. The locking member includes a resilient portion for biasing the male portion into mating engagement with the female portion. The piston remains in the locked position at the distal end of the cylinder while mixing the liquid and powder components.
One advantage of the mixing cartridge is the conveniently positioned locking member used to lock the piston in the distal end. By using the resilient portion to bias the male portion into mating engagement with the female portion, a user can easily release the piston from the locked position by either manually or mechanically acting against the bias of the resilient portion to disengage the male and female portions.
A delivery gun is also provided for discharging the bone cement from the cartridge once the bone cement is prepared. The delivery gun comprises a casing for supporting the cartridge. A drive mechanism is supported by the casing and advanceable relative to the casing to force the bone cement from the cartridge. The casing pivotally supports a trigger operatively connected to the drive mechanism to advance the drive mechanism upon actuation of the trigger to force the bone cement from the cartridge. A linkage system works in conjunction with the trigger to advance the drive mechanism. The linkage system comprises a first link pivotally connected to the casing and a second link interconnecting the first link and the trigger such that actuating the trigger moves the second link and the first link to advance the drive mechanism.
An advantage of the delivery gun is the use of the linkage system to increase the mechanical advantage needed to successfully advance the drive mechanism and force the bone cement from the cartridge while minimizing fatigue to a user of the delivery gun.
In one aspect of the delivery gun, the drive mechanism includes a drive rod and gripper plates to advance the drive rod. The gripper plates frictionally engage the drive rod to advance the drive rod when the trigger is actuated. In one embodiment, the gripper plates include mating pegs and notches to align adjacent gripper plates. In another embodiment, the gripper plates are coated to increase lubricity and corrosion resistance thereof.
In another aspect of the delivery gun, the drive mechanism includes a drive rod and first and second pawl members to advance the drive rod. In one embodiment, the second pawl member is movable into engagement with teeth on the drive rod for high-speed advancement of the drive rod and out from engagement with the teeth for low-speed advancement. During low-speed advancement, only the first pawl member engages the teeth to advance the drive rod. During high-speed advancement, both pawl members engage the teeth, but only the second pawl member works to advance the drive rod.
A bone cement mixing and delivery system is also provided. The mixing and delivery system includes the cartridge and the delivery gun. In this aspect of the invention, the locking member includes a release button to release the piston from the locked position. At the same time, the delivery gun includes a release mechanism integrated into the drive mechanism to engage the release button. When the cartridge is placed into the cradle of the delivery gun, the drive mechanism is advanced and the release mechanism engages the release button to release the piston from the locked position. This configuration reduces the number of steps typically associated with releasing the piston. By incorporating the release mechanism into the drive mechanism, when the drive mechanism is advanced, the piston is automatically released.
A bone cement loading system for receiving the liquid and powder components of the bone cement is also provided. The loading system includes the cylinder with the piston locked in the distal end. A base defining a cavity is provided for receiving and securing the distal end of the cylinder. A funnel is provided for coupling to the proximal end of the cylinder to channel the powder component of the bone cement into the mixing chamber. The funnel has a proximal end with an oblong oval-shaped periphery to facilitate loading of the powder component of the bone cement into the mixing chamber and a distal end with a circular periphery for snugly fitting into the proximal end of the cylinder. One particular advantage to this loading system is the use of the oblong oval-shaped funnel. The shape of the funnel reduces any mess typically associated with filling the mixing chamber with powder.
A bone cement mixing system comprising the mixing cartridge and a mixing shaft and blade is also provided. The blade is coupled to the mixing shaft and disposed in the mixing chamber for rotating with the mixing shaft about the longitudinal axis to mix the liquid and powder components of the bone cement. The blade includes a center hub coupled to the mixing shaft and an outer ring extending from the center hub. The outer ring forms an acute angle with the longitudinal axis of between twenty and seventy degrees to ensure adequate mixing of the bone cement in the mixing chamber.
A method of mixing the liquid and powder components of the bone cement in the mixing chamber is also provided. The method includes using a rotary power tool connected to a portion of the mixing shaft extending outside of the mixing chamber to mix the liquid and powder components of the bone cement. The blade is disposed in the mixing chamber while being operatively connected to the portion of the mixing shaft extending outside of the mixing chamber. In the method, the rotary power tool is first connected to the portion of the mixing shaft extending outside of the mixing chamber. Then the rotary power tool is actuated to rotate the blade and mix the liquid and powder components of the bone cement. At the same time, the rotary power tool is axially displaced relative to the mixing cartridge to completely mix the liquid and powder components of the bone cement. Once mixing is complete, the operative connection between the blade and the portion of the mixing shaft extending outside of the mixing chamber is removed.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a bone cement mixing and delivery system is generally shown. The bone cement mixing and delivery system comprises a mixing cartridge 100 for receiving liquid monomer and powdered copolymer components of bone cement to be mixed, a mixing device (mixing shaft 150 and blade 152) for mixing the components, and a delivery device, e.g., a delivery gun 500, for discharging the bone cement from the mixing cartridge 100 into an anatomical site (not shown). An exemplary use for the bone cement is to secure a prosthetic device used to replace a joint structure such as in a total hip arthroplasty (THA) procedure.
Referring to
In the preferred embodiment, the cylinder 102 has locking strips 116 disposed on the cylinder wall 110 at the proximal end 104 to insert into locking slots 118 on the cap 112. Each of the locking strips 116 include a straight portion lying perpendicular relative to the longitudinal axis L and an angled portion lying at an angle relative to the straight portion. As should be appreciated, the locking strips 116 and locking slots 118 could be reversed, i.e., the locking strips 116 positioned on the cap 112 and the locking slots 118 defined in the cylinder wall 110. The locking strips 116 and locking slots 118 are configured to provide quick locking of the cap 112 onto the cylinder 102 with a one-quarter turn of the cap 112. Those of ordinary skill in the art will appreciate that numerous methods are available for connecting the cap 112 to the cylinder 102, such as mating threads, snap-fit connections, etc. A groove 120 is formed in the cylinder 102 at the proximal end 104 to seat an o-ring seal 122. The o-ring seal 122 assists in sealing the cap 112 to the cylinder 102.
Referring to
Referring specifically to
Referring to
Referring back to
Another alternative blade 452 is shown in
Referring to
Referring to
A proximal end 176 of the mixing shaft 150, which represents a portion of the mixing shaft 150 extending outside of the mixing chamber 108 during mixing, is adapted to engage a rotary power tool 177 (see
Referring to
Referring specifically to
The locking member 186 is integrally formed from plastic and a resilient portion 192 of the locking member 186 biases the locking tabs 188 radially outwardly from the longitudinal axis L into the slots 190. The resilient portion 192 is in the form of a thin resilient ribbon 192 acting like a spring and extending is a winding shape between the locking tabs 188. The locking tabs 188 couple the locking member 186 to the piston 114 by protruding through carrier slots 194 formed in the skirt 178. In the preferred embodiment, a step 196 protrudes into each of the carrier slots 194 to define a guide for sliding engagement within a channel 198 partially defined in each of the locking tabs 188. In the locked position, the carrier slots 194 are axially and radially aligned with the slots 190 formed in the cylinder wall 110.
The piston 114 is locked at the distal end 106 of the cylinder 102 while the liquid and powder components are added and mixed in the mixing cartridge 100. The piston 114 is released from the locked position after mixing of the bone cement is complete. Release buttons 200, integrally formed with the locking tabs 188, are used to release the piston 114 from the locked position. The release buttons 200 are disposed on the locking tabs 188 and protrude distally therefrom. Each of the release buttons 200 includes a cam surface 202 forming an acute angle with the longitudinal axis L. The piston 114 is released from the locked position by squeezing the release buttons 200 radially inwardly against the bias of the resilient portion 192 to withdraw the locking tabs 188 from the slots 190. This action can be performed either manually or mechanically, as will be described further below. After release from the slots 190, the locking tabs 188 remain coupled to the piston 114 in the carrier slots 194.
Referring to
Referring to
The cap 112 has a nipple 206 protruding from an outer surface 208 thereof. The nipple 206 has tabs 210, which engage detent members 212 in the nozzle 204. After the nozzle 204 is fully rotated into position, the tabs 210 fully engage the detent members 212 while being positioned proximal to the detent members 212 to secure the nozzle 204 in place. A stop 214 on the cap 112, best shown in
The nozzle 204 and cap 112 have first 218 and second 220 locking protrusions. The first locking protrusion 218 acts as a detent and slides over the second locking protrusion 220 to a locked position as illustrated in
With the nozzle 204 in place, the mixing cartridge 100 is ready to be placed within the delivery gun 500. Referring to
To dispense the bone cement from the mixing cartridge 100, the piston 114 must first be released from the locked position. Referring to
Referring back to
The linkage system 508 includes a first link 532, which is pivotally mounted to the casing 504 about a pivot axis A adjacent to the first gripper plate 528. The first link 532 is adapted to engage the first gripper plate 528 when the first link 532 pivots about the pivot axis A. A second link 536 pivotally interconnects the trigger 530 to the first link 532 via support pins 538, 540. The links 532, 536 and trigger 530 are interconnected to move in unison upon rotation of the trigger 530 about a second pivot axis B. When the trigger 530 is pulled, the second link 536 rotates the first link 532 about the pivot axis A, which engages the first gripper plate 528 and urges the first gripper plate 528 forward while the first gripper plate 528 is in frictional engagement with the drive rod 524 thereby advancing the drive rod 524. A return spring 542 returns the links 532, 536 and the trigger 530 to an initial position upon release of the trigger 530. At the same time, a first spring 534 momentarily disengages the first gripper plate 528 from the drive rod 524 to slide the first gripper plate 528 back to an initial position to await the next pull of the trigger 530. The casing 504 pivotally supports the first link 532 and the trigger 530 about the pivot axes A and B via support pins 544, 546.
A speed-changing link 548 is pivotally connected to the second link 536 about a support pin 549. The speed-changing link 548 selectively pivots into and out from engagement with the first gripper plate 528 by way of a switch 550. The speed-changing link 548 pivots between a high-speed position and a low-speed position about the support pin 549 (the low-speed position is shown in
The first gripper plate 528 and the speed-changing link 548 have complementary first and second coupling devices 552, 554 used to couple the first gripper plate 528 with the speed-changing link 548 in the high-speed position. More specifically, in the embodiment of
The pivot axes A and B and the links 532, 536, 548 are positioned above the drive rod 524, while the trigger 530 extends below the drive rod 524. A channel 556 defined in the trigger 530 facilitates this configuration. There are several advantages to this configuration. Moving the second pivot axis B away from a user's hand results in better usage of the stronger index and ring fingers by allowing those fingers more travel distance as the trigger 530 is actuated. This configuration also allows the handle 516 to be closer to the drive rod 524, which is believed to reduce wrist strain when the user pushes the delivery gun 500 forward during cement pressurization. Another benefit is that it allows for a more streamlined casing design and better weight distribution.
In one embodiment, shown in
A release pin 558 disengages the gripper plates 528, 562 to allow a user to freely move the drive rod 524 by hand. The release pin 558 is connected to a retainer plate 560 and is adapted to engage the first gripper plate 528. When the retainer plate 560 is pushed by the user, the release pin 558 engages the first gripper plate 528 which forces the first gripper plate 528 to tilt back against the bias of the first spring 534 thus releasing the drive rod 524. Any secondary gripper plates 562 follow. As should be appreciated, pushing the retainer plate 560 also pivots the retainer plate 560 releasing its engagement with the drive rod 524. With both the retainer plate 560 and the gripper plates 528, 562 released, the drive rod 524 is free to move. This allows the user to manually move the drive rod 524 with respect to the casing 504.
The delivery gun 500 is unique among bone cement guns with a friction-plate mechanism in the way that it handles wear and deformation of the gripper plates 528, 562. In the disclosed embodiments, the gripper plates 528, 562 are tilted by the first spring 534 into frictional contact with the drive rod 524. Regardless of the amount of wear or deformation of the gripper plates 528, 562 or the drive rod 524, the gripper plates 528, 562 require no further tilting to engage the drive rod 524 upon actuation of the trigger 530. Thus, advancement of the drive rod 524 is produced over the entire actuation of the trigger 530 and efficiency is maintained throughout the life of the delivery gun 500.
Referring to
Referring to
In this embodiment, each of the gripper plates 628, 662 also defines a pair of semi-spherical grooves 674. In
Referring to
A coating has been added to an exterior of each of the gripper plates 528, 562, 628, 662 in FIGS. 24 and 26-27. The coating increases lubricity and corrosion resistance. This facilitates sliding between the gripper plates 528, 562, 628, 662 as they engage the drive rod 524, 624. The coating also reduces corrosion due to autoclave sterilization that may cause the gripper plates 528, 562, 628, 662 to adhere to one another and prevent proper engagement with the drive rod 524, 624. The coating used may be Electroless-Nickel with polytetrafluoroethylene (PTFE) or other like coatings possessing the same or similar properties.
Referring to
A second link 736, similar to second link 536, extends from the handle 730. A pin 738, similar to pin 538, pivotally connects the second link 736 to handle 730. Pin 740, similar to pin 540, pivotally connects second link 736 to first link 732, A return spring 742 similar to return spring 542, returns links 736 and 738 to their initial positions. A second pawl member 788 is pivotally supported by the second link 736. The second pawl member 788 is pivotable between a high-speed position in which the second pawl member 788 is spring-biased into engagement with the teeth 780 to advance the drive rod 724, and a low-speed position in which the second pawl member 788 is disengaged and isolated from the teeth 780. In the low-speed position, the first pawl member 786 advances the drive rod 724. The low-speed position is illustrated in
The switch 750 is used to pivot the second pawl member 788 out from engagement with the teeth 780 of the drive rod 724 in the low-speed position (see
In this embodiment, the retainer plate 560 can be removed. In its place, a spring-biased non-return pawl member 790 retains the drive rod 724 in position upon advancement. The drive rod 724 can be freely moved in the casing 704 by rotating the drive rod 724 one hundred and eighty degrees such that the pawl members 786, 788, 790 are out of engagement with the teeth 780. Upon such rotation, the pawl members 786, 788, 790 ride on the smooth lower surface 784 of the drive rod 724 allowing the user to freely pull the drive rod 724 relative to the casing 704. This is generally disclosed in the '654 patent to Nic.
Each of the pawl members 786, 788, 790 are pivotally supported by pins. Springs, such as those shown in the '654 patent to Nic, bias the pawl members into engagement with the teeth 780 on the drive rod 724 (except when the switch 750 acts against the bias of the spring in the low-speed position to disengage the second pawl member 788 from the teeth 780).
Mixing and delivery of the bone cement will now be described with reference to
In STEP 1, shown in
In STEP 2, shown in
In STEP 3, shown in
In STEP 4, shown in
In STEP 5, shown in
In STEP 6, shown in
In STEP 7, shown in
In STEP 8, shown in
In STEP 9, shown in
In STEP, shown in
It will be appreciated that the above description relates to the disclosed embodiments by way of example only. Many apparent variations of the disclosed invention will be known to those of skill in this area and are considered to be within the scope of this invention and are considered to be within the scope of the following claims. Obviously, many modifications and variations of the present invention are possible in light of the above teachings.
This application is a divisional of U.S. patent application Ser. No. 13/294,656 filed 11 Nov. 2011 now U.S. Pat. No. 8,353,622. Application Ser. No. 13/294,656 is a divisional of U.S. patent application Ser. No. 12/704,618 filed 12 Feb. 2010 now U.S. Pat. No. 8,061,887. Application Ser. No. 12/704,618 is a divisional of U.S. patent application Ser. No. 12/138,620, filed 13 Jun. 2008, now U.S. Pat. No. 7,677,418. Application Ser. No. 12/138,620 is a divisional of application Ser. No. 11/837,649 filed 13 Aug. 2007, now U.S. Pat. No. 7,393,342. Application Ser. No. 11/837,649 is a divisional of application Ser. No. 10/843,813, filed 12 May 2004, now abandoned. Application Ser. No. 10/843,813 claims the benefit of U.S. provisional patent application Ser. No. 60/469,651, filed 12 May 2003 and U.S. provisional patent application Ser. No. 60/520,877, filed 18 Nov. 2003. The advantages and disclosures of the above listed priority applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
949163 | Stapley | Feb 1910 | A |
1211426 | Farrington | Jan 1917 | A |
1612996 | Waagbo | Jan 1927 | A |
1694845 | De Trey | Dec 1928 | A |
2745575 | Spencer | May 1956 | A |
2874877 | Spencer | Feb 1959 | A |
3036819 | Peterson | May 1962 | A |
3140078 | Krahe et al. | Jul 1964 | A |
3144966 | Cook | Aug 1964 | A |
3216616 | Blankenship | Nov 1965 | A |
3217946 | Cook | Nov 1965 | A |
3459341 | Copeland | Aug 1969 | A |
3815790 | Allen et al. | Jun 1974 | A |
3873008 | Jahn | Mar 1975 | A |
4189665 | van der Muelen | Feb 1980 | A |
4269331 | Watson | May 1981 | A |
4277184 | Solomon | Jul 1981 | A |
4338925 | Miller | Jul 1982 | A |
4356938 | Kayser | Nov 1982 | A |
4371094 | Hutter, III | Feb 1983 | A |
4405249 | Scales | Sep 1983 | A |
4461407 | Finnegan | Jul 1984 | A |
4463875 | Tepic | Aug 1984 | A |
4546767 | Smith | Oct 1985 | A |
4583974 | Kokernak | Apr 1986 | A |
4653487 | Maale | Mar 1987 | A |
4671263 | Draenert | Jun 1987 | A |
4676406 | Frischmann et al. | Jun 1987 | A |
4676655 | Handler | Jun 1987 | A |
4693656 | Guthrie | Sep 1987 | A |
4721390 | Lidgren | Jan 1988 | A |
4758096 | Gunnarsson | Jul 1988 | A |
4832692 | Box et al. | May 1989 | A |
4966601 | Draenert | Oct 1990 | A |
4994065 | Gibbs et al. | Feb 1991 | A |
5071040 | Laptewicz et al. | Dec 1991 | A |
5100241 | Chan | Mar 1992 | A |
5181636 | Anderson et al. | Jan 1993 | A |
5193907 | Faccioli et al. | Mar 1993 | A |
5252301 | Nilson et al. | Oct 1993 | A |
5300031 | Neer et al. | Apr 1994 | A |
5306248 | Barrington | Apr 1994 | A |
5308340 | Harris | May 1994 | A |
5328262 | Lidgren et al. | Jul 1994 | A |
5341964 | Medved | Aug 1994 | A |
5370221 | Magnusson et al. | Dec 1994 | A |
5431654 | Nic | Jul 1995 | A |
5451211 | Neer et al. | Sep 1995 | A |
5501374 | Laufer et al. | Mar 1996 | A |
5501520 | Lidgren et al. | Mar 1996 | A |
5514135 | Earle | May 1996 | A |
5549380 | Lidgren et al. | Aug 1996 | A |
5549381 | Hays et al. | Aug 1996 | A |
5551778 | Hauke et al. | Sep 1996 | A |
5556009 | Motzko | Sep 1996 | A |
5588745 | Tanaka et al. | Dec 1996 | A |
5615807 | Peng | Apr 1997 | A |
5624184 | Chan | Apr 1997 | A |
5638997 | Hawkins et al. | Jun 1997 | A |
5681317 | Caldarise | Oct 1997 | A |
5762237 | Chang | Jun 1998 | A |
5779356 | Chan | Jul 1998 | A |
5797678 | Murray | Aug 1998 | A |
5829875 | Hagel et al. | Nov 1998 | A |
5842785 | Brown et al. | Dec 1998 | A |
5842786 | Solomon | Dec 1998 | A |
5876116 | Barker et al. | Mar 1999 | A |
5893488 | Hoag et al. | Apr 1999 | A |
5934803 | Hutter | Aug 1999 | A |
6017349 | Heller et al. | Jan 2000 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6042262 | Hajianpour | Mar 2000 | A |
6045555 | Smith et al. | Apr 2000 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6080136 | Trull et al. | Jun 2000 | A |
6083229 | Constantz et al. | Jul 2000 | A |
6086594 | Brown | Jul 2000 | A |
6120174 | Hoag et al. | Sep 2000 | A |
6149655 | Constantz et al. | Nov 2000 | A |
6155463 | Dentler | Dec 2000 | A |
6176607 | Hajianpour | Jan 2001 | B1 |
6260737 | Gruendeman | Jul 2001 | B1 |
6296149 | Long | Oct 2001 | B1 |
6312149 | Sjovall et al. | Nov 2001 | B1 |
6367962 | Mizutani et al. | Apr 2002 | B1 |
6386401 | Dodd et al. | May 2002 | B1 |
6406175 | Marino | Jun 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6547432 | Coffeen et al. | Apr 2003 | B2 |
6550957 | Mizutani | Apr 2003 | B2 |
6592247 | Brown et al. | Jul 2003 | B1 |
6599293 | Tague et al. | Jul 2003 | B2 |
6736537 | Coffeen et al. | May 2004 | B2 |
6755563 | Wahlig et al. | Jun 2004 | B2 |
7393342 | Henniges et al. | Jul 2008 | B2 |
20020173748 | McConnell et al. | Nov 2002 | A1 |
20020191484 | Jonsson et al. | Dec 2002 | A1 |
20020191485 | Jonsson et al. | Dec 2002 | A1 |
20030065287 | Spohn et al. | Apr 2003 | A1 |
20030086332 | Jonsson et al. | May 2003 | A1 |
20060184157 | Spohn et al. | Aug 2006 | A1 |
20120057425 | Henniges et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
3708442 | Sep 1988 | DE |
4022985 | Jan 1992 | DE |
4030823 | Apr 1992 | DE |
4243877 | Jul 1994 | DE |
0380876 | Feb 1996 | EP |
0528447 | Jan 1997 | EP |
8705492 | Sep 1987 | WO |
9013264 | Nov 1990 | WO |
9322041 | Nov 1993 | WO |
9500240 | Jan 1995 | WO |
9718031 | May 1997 | WO |
9721485 | Jun 1997 | WO |
9967015 | Dec 1999 | WO |
03084445 | Oct 2003 | WO |
Entry |
---|
“Advantages of the Optivac Mixing System”; U.S. Pat. No. 4,721,390m, 5,328,262, and 5,501,620; Wang J. S. et al.; J. Biomet Mailer Res (Appl. Bornator) 1996; 33.115-119. |
“Cemvac Ultra—Pre-Loaded Cement Syringe System”; DePuy Int'l Ltd., St. Anthony's Road, Leeds LS11 8DT England; 4 page brochure. |
“Effect of Mixing Technique on the Properties of Acrylic Bone-Cement—A Comparison of Syringe and Bowl Mixing Systems”; J. M. Wilkinson, FRCS, R. Eveleigh, PhD (no date). |
“Generation 4 Bone Cement—In the VacPac Mixing and Delivery System—Designed for the Surgical Staff”; Biomet Orthopedics, Inc.; P.O. Box 587, Warsaw, IN 46581 (no date). |
“MixOR System”; Smith & Nephew; Smith & Nephew, Inc., 1450 Brooks Road, Memphis, TN 38116; 9 page product brochure (no date). |
“Quick-Vac Vacuum Mixing System”; Zimmer; 1 page product brochure (no date). |
“The Scan Optivac—Part of the Scan Cementation System”; Part of the Scan Cementation System; ScandiMed AG, Forskagegatan 1, S-275 37 Sjobo, Sweden; www.scandimed.com; 1 page product brochure (no date). |
“TwistOR—Vacuum Bone Cement Mixing/Dispensing System”; Immedica, 100 Passaic Ave., Chatham NJ 07298; www.immedica.com; 1 page product brochure (no date). |
“Vacu-Mix Plux—Cementing the Future”; DePuy CMW; DePuy Int'l Ltd., St. Anthony's Road, Leeds LS11 8DT England; 4 page product brochure (no date). |
A. J. Hamer, FRCS (Orth), A. Milne, DCR, A. W. Miles, MSc (Eng.), and I. Stockley, FRCS; The Journal of Antorplasty vol. 15, No. 5 Aug. 2000; pp. 663-666. |
“Search Report, Application No. PCT/US04/14749”, filing date May 12, 2004. |
“Stryker Instruments Product Packaging”, dated Dec. 6, 2001, part No. 0306-573-700. |
USPTO “Office Action,” dated May 12, 2004 from U.S. Appl. No. 10/843,813. |
USPTO “Office Action,” dated Nov. 18, 2004 from U.S. Appl. No. 10/991,894. |
www.biomet.com, 6 page Technical Brochure (no date). |
Number | Date | Country | |
---|---|---|---|
20130090661 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
60469651 | May 2003 | US | |
60520877 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13294656 | Nov 2011 | US |
Child | 13690967 | US | |
Parent | 12704618 | Feb 2010 | US |
Child | 13294656 | US | |
Parent | 12138620 | Jun 2008 | US |
Child | 12704618 | US | |
Parent | 11837649 | Aug 2007 | US |
Child | 12138620 | US | |
Parent | 10843813 | May 2004 | US |
Child | 11837649 | US |