The present disclosure relates generally to delivering AC power, and more particularly, to use of higher power PoE systems to power devices with AC power.
Power over Ethernet (PoE) is a technology for providing electrical power over a wired telecommunications network from power sourcing equipment (PSE) to a powered device (PD) over a link section. The maximum power delivery capacity of conventional PoE is approximately 90 watts, but many classes of devices would benefit from higher power PoE.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Overview
In one embodiment, a method generally comprises grouping a plurality of ports at power sourcing equipment in a Power over Ethernet (PoE) system, the ports receiving power from at least one power supply, and transmitting power from the group of ports at the power sourcing equipment to a plurality of ports at a power interface module. The power transmitted at each of the ports is at least 100 watts and the power interface module is operable to combine the power received at the plurality of ports and provide an AC outlet.
In another embodiment, a system generally comprises a power supply, a plurality of ports for receiving power from the power supply, each of the ports configured to transmit at least 100 watts of power in a Power over Ethernet (PoE) system, and a power manager for managing power delivery from the ports. The system is operable to power one or more devices with AC power.
In yet another embodiment, a system generally comprises power sourcing equipment comprising a power supply and a plurality of ports each configured for transmitting Power over Ethernet (PoE) at a power of at least 100 watts, and a plurality of power interface modules, each of the power interface modules comprising a plurality of ports for communication with a group of the ports at the power sourcing equipment and an AC (alternating current) outlet delivering combined power received at the ports.
Further understanding of the features and advantages of the embodiments described herein may be realized by reference to the remaining portions of the specification and the attached drawings.
The following description is presented to enable one of ordinary skill in the art to make and use the embodiments. Descriptions of specific embodiments and applications are provided only as examples, and various modifications will be readily apparent to those skilled in the art. The general principles described herein may be applied to other applications without departing from the scope of the embodiments. Thus, the embodiments are not to be limited to those shown, but are to be accorded the widest scope consistent with the principles and features described herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the embodiments have not been described in detail.
In order to create an all PoE (Power over Ethernet) port environment within a home, hotel, office space, or other residential or commercial location, there are several obstacles to overcome. These include availability of electrical outlets configured for 120 VAC (Volts Alternating Current)/20 A (amps) (or other standard AC power outlet) for the purpose of powering dishwashers, washing machines, refrigerators, hair dryers, vacuum cleaners, and other devices (appliances, equipment). These devices typically use higher than 90 W (watts) provided by conventional PoE systems.
In AC power environments in a home or business, there is typically a minimum number of AC outlets specified in the electrical code for each room. Conventional PoE systems (90 W or less), cannot sufficiently support these AC outlets and therefore cannot meet code requirements.
The embodiments described herein provide the delivery of power to meet AC power needs in commercial and residential environments in a higher power PoE system. In one or more embodiments, a shared circuit delivery system manages real time power to minimize the total required input power to the PoE system.
Referring now to the drawings, and first to
It is to be understood that the term AC power outlet as used herein refers to any AC power outlet including standard outlets (e.g., 120 VAC outlet (e.g., 110-125 volts), 110 VAC, 220 VAC, 240 VAC, three-phase 208 VAC) or any other AC outlet for use in a residential or commercial environment.
The term higher power as used herein refers to power exceeding 90 watts (e.g., ≥100 W, 150 W, 300 W, 450 W) and the term lower power as used herein refers to power ≤90 watts.
In the example shown in
In the example shown in
The cables 17 are configured to transmit both power and data from the PSE 10 to the power interface module 15. The cables 17 may be formed from any material suitable to carry both power and data. The cables 17 may comprise, for example Catx cable (e.g., category 5 twisted pair (e.g., four-pair) Ethernet cabling) or any other type of cable. The cables 17 may be arranged in any configuration. The cable 17 may be rated for one or more power levels, a maximum power level, a maximum temperature, or identified according to one or more categories indicating acceptable power level usage, for example. In one example, the cables 17 correspond to a standardized wire gauge system such as AWG (American Wire Gauge).
In one embodiment, the ports 12, 16 comprise interconnect ports that combine data and PoE utilizing an RJ45 (or similar connector) connected to cable 17. For example, the cable and connector system may comprise RJ45 cat7 style, four-pair communications cabling. The ports (jacks) 12, 16 may be labeled to identify capability for power exceeding 90 W. In one example, the cable and connector system may support ampacity per pin or wire to 2000 ma minimum. For example, 22 AWG wire may be used to support 1500 ma-2000 ma per wire in a cat7/cat5e cable system. In one example, the system may support a cable length of up to 15 meters (based on technology of cat7 cable, 22 AWG at 300 W). In one or more embodiments, the internal PSE power supply voltage may operate in the 56V to 57V range, 57V to 58V range, or 56V to 58V range. For example, the output voltage at the PSE may be 57V with an input voltage at the power interface module 15 of 56V. For a 15 meter cable, a 56V power supply at the PSE can deliver approximately 300 W power. Other cable lengths, cable types, and power settings may also be used.
The system may include, for example, safety and fault detection systems as described in U.S. patent application Ser. Nos. 16/020,881 and 16/020,917, filed Jun. 27, 2018, which are incorporated herein by reference in their entirety. For PoE applications exceeding 100 W, safety systems may include, for example, a fault detection system to detect shorts, opens, electrical imbalance, exceeding ampacity limits, or life safety concerns. In one or more embodiments, the power may be applied at a low power setting (e.g., ≤90 W) and increased to higher power after safe operating conditions have been verified. The system may, for example, cycle through and check each wire at the port or look for an electrical imbalance between wires or pairs of wires. The safety system may also identify that the correct cable/connector assembly is used for delivered power on the PoE port and provide for reduced load cable removal to allow for safe removal of the cable and plug from a powered jack.
The PSE (e.g., route processor chassis 10, route processor 11, or any routing device (e.g., network device (router, switch) operable to route, switch, or forward data) may be in communication with any number of power interface modules 15 via cables 17, as described below with respect to
In one or more embodiments, the PSE 10 may receive high power PoE (e.g., ≥1000 watts) as described in U.S. patent application Ser. No. 15/707,976 (“Power Delivery Through an Optical System”, filed Sep. 18, 2017) or U.S. patent application Ser. No. 15/910,203 (“Combined Power, Data, and Cooling Delivery in a Communications Network”), filed Mar. 2, 2018, which are incorporated herein by reference in their entirety.
It is to be understood that the PoE system shown in
It is to be understood that the process shown in
For residential or commercial applications, it is common practice to place up to eight 120 VAC power outlets on a 20 A circuit, or six to eight outlets on a 15 A circuit. The PoE power distribution described herein may be used to deliver all power to the AC power outlets through communications cables. In the example shown in
In one or more embodiments, management software (power manager 32) supports an electronic circuit breaker that manages the total 1800 W for the six groupings 30 such that when all six groupings exceed the 1800 W maximum current allocation, all ports are powered down until a reset is initiated. This allows the entire circuit to perform in a similar manner as to how six conventional power outlets on a 15 A circuit would perform. In one or more embodiments, the power management system prioritizes which grouping of ports in the set of groups can allocate from one allotment zone of multiple allotment zones, as described below with respect to
For simplification, the PSE 10 of
In one example, the six port groupings 30 with six ports 12 per group are managed to mimic six outlets as a 15 A circuit with management software prioritizing group power allocation based on priority use of a particular residential or commercial application. For example, one port group 30 assigned to appliance 41 (via power interface module 15) may have power suspended for a time period acceptable to power down the appliance 41 so that this power can be re-allocated to other groupings of ports assigned to the same 15 A allocated circuit and power one or more other appliances 42, 43. The power manager 32 may disable the appliance by shutting off power at the corresponding PSE ports 12 or by sending a message to the power interface module 15.
In another example, a dishwasher (Appliance 1), refrigerator (Appliance 2), and garbage disposal (Appliance 3) may all use the same 15 A circuit (
It is to be understood that the arrangement shown in
It is to be understood that the system shown in
The circuit shown in
For applications that have low enough power needs (e.g., some vacuum cleaners, refrigerators, or garage door openers), it is possible to directly connect the PoE cable to those devices, as shown in
In one or more embodiments, a managed PoE port to a garage door opener (or other device or appliance) may be programmed or allow other avenues of control. In one example, when residents are away from home on a trip, the PoE power to the garage door opener may be limited until an Ethernet packet is sent to enable full power. This would prevent others from opening the garage door. In this example, the power is only restored via a managed command to the power manager.
As shown in
Each power interface module 84, 85, 94, 95 comprises ports 86, 96 and one or more inverters 88, 98. In one example, all outlets share the same 1800 W power allocation. An emergency services outlet 89, 99 is shown in a 6+1 cabling configuration. Powering of a 15 A circuit with six 300 W ports may be made more reliable by adding a single cable (6+1) (
In one example, six ports 86, 96 may receive power from one UPS (Uninterruptible Power Supply) driven switch and the other six ports may receive power from a second UPS driven switch. All twelve ports 86, 96 may be served from one UPS backed switch if cable reliability is the only concern. However, true redundancy with at least two switches may be preferred. In another example, four groups of three ports may receive power from four UPS backed switches.
As shown in
It is to be understood that the higher power PoE systems, network devices (switches, routers), appliances, power levels, current ranges, number of ports, size of port groupings, sharing of power, and power allocation described herein are only examples and that other systems, devices, appliances, arrangements, power levels, or power control/management may be used, without departing from the scope of the embodiments.
Memory 104 may be a volatile memory or non-volatile storage, which stores various applications, operating systems, modules, and data for execution and use by the processor 102. For example, components of the power manager module 108 (e.g., code, logic, or firmware, etc.) may be stored in the memory 104. The network device 100 may include any number of memory components.
The network device 100 may include any number of processors 102 (e.g., single or multi-processor computing device or system), which may communicate with a forwarding engine or packet forwarder operable to process a packet or packet header. The processor 102 may receive instructions from a software application or module, which causes the processor to perform functions of one or more embodiments described herein.
Logic may be encoded in one or more tangible media for execution by the processor 102. For example, the processor 102 may execute codes stored in a computer-readable medium such as memory 104. The computer-readable medium may be, for example, electronic (e.g., RAM (random access memory), ROM (read-only memory), EPROM (erasable programmable read-only memory)), magnetic, optical (e.g., CD, DVD), electromagnetic, semiconductor technology, or any other suitable medium. In one example, the computer-readable medium comprises a non-transitory computer-readable medium. Logic may be used to perform one or more functions described above with respect to the flowcharts of
The interface 106 may comprise any number of interfaces or network interfaces (line cards, ports, connectors) for receiving data or power, or transmitting data or power to other devices. The network interface may be configured to transmit or receive data using a variety of different communications protocols and may include mechanical, electrical, and signaling circuitry for communicating data over physical links coupled to the network or wireless interfaces. For example, line cards may include port processors and port processor controllers. The interface 106 may be configured for PoE, enhanced PoE, higher power PoE, PoE+, UPoE, or similar operation.
It is to be understood that the network device 100 shown in
The embodiments described herein may operate in the context of a data communications network including multiple network devices. The network may include any number of network devices in communication via any number of nodes (e.g., routers, switches, gateways, controllers, access points, or other network devices), which facilitate passage of data within the network. The network devices may communicate over or be in communication with one or more networks (e.g., local area network (LAN), metropolitan area network (MAN), wide area network (WAN), virtual private network (VPN) (e.g., Ethernet virtual private network (EVPN), layer 2 virtual private network (L2VPN)), virtual local area network (VLAN), wireless network, enterprise network, corporate network, data center, Internet of Things (IoT), Internet, intranet, or any other network).
Although the method and apparatus have been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations made to the embodiments without departing from the scope of the invention. Accordingly, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application claims priority from U.S. Provisional Application No. 62/641,203, entitled DELIVERING AC POWER WITH HIGH POWER PoE SYSTEMS, filed on Mar. 9, 2018. The contents of this provisional application are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3335324 | Buckeridge | Aug 1967 | A |
4811187 | Nakajima | Mar 1989 | A |
5652893 | Ben-Meir | Jul 1997 | A |
6008631 | Johari | Dec 1999 | A |
6220955 | Posa | Apr 2001 | B1 |
6259745 | Chan | Jul 2001 | B1 |
6636538 | Stephens | Oct 2003 | B1 |
6685364 | Brezina | Feb 2004 | B1 |
6826368 | Koren | Nov 2004 | B1 |
6855881 | Khoshnood | Feb 2005 | B2 |
6860004 | Hirano | Mar 2005 | B2 |
7325150 | Lehr et al. | Jan 2008 | B2 |
7420355 | Liu | Sep 2008 | B2 |
7490996 | Sommer | Feb 2009 | B2 |
7492059 | Peker | Feb 2009 | B2 |
7509505 | Randall | Mar 2009 | B2 |
7583703 | Bowser | Sep 2009 | B2 |
7589435 | Metsker | Sep 2009 | B2 |
7593747 | Karam | Sep 2009 | B1 |
7603570 | Schindler | Oct 2009 | B2 |
7616465 | Vinciarelli | Nov 2009 | B1 |
7813646 | Furey | Oct 2010 | B2 |
7835389 | Yu | Nov 2010 | B2 |
7854634 | Filipon | Dec 2010 | B2 |
7881072 | Dibene | Feb 2011 | B2 |
7915761 | Jones | Mar 2011 | B1 |
7921307 | Karam | Apr 2011 | B2 |
7924579 | Arduini | Apr 2011 | B2 |
7940787 | Karam | May 2011 | B2 |
7973538 | Karam | Jul 2011 | B2 |
8020043 | Karam | Sep 2011 | B2 |
8037324 | Hussain | Oct 2011 | B2 |
8081589 | Gilbrech | Dec 2011 | B1 |
8184525 | Karam | May 2012 | B2 |
8276397 | Carlson | Oct 2012 | B1 |
8279883 | Diab | Oct 2012 | B2 |
8310089 | Schindler | Nov 2012 | B2 |
8319627 | Chan | Nov 2012 | B2 |
8350538 | Cuk | Jan 2013 | B2 |
8358893 | Sanderson | Jan 2013 | B1 |
8700923 | Fung | Apr 2014 | B2 |
8712324 | Corbridge | Apr 2014 | B2 |
8750710 | Hirt | Jun 2014 | B1 |
8781637 | Eaves | Jul 2014 | B2 |
8787775 | Earnshaw | Jul 2014 | B2 |
8829917 | Lo | Sep 2014 | B1 |
8836228 | Ku | Sep 2014 | B2 |
8842430 | Hellriegel | Sep 2014 | B2 |
8849471 | Daniel | Sep 2014 | B2 |
8966747 | Vinciarelli | Mar 2015 | B2 |
9019895 | Li | Apr 2015 | B2 |
9024473 | Huff et al. | May 2015 | B2 |
9184795 | Eaves | Nov 2015 | B2 |
9189036 | Ghoshal | Nov 2015 | B2 |
9189043 | Vorenkamp | Nov 2015 | B2 |
9273906 | Goth | Mar 2016 | B2 |
9319101 | Lontka | Apr 2016 | B2 |
9321362 | Woo | Apr 2016 | B2 |
9373963 | Kuznelsov | Jun 2016 | B2 |
9419436 | Eaves | Aug 2016 | B2 |
9510479 | Vos | Nov 2016 | B2 |
9531551 | Balasubramanian | Dec 2016 | B2 |
9590811 | Hunter | Mar 2017 | B2 |
9618714 | Murray | Apr 2017 | B2 |
9640998 | Dawson | May 2017 | B2 |
9665148 | Hamdi | May 2017 | B2 |
9693244 | Maruhashi | Jun 2017 | B2 |
9734940 | McNutt | Aug 2017 | B1 |
9853689 | Eaves | Dec 2017 | B2 |
9874930 | Vavilala et al. | Jan 2018 | B2 |
9882656 | Sipes, Jr. | Jan 2018 | B2 |
9893521 | Lowe | Feb 2018 | B2 |
9948198 | Imai | Apr 2018 | B2 |
9979370 | Xu | May 2018 | B2 |
9985600 | Xu | May 2018 | B2 |
10007628 | Pitigoi-Aron | Jun 2018 | B2 |
10028417 | Schmidtke | Jul 2018 | B2 |
10128764 | Vinciarelli | Nov 2018 | B1 |
10248178 | Brooks | Apr 2019 | B2 |
10407995 | Moeny | Sep 2019 | B2 |
10439432 | Eckhardt | Oct 2019 | B2 |
20010024373 | Cuk | Sep 2001 | A1 |
20020126967 | Panak | Sep 2002 | A1 |
20040000816 | Khoshnood | Jan 2004 | A1 |
20040033076 | Song | Feb 2004 | A1 |
20040043651 | Bain | Mar 2004 | A1 |
20040073703 | Boucher | Apr 2004 | A1 |
20050197018 | Lord | Sep 2005 | A1 |
20050268120 | Schindler | Dec 2005 | A1 |
20060202109 | Delcher | Sep 2006 | A1 |
20060209875 | Lum | Sep 2006 | A1 |
20070103168 | Batten | May 2007 | A1 |
20070236853 | Crawley | Oct 2007 | A1 |
20070263675 | Lum | Nov 2007 | A1 |
20070284941 | Robbins | Dec 2007 | A1 |
20070284946 | Robbins | Dec 2007 | A1 |
20070288125 | Quaratiello | Dec 2007 | A1 |
20070288771 | Robbins | Dec 2007 | A1 |
20080198635 | Hussain | Aug 2008 | A1 |
20080229120 | Diab | Sep 2008 | A1 |
20080310067 | Diab | Dec 2008 | A1 |
20100077239 | Diab | Mar 2010 | A1 |
20100117808 | Karam | May 2010 | A1 |
20100171602 | Kabbara | Jul 2010 | A1 |
20100190384 | Lanni | Jul 2010 | A1 |
20100237846 | Vetteth | Sep 2010 | A1 |
20100290190 | Chester | Nov 2010 | A1 |
20110004773 | Hussain | Jan 2011 | A1 |
20110290497 | Stenevik | Jan 2011 | A1 |
20110083824 | Rogers | Apr 2011 | A1 |
20110228578 | Serpa | Sep 2011 | A1 |
20110266867 | Schindler | Nov 2011 | A1 |
20120064745 | Ottliczky | Mar 2012 | A1 |
20120170927 | Huang | Jul 2012 | A1 |
20120201089 | Barth | Aug 2012 | A1 |
20120231654 | Conrad | Sep 2012 | A1 |
20120317426 | Hunter, Jr. | Dec 2012 | A1 |
20120319468 | Schneider | Dec 2012 | A1 |
20130077923 | Weem | Mar 2013 | A1 |
20130079633 | Weem | Mar 2013 | A1 |
20130103220 | Eaves | Apr 2013 | A1 |
20130249292 | Blackwell, Jr. | Sep 2013 | A1 |
20130272721 | Van Veen | Oct 2013 | A1 |
20140111180 | Vladan | Apr 2014 | A1 |
20140129850 | Paul | May 2014 | A1 |
20140258742 | Chien | Sep 2014 | A1 |
20140265550 | Milligan | Sep 2014 | A1 |
20140372773 | Heath | Dec 2014 | A1 |
20150078740 | Sipes, Jr. | Mar 2015 | A1 |
20150106539 | Leinonen | Apr 2015 | A1 |
20150115741 | Dawson | Apr 2015 | A1 |
20150215001 | Eaves | Jul 2015 | A1 |
20150215131 | Paul | Jul 2015 | A1 |
20150333918 | White, III | Nov 2015 | A1 |
20150340818 | Scherer | Nov 2015 | A1 |
20160020911 | Sipes, Jr. | Jan 2016 | A1 |
20160064938 | Balasubramanian | Mar 2016 | A1 |
20160111877 | Eaves | Apr 2016 | A1 |
20160118784 | Saxena | Apr 2016 | A1 |
20160133355 | Glew | May 2016 | A1 |
20160134331 | Eaves | May 2016 | A1 |
20160142217 | Gardner | May 2016 | A1 |
20160197600 | Kuznetsov | Jul 2016 | A1 |
20160365967 | Tu | Jul 2016 | A1 |
20160241148 | Kizilyalli | Aug 2016 | A1 |
20160262288 | Chainer | Sep 2016 | A1 |
20160273722 | Crenshaw | Sep 2016 | A1 |
20160294500 | Chawgo | Oct 2016 | A1 |
20160308683 | Pischl | Oct 2016 | A1 |
20160352535 | Hiscock | Dec 2016 | A1 |
20170041152 | Sheffield | Feb 2017 | A1 |
20170041153 | Picard | Feb 2017 | A1 |
20170054296 | Daniel | Feb 2017 | A1 |
20170110871 | Foster | Apr 2017 | A1 |
20170123466 | Carnevale | May 2017 | A1 |
20170146260 | Ribbich | May 2017 | A1 |
20170155517 | Cao | Jun 2017 | A1 |
20170164525 | Chapel | Jun 2017 | A1 |
20170155518 | Yang | Jul 2017 | A1 |
20170214236 | Eaves | Jul 2017 | A1 |
20170229886 | Eaves | Aug 2017 | A1 |
20170234738 | Ross | Aug 2017 | A1 |
20170244318 | Giuliano | Aug 2017 | A1 |
20170248976 | Moller | Aug 2017 | A1 |
20170325320 | Wendt | Nov 2017 | A1 |
20180024964 | Mao | Jan 2018 | A1 |
20180053313 | Smith | Feb 2018 | A1 |
20180054083 | Hick | Feb 2018 | A1 |
20180060269 | Kessler | Mar 2018 | A1 |
20180088648 | Otani | Mar 2018 | A1 |
20180098201 | Torello | Apr 2018 | A1 |
20180102604 | Keith | Apr 2018 | A1 |
20180123360 | Eaves | May 2018 | A1 |
20180159430 | Albert | Jun 2018 | A1 |
20180188712 | MacKay | Jul 2018 | A1 |
20180191513 | Hess | Jul 2018 | A1 |
20180254624 | Son | Sep 2018 | A1 |
20180313886 | Mlyniec | Nov 2018 | A1 |
20190267804 | Matan | Aug 2019 | A1 |
20190280895 | Mather | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1209880 | Jul 2005 | CN |
201689347 | Dec 2010 | CN |
204836199 | Dec 2015 | CN |
205544597 | Aug 2016 | CN |
104081237 | Oct 2016 | CN |
104412541 | May 2019 | CN |
1936861 | Jun 2008 | EP |
2120443 | Nov 2009 | EP |
2693688 | Feb 2014 | EP |
WO199316407 | Aug 1993 | WO |
WO2010053542 | May 2010 | WO |
2017054030 | Apr 2017 | WO |
WO2017167926 | Oct 2017 | WO |
2019023731 | Feb 2019 | WO |
WO2019023731 | Feb 2019 | WO |
Entry |
---|
https://www.fischerconnectors.com/us/en/products/fiberoptic. |
http://www.strantech.com/products/tfoca-genx-hybrid-2×2-fiber-optic-copper-connector/. |
http://www.qpcfiber.com/product/connectors/e-link-hybrid-connector/. |
https://www.lumentum.com/sites/default/files/technical-library-items/poweroverfiber-tn-pv-ae_0.pdf. |
“Network Remote Power Using Packet Energy Transfer”, Eaves et al., www.voltserver.com, Sep. 2012. |
Product Overview, “Pluribus VirtualWire Solution”, Pluribus Networks, PN-PO-VWS-05818, https://www.pluribusnetworks.com/assets/Pluribus-VirtualWire-PO-50918.pdf, May 2018, 5 pages. |
Implementation Guide, “Virtual Chassis Technology Best Practices”, Juniper Networks, 8010018-009-EN, Jan. 2016, https://wwwjuniper.net/us/en/local/pdf/implementation-guides/8010018-en.pdf, 29 pages. |
Yencheck, Thermal Modeling of Portable Power Cables, 1993. |
Zhang, Machine Learning-Based Temperature Prediction for Runtime Thermal Management across System Components, Mar. 2016. |
Data Center Power Equipment Thermal Guidelines and Best Practices. |
Dynamic Thermal Rating of Substation Terminal Equipment by Rambabu Adapa, 2004. |
Chen, Real-Time Termperature Estimation for Power MOSEFETs Conidering Thermal Aging Effects:, IEEE Trnasactions on Device and Materials Reliability, vol. 14, No. 1, Mar. 2014. |
Number | Date | Country | |
---|---|---|---|
20190278347 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62641203 | Mar 2018 | US |