This disclosure relates to medical instruments, and more particularly, delivery systems for a device for aneurysm therapy.
Aneurysms can be complicated and difficult to treat. For example, treatment access can be limited or unavailable when an aneurysm is located proximate critical tissues. Such factors are of concern with cranial aneurysms due to the presence of brain tissue surrounding cranial vessels.
Prior solutions have included endovascular treatment access whereby an internal volume of the aneurysm sac is removed or excluded from arterial blood pressure and flow. Alternative to endovascular or other surgical approaches can include occlusion devices that either fill the sac of the aneurysm with embolic material to create a thrombotic mass or to treat the entrance (or neck) of the aneurysm to minimize the blood flow across the entrance, induce venous stasis in the aneurysm, and facilitate a natural formation of a thrombotic mass within the aneurysm. Such devices typically utilize multiple embolic coils to either fill the sac or treat the entrance.
Obtaining a packing density sufficient to occlude an aneurysm by packing the aneurysm sac with embolic coils is difficult, time consuming, and aneurysm morphology (e.g. wide neck, bifurcation, etc.), and the like required ancillary devices such a stents or balloons to support the coil mass and obtain the desired packing density.
Naturally formed thrombotic masses formed by treating the entrance of the aneurysm with embolic coils can improve healing compared to aneurysm masses packed with embolic coils by reducing possible distention from arterial walls and permitting reintegration into the original parent vessel shape along the neck plane. However, embolic coils delivered to the neck of the aneurysm can potentially have the adverse effect of impeding the flow of blood in the adjoining blood vessel; at the same time, if the entrance is insufficiently packed, blood flow can persist into the aneurysm.
Furthermore, embolic coils do not always effectively treat aneurysms as aneurysms treated with multiple coils often recanalize or compact because of poor coiling, lack of coverage across the aneurysm neck, blood flow, or even aneurysm size.
Several examples of an occlusion device are described in U.S. Pat. No. 8,998,947. However, this approach relies upon the use of embolic coils or mimics the coil approach to obtain a safe packing density and therefore unnecessarily risks rupture of the aneurysm. Furthermore, this approach fails to teach a delivery system whereby an occlusion device can be re-positioned after initial positioning of its aneurysm occlusion structure to ensure patient safety associated with precise positioning.
It is therefore desirable to have a device which easily, accurately, and safely occludes a neck of an aneurysm or other arterio-venous malformation in a parent vessel without blocking flow into perforator vessels communicating with the parent vessel.
Further, once deployed into the aneurysm, the surgeon requires positive confirmation that the device has been positively released. Certain prior art release mechanisms have difficulties detaching, leading to misplacement of the device.
Disclosed herein are various exemplary devices and systems of the present invention that can address the above needs. The devices generally can include a braided implant attached to a releasing component that can be detachably engaged with a delivery tube and a pull wire. The releasing component can engage the delivery tube in a compressed configuration and can disengage the delivery tube by expanding to a released or deployed configuration. The pull wire can have an extending portion that can engage the releasing component and an elongated portion that can be pulled to disengage the releasing component. The braided implant, once implanted, can be released from the delivery tube by disengaging the pull wire from the releasing component and disengaging the releasing component from the delivery tube.
In one example, a system can include a braided implant, a delivery tube, a releasing component, and a pull wire. The delivery tube can have a lumen therethrough, a distal end, an outer surface, and a channel on the outer surface. The releasing component can have a band and a spring member attached to the band. The band can be attached to a first portion of the braided implant, and the spring member can be movable from a compressed configuration that presses the outer surface of the delivery tube and an extended configuration that extends away from the outer surface of the delivery tube. The pull wire can be positioned within the channel of the delivery tube and can be movable from an engaging configuration to a releasing configuration. The engaging configuration can engage the releasing component, and the releasing configuration can allow the spring member to expand to its extended configuration.
The braided implant can have a first portion and a second portion separated by a fold. The first portion can encompass a portion of the outer surface of the distal end of the delivery tube. The second portion can have an elongated tubular structure and can be positioned within the lumen of the delivery tube.
The pull wire can have an extending portion and an elongated portion, and a movement of the elongated portion can move the extending portion from the engaging configuration to the releasing configuration. The pull wire can be fastened to the channel of the delivery tube with an adhesive, and the movement of the elongated portion can break the adhesive to unfasten the pull wire.
The system can include an affixing component that affixes the braided implant to the outer surface of the band of the releasing component. The affixing component can include a lumen therethrough. The lumen can encompass the band of the releasing component.
The spring member can be an elongated member having a proximal end and a distal end. The proximal end can attach to a distal surface of the band of the releasing component. The distal end can press the outer surface of the delivery tube in the compression configuration, and the distal end can extend away from the outer surface of the delivery tube in the extended configuration.
The releasing component can have an occlusion member attached to the band that can be movable from a delivery configuration to a deployed configuration. The delivery configuration can extend longitudinally along the outer surface of the delivery tube, and the deployed configuration can at least partially obstruct the lumen of the band.
The releasing component can be composed of a radiopaque material.
An example device for treating an aneurysm can have a tubular delivery member, a braided tubular implant, a releasing component, and a bending member. The tubular delivery member can have a distal delivery end, an interior, and an exterior. The braided tubular implant can have a distal implant end that can extend outward from the distal delivery end of the tubular delivery member and fold proximally over a portion of the exterior of the tubular delivery member. The braided tubular implant can have a proximal implant end that can be positioned within the interior of the tubular delivery member. The releasing component can be attached to the distal implant end of the braided implant and detachably attached to the exterior of the tubular delivery member near the distal delivery end. The bending member can be positioned near the distal delivery end of the tubular delivery member. The bending member can have a bent configuration and a straight configuration. The bent configuration can engage a distal surface of the releasing component, and the straight configuration can disengage the distal surface of the releasing component.
The releasing component can have an attached configuration and a deployed configuration. The attached configuration can engage the exterior of the tubular delivery member, and the deployed configuration can disengage the exterior of the tubular delivery member.
The deployed configuration can at least partially occlude the lumen of the band of the releasing component.
The bending member can be the extending portion of a pull wire, and a movement of an elongated portion of the pull wire can move the extending portion from the bent configuration to the straight configuration. The pull wire can be positioned within a channel on the exterior of the tubular delivery member. The pull wire can be fastened to the tubular delivery member with an adhesive, and the movement of the elongated portion can break the adhesive to unfasten the pull wire.
An example method for releasing an implant at an aneurysm treatment site can include the steps of providing a braided implantation delivery system, engaging a pull wire of the delivery system to a releasing component of the delivery system, engaging the releasing component to a delivery tube of the delivery system, implanting a braided implant of the delivery system at the treatment site, pulling the pull wire to disengage from the releasing component, disengaging the releasing component from the delivery tube, and releasing the releasing component from the delivery tube thereby releasing the braided implant from the delivery tube.
The step of releasing the releasing component can include the step of moving a spring member of the releasing component from an engaged configuration engaging an outer surface of the delivery tube to a released configuration extending away from the outer surface of the delivery tube.
The step of implanting the braided implant can include forming an occlusive sack by inverting a portion of the braided implant.
The method can include the step of fastening the pull wire to the delivery tube with an adhesive. The step of pulling the pull wire can include the step of breaking the adhesive.
The method can include the step of moving a movable member of the releasing component to at least partially occlude a lumen of the releasing component.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
Previous approaches utilizing embolic coils can be improved upon by treating the aneurysm entrance and/or packing the aneurysm with an embolic braided implant. For example, see U.S. patent application Ser. No. 15/903,860, incorporated herein by reference. Treating the aneurysm with the braided implant can have potential advantages over treatments utilizing embolic coils such as a higher packing density, ability to retract and reposition the implant during the implantation procedure, ability to perform implantation without ancillary devices such as stents or balloons, reduced risk of reanalyzing or compacting, and improved coverage across the aneurysm neck, for example.
In braided implant delivery systems, it can be advantageous to maintain an attachment between the implant and the delivery system until the implant is in place at the treatment site, then detach the implant so that the delivery system can be extracted. The present disclose describes various example systems, devices, and methods that can be utilized for at least this purpose.
The braided implant 300 can have a substantially tubular structure having a fold 303 separating an outer fold 302 portion of the implant 300 from an inner fold 304 portion of the implant 300. The implant 300 can be folded such that the inner fold 304 is sized to fit within a lumen 504 of the delivery tube 500, the folded edge 303 rolls over a distal end 506 of the delivery tube 500, and the outer fold 302 fits over the delivery tube 500 extending proximally and attaching to the releasing component 110.
The releasing component 110 can be attached to the outer fold portion 302 of the braided implant 300 and can serve to attach the braided implant 300 to the delivery tube 500 during delivery to a treatment site and during implantation. After implantation is complete, the releasing component 110 can release the delivery tube so that it can be extracted from the patient.
An affixing component 150 can be used to attach the releasing component 110 to the braided implant 300. The affixing component 150 can have an outer surface 158 and a lumen 156. The affixing component 150 can be placed over the band 112 of the releasing component 110, securing a portion of the outer fold 302 of the braided implant 300 between the affixing component 150 and the releasing component 110.
The delivery tube 500 can have a lumen 504 therethrough. The lumen 504 can contain the inner fold 304 of the braided implant 300. The lumen can also contain additional elements to facilitate the implantation of the braided implant 300 (not shown).
The delivery tube 500 can have a channel 502 travelling longitudinally on the outer surface 508, and the pull wire 200 can be positioned within the channel 502. The pull wire 200 can have an extending portion 202, such as a hook, that can engage the releasing component 110, and an elongated portion 204 that can be positioned within the channel 502, extending proximally. As shown in
The elongated portion 204 of the pull wire 200 can extend proximally beyond the proximal end 505 of the delivery tube 500, providing an operator of the system access to the pull wire 200. As shown in
Once delivered, the braided implant 300 can be deployed, for example as described in U.S. patent application Ser. No. 15/903,860.
The extending portion 202 of the pull wire 200 can be flexible, and the extending portion 202 can disengage the releasing component 110 when the elongated portion 204 of the pull wire 200 is pulled proximally. Once disengaged, the pull wire 200 can be moved as to not inhibit distal movement of the releasing component 110 (in relation to the delivery tube).
The distal ends 122 of the spring members 120 can extend away from the delivery tube 500, moving from a compression configuration to an extended configuration. When the spring members 120 are in the compression configuration, the spring members 120 can prevent movement of the releasing component 110 in relation to the delivery tube 500. The spring members 120 can be made of Nitinol or other memory shape material such that upon contacting a bodily fluid, such as blood, the spring members 120 can move to a predetermined shape that extends away from the delivery tube 500.
The releasing component 110 can be oriented such that the occlusion of the lumen 116 of the releasing component 110 by the occluding members 130 would not result in the occluding members 130 inhibiting the releasing component 110 from disengaging and separating from the delivery tube 500. As shown, the occluding members 130 can be attached to the proximal side of the band 112 and the spring members 120 can be attached to the distal side. Oriented thusly, upon exiting the microcatheter 600, the spring members 120 can contact blood or bodily fluid, and as a result disengage the delivery tube 500. Meanwhile the catheter 600 can provide a barrier between the occluding members 130 and blood or bodily fluid. The delivery tube 500 can then be extracted before the occluding members 130 contact blood or bodily fluid. Once the delivery tube 500 is extracted, the delivery catheter 600 can be extracted, thereby exposing the occluding members 130 to blood or bodily fluid, causing the occluding members 130 to retract to occlude the lumen 116 of the band 112.
At the stage illustrated in
At the stage illustrated in
Referring to a method 700 outlined in
Referring to a method 800 outlined in
The descriptions contained herein are examples illustrating the invention and are not intended to limit the scope of the invention. As described herein, the invention contemplates many variations and modifications of a system, device, or method that can be used to release a braided implant 300 in an aneurysm. Variations can include but are not limited to alternative geometries of elements and components described herein, utilizing any of numerous materials for each component or element (e.g. radiopaque materials, memory shape metals, etc.), utilizing additional components including components to position the braided implant 300 at a treatment site or eject a portion of the braided implant 300 from the interior of the delivery tube 500, utilizing additional components to perform functions described herein, or utilizing additional components to perform functions not described herein, for example. These modifications would be apparent to those having ordinary skill in the art to which this invention relates and are intended to be within the scope of the claims which follow.
This application is Continuation of U.S. patent application Ser. No. 17/182,682 filed Feb. 23, 2021, which is a Divisional of U.S. patent application Ser. No. 16/058,918 filed on Aug. 8, 2018, now U.S. Pat. No. 11,051,825, which is incorporated by reference in its entirety herein into this application as if set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
2849002 | Oddo | Aug 1958 | A |
3480017 | Shute | Nov 1969 | A |
4085757 | Pevsner | Apr 1978 | A |
4282875 | Serbinenko et al. | Apr 1981 | A |
4364392 | Strother et al. | Dec 1982 | A |
4395806 | Wonder et al. | Aug 1983 | A |
4517979 | Pecenka | May 1985 | A |
4545367 | Tucci | Oct 1985 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4991602 | Amplatz et al. | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5025060 | Yabuta et al. | Jun 1991 | A |
5065772 | Cox, Jr. | Nov 1991 | A |
5067489 | Lind | Nov 1991 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5350397 | Palermo | Sep 1994 | A |
5423829 | Pham et al. | Jun 1995 | A |
5624449 | Pham et al. | Apr 1997 | A |
5645558 | Horton | Jul 1997 | A |
5733294 | Forber et al. | Mar 1998 | A |
5891128 | Gia et al. | Apr 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5964797 | Ho | Oct 1999 | A |
6007573 | Wallace et al. | Dec 1999 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6036720 | Abrams | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6063100 | Diaz et al. | May 2000 | A |
6063104 | Villar | May 2000 | A |
6080191 | Thaler | Jun 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6123714 | Gia et al. | Sep 2000 | A |
6168615 | Ken | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6270515 | Linden et al. | Aug 2001 | B1 |
6315787 | Tsugita et al. | Nov 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6334048 | Edvardsson et al. | Dec 2001 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6375606 | Garbaldi et al. | Apr 2002 | B1 |
6375668 | Gifford | Apr 2002 | B1 |
6379329 | Naglreiter et al. | Apr 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6419686 | McLeod et al. | Jul 2002 | B1 |
6428558 | Jones | Aug 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6463317 | Kucharczyk et al. | Oct 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6527919 | Roth | Mar 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6569179 | Teoh | May 2003 | B2 |
6569190 | Whalen, II et al. | May 2003 | B2 |
6572628 | Dominguez | Jun 2003 | B2 |
6589230 | Gia et al. | Jul 2003 | B2 |
6589256 | Forber | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6620152 | Guglielmi | Sep 2003 | B2 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6689159 | Lau et al. | Feb 2004 | B2 |
6746468 | Sepetka | Jun 2004 | B1 |
6780196 | Chin et al. | Aug 2004 | B2 |
6802851 | Jones | Oct 2004 | B2 |
6811560 | Jones | Nov 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6846316 | Abrams | Jan 2005 | B2 |
6849081 | Sepetka et al. | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6949116 | Solymar et al. | Sep 2005 | B2 |
6964657 | Cragg et al. | Nov 2005 | B2 |
6964671 | Cheng | Nov 2005 | B2 |
6994711 | Hieshima et al. | Feb 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7083632 | Avellanet | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7153323 | Teoh | Dec 2006 | B1 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7229454 | Tran et al. | Jun 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7309345 | Wallace | Dec 2007 | B2 |
7371249 | Douk et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7410482 | Murphy et al. | Aug 2008 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608088 | Jones | Oct 2009 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7713264 | Murphy | May 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7892248 | Tran | Feb 2011 | B2 |
7985238 | Balgobin et al. | Jul 2011 | B2 |
RE42758 | Ken | Sep 2011 | E |
8016852 | Ho | Sep 2011 | B2 |
8021416 | Abrams | Sep 2011 | B2 |
8025668 | McCartney | Sep 2011 | B2 |
8034061 | Amplatz et al. | Oct 2011 | B2 |
8048145 | Evans et al. | Nov 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8221483 | Ford et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267923 | Murphy | Sep 2012 | B2 |
8361106 | Solar et al. | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8372114 | Hines | Feb 2013 | B2 |
8398671 | Chen | Mar 2013 | B2 |
8430012 | Marchand | Apr 2013 | B1 |
8454633 | Amplatz et al. | Jun 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8523902 | Heaven et al. | Sep 2013 | B2 |
8551132 | Eskridge et al. | Oct 2013 | B2 |
8777974 | Amplatz et al. | Jul 2014 | B2 |
8900304 | Alobaid | Dec 2014 | B1 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8992568 | Duggal et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Mar 2015 | B2 |
9055948 | Jaeger et al. | Jun 2015 | B2 |
9107670 | Hannes et al. | Aug 2015 | B2 |
9161758 | Figulla et al. | Oct 2015 | B2 |
9232992 | Heidner et al. | Jan 2016 | B2 |
9259337 | Cox et al. | Feb 2016 | B2 |
9314326 | Wallace et al. | Apr 2016 | B2 |
9351715 | Mach | May 2016 | B2 |
9414842 | Glimsdale et al. | Aug 2016 | B2 |
9526813 | Cohn et al. | Dec 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Bowman | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561096 | Kim et al. | Feb 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579104 | Beckham et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9585669 | Becking et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9629635 | Hewitt et al. | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9681861 | Heisel et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Peterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9826980 | Figulla et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
9918720 | Marchand et al. | Mar 2018 | B2 |
9955976 | Hewitt et al. | May 2018 | B2 |
10004510 | Gerberding | Jun 2018 | B2 |
10130372 | Griffin | Nov 2018 | B2 |
10307148 | Heisel et al. | Jun 2019 | B2 |
10327781 | Divino et al. | Jun 2019 | B2 |
10342546 | Sepetka et al. | Jul 2019 | B2 |
10517604 | Bowman et al. | Dec 2019 | B2 |
10653425 | Gorochow et al. | May 2020 | B1 |
10716573 | Connor | Jul 2020 | B2 |
10743884 | Lorenzo | Aug 2020 | B2 |
10751066 | Lorenzo | Aug 2020 | B2 |
11464518 | Connor | Nov 2022 | B2 |
11672542 | Xu et al. | Jan 2023 | B2 |
11607226 | Pedroso et al. | Mar 2023 | B2 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020082638 | Porter et al. | Jun 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030171739 | Murphy | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030181945 | Opolski | Sep 2003 | A1 |
20030195553 | Wallace | Oct 2003 | A1 |
20030216772 | Konya | Nov 2003 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040093014 | Ho et al. | May 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040127935 | Van Tassel et al. | Jul 2004 | A1 |
20040133222 | Tran et al. | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040210297 | Lin et al. | Oct 2004 | A1 |
20040254594 | Alfaro | Dec 2004 | A1 |
20050021016 | Malecki et al. | Jan 2005 | A1 |
20050021072 | Wallace | Jan 2005 | A1 |
20050159771 | Petersen | Jul 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050251200 | Porter | Nov 2005 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060058735 | Lesh | Mar 2006 | A1 |
20060064151 | Gutterman et al. | Mar 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060155367 | Hines | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060247572 | McCartney | Nov 2006 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070106311 | Wallace et al. | May 2007 | A1 |
20070162071 | Burkett et al. | Jul 2007 | A1 |
20070167876 | Euteneuer et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070186933 | Domingo | Aug 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070208376 | Meng | Sep 2007 | A1 |
20070233188 | Hunt et al. | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080097495 | Feller, III et al. | Apr 2008 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080281302 | Murphy et al. | Nov 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20090036877 | Nardone et al. | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090099647 | Glimsdale | Apr 2009 | A1 |
20090227983 | Griffin et al. | Sep 2009 | A1 |
20090281557 | Sander et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090318941 | Sepetka | Dec 2009 | A1 |
20100023046 | Heidner et al. | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100063573 | Hijlkema | Mar 2010 | A1 |
20100063582 | Rudakov | Mar 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100168781 | Berenstein | Jul 2010 | A1 |
20100211156 | Linder | Aug 2010 | A1 |
20100324649 | Mattsson et al. | Dec 2010 | A1 |
20110046658 | Conner et al. | Feb 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110112588 | Linderman et al. | May 2011 | A1 |
20110137317 | O'Halloran et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110196413 | Wallace | Aug 2011 | A1 |
20110319978 | Schaffer | Dec 2011 | A1 |
20120010644 | Sideris et al. | Jan 2012 | A1 |
20120071911 | Sadasivan | Mar 2012 | A1 |
20120165732 | Müller | Jun 2012 | A1 |
20120191123 | Brister et al. | Jul 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120310270 | Murphy | Dec 2012 | A1 |
20120323267 | Ren | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20130018414 | Widomski et al. | Jan 2013 | A1 |
20130035665 | Chu | Feb 2013 | A1 |
20130035712 | Theobald et al. | Feb 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130079864 | Boden | Mar 2013 | A1 |
20130110066 | Sharma et al. | May 2013 | A1 |
20130204351 | Cox et al. | Aug 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130261658 | Lorenzo et al. | Oct 2013 | A1 |
20130261730 | Bose et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130325054 | Watson | Dec 2013 | A1 |
20130345738 | Eskridge | Dec 2013 | A1 |
20140005714 | Quick et al. | Jan 2014 | A1 |
20140012307 | Franano et al. | Jan 2014 | A1 |
20140012363 | Franano et al. | Jan 2014 | A1 |
20140018838 | Franano et al. | Jan 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140257360 | Keillor | Sep 2014 | A1 |
20140257361 | Prom | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20140277096 | Richter et al. | Sep 2014 | A1 |
20140358178 | Hewitt et al. | Dec 2014 | A1 |
20150057703 | Ryan et al. | Feb 2015 | A1 |
20150209050 | Aboytes et al. | Jul 2015 | A1 |
20150272589 | Lorenzo | Oct 2015 | A1 |
20150313605 | Griffin | Nov 2015 | A1 |
20150335333 | Jones et al. | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20150374483 | Janardhan et al. | Dec 2015 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160030050 | Franano et al. | Feb 2016 | A1 |
20160192912 | Kassab et al. | Jul 2016 | A1 |
20160249934 | Hewitt et al. | Sep 2016 | A1 |
20160249935 | Hewitt et al. | Sep 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170027726 | Oyama | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079661 | Bardsley et al. | Mar 2017 | A1 |
20170079662 | Rhee et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079717 | Walsh et al. | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170114350 | dos Santos et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein et al. | Jun 2017 | A1 |
20170165454 | Tuohy et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170258473 | Plaza et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Cruise et al. | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340333 | Badruddin et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180140305 | Connor | May 2018 | A1 |
20180206850 | Wang et al. | Jul 2018 | A1 |
20180242979 | Lorenzo | Aug 2018 | A1 |
20180303531 | Sanders et al. | Oct 2018 | A1 |
20180317933 | Nita et al. | Nov 2018 | A1 |
20180338767 | Dasnurkar et al. | Nov 2018 | A1 |
20190008522 | Lorenzo | Jan 2019 | A1 |
20190223878 | Lorenzo et al. | Jan 2019 | A1 |
20190110796 | Jayaraman | Apr 2019 | A1 |
20190142567 | Janardhan et al. | May 2019 | A1 |
20190192162 | Lorenzo | Jun 2019 | A1 |
20190192165 | Greene, Jr. et al. | Jun 2019 | A1 |
20190192167 | Lorenzo | Jun 2019 | A1 |
20190192168 | Lorenzo | Jun 2019 | A1 |
20190223879 | Jayaraman | Jul 2019 | A1 |
20190223881 | Hewitt et al. | Sep 2019 | A1 |
20190328398 | Lorenzo | Oct 2019 | A1 |
20190357914 | Gorochow et al. | Nov 2019 | A1 |
20190365385 | Gorochow et al. | Dec 2019 | A1 |
20200000477 | Nita et al. | Jan 2020 | A1 |
20200069313 | Xu et al. | Mar 2020 | A1 |
20200268365 | Hebert et al. | Aug 2020 | A1 |
20200367897 | Wolfe et al. | Nov 2020 | A1 |
20200375606 | Lorenzo | Dec 2020 | A1 |
20210007755 | Lorenzo et al. | Jan 2021 | A1 |
20210137526 | Lee et al. | May 2021 | A1 |
20210177429 | Lorenzo | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2395796 | Jul 2001 | CA |
2 431 594 | Sep 2002 | CA |
2598048 | May 2008 | CA |
104334117 | Feb 2015 | CN |
204 683 687 | Jul 2015 | CN |
107374688 | Nov 2017 | CN |
102008015781 | Oct 2009 | DE |
102010053111 | Jun 2012 | DE |
102009058132 | Jul 2014 | DE |
102013106031 | Dec 2014 | DE |
202008018523 | Apr 2015 | DE |
102011102955 | May 2018 | DE |
902704 | Mar 1999 | EP |
1054635 | Nov 2000 | EP |
1295563 | Mar 2003 | EP |
1441649 | Aug 2004 | EP |
1483009 | Dec 2004 | EP |
1527753 | May 2005 | EP |
1569565 | Sep 2005 | EP |
1574169 | Sep 2005 | EP |
1494619 | Jan 2006 | EP |
1633275 | Mar 2006 | EP |
1659988 | May 2006 | EP |
1725185 | Nov 2006 | EP |
1862122 | Dec 2007 | EP |
1923005 | May 2008 | EP |
2063791 | Jun 2009 | EP |
2134263 | Dec 2009 | EP |
2157937 | Mar 2010 | EP |
2266456 | Dec 2010 | EP |
2324775 | May 2011 | EP |
2367482 | Sep 2011 | EP |
2387951 | Nov 2011 | EP |
2460476 | Jun 2012 | EP |
2468349 | Jun 2012 | EP |
2543345 | Jan 2013 | EP |
2567663 | Mar 2013 | EP |
2617386 | Jul 2013 | EP |
2623039 | Aug 2013 | EP |
2647343 | Oct 2013 | EP |
2848211 | Mar 2015 | EP |
2854704 | Apr 2015 | EP |
2923674 | Sep 2015 | EP |
2926744 | Oct 2015 | EP |
3146916 | Mar 2017 | EP |
3501429 | Jun 2019 | EP |
3517055 | Jul 2019 | EP |
3 636 173 | Oct 2019 | EP |
3 636 171 | Apr 2020 | EP |
H04-47415 | Apr 1992 | JP |
H07-37200 | Jul 1995 | JP |
2006-509578 | Mar 2006 | JP |
2013-509972 | Mar 2013 | JP |
2013537069 | Sep 2013 | JP |
2014-522268 | Sep 2014 | JP |
2016-502925 | Feb 2015 | JP |
2016-518155 | Jun 2016 | JP |
WO 9641589 | Dec 1996 | WO |
WO 9905977 | Feb 1999 | WO |
WO 9908607 | Feb 1999 | WO |
WO 9930640 | Jun 1999 | WO |
WO 2003073961 | Sep 2003 | WO |
WO 03086240 | Oct 2003 | WO |
WO 2005020822 | Mar 2005 | WO |
WO 2005074814 | Aug 2005 | WO |
WO 2005117718 | Dec 2005 | WO |
WO 2006034149 | Mar 2006 | WO |
WO 2006052322 | May 2006 | WO |
WO 2007076480 | Jul 2007 | WO |
WO 2008150346 | Dec 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2009048700 | Apr 2009 | WO |
WO 2009105365 | Aug 2009 | WO |
WO 2009132045 | Oct 2009 | WO |
WO 2009135166 | Nov 2009 | WO |
WO 2010030991 | Mar 2010 | WO |
WO 2011057002 | May 2011 | WO |
WO 2012034135 | Mar 2012 | WO |
WO 2012032030 | Mar 2012 | WO |
WO 2012099704 | Jul 2012 | WO |
WO 2012099909 | Jul 2012 | WO |
WO 2012113554 | Aug 2012 | WO |
WO 2013016618 | Jan 2013 | WO |
WO 2013025711 | Feb 2013 | WO |
WO 2013109309 | Jul 2013 | WO |
WO 2013159065 | Oct 2013 | WO |
WO 2013162817 | Oct 2013 | WO |
WO 2014029835 | Feb 2014 | WO |
WO 2014078286 | May 2014 | WO |
WO 2014110589 | Jul 2014 | WO |
WO 2014137467 | Sep 2014 | WO |
WO 2015073704 | May 2015 | WO |
WO 2015160721 | Oct 2015 | WO |
WO 2015166013 | Nov 2015 | WO |
WO 2015171268 | Nov 2015 | WO |
WO 2015184075 | Dec 2015 | WO |
WO 2015187196 | Dec 2015 | WO |
WO 2016044647 | Mar 2016 | WO |
WO 2016107357 | Jul 2016 | WO |
WO 2016137997 | Sep 2016 | WO |
WO 2017161283 | Sep 2017 | WO |
WO 2018051187 | Mar 2018 | WO |
WO 2019038293 | Feb 2019 | WO |
Entry |
---|
Altes et al., Creation of Saccular Aneurysms in the Rabbit: A Model Suitable for Testing Endovascular Devices. AJR 2000; 174: 349-354. |
Schaffer, Advanced Materials & Processes, Oct. 2002, pp. 51-54. |
Number | Date | Country | |
---|---|---|---|
20230200821 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16058918 | Aug 2018 | US |
Child | 17182682 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17182682 | Feb 2021 | US |
Child | 18110576 | US |