Delivery of heart chamber prosthetic valve implant

Information

  • Patent Grant
  • 12036113
  • Patent Number
    12,036,113
  • Date Filed
    Wednesday, June 13, 2018
    6 years ago
  • Date Issued
    Tuesday, July 16, 2024
    5 months ago
Abstract
The invention relates to prosthetic heart valves comprising a stent frame with valve support disposed or inverted at least partially within the stent frame, wherein the valve support is at least partially within the interior of the stent frame. The inverted configuration comprises a maximum number of layers of material in cross section where the stent frame and valve support overlap. The maximum number of cross-sectional layers of material structure may be reduced to, e.g., two layers of material to reduce outer diameter during delivery by everting the valve portion to a position located outside of the stent portion, followed by inverted reconfiguration back to the inverted anchoring structure after delivery from the lumen of the delivery catheter to the heart chamber.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to devices and methods for implanting devices within a heart chamber. More specifically, the invention relates to preferably single-chamber anchoring frames comprising generally a stent portion and a valve portion disposed or inverted at least partially within the stent portion in the inverted, deployed configuration, wherein the inverted valve portion overlaps with at least a portion of the stent portion. The deployed configuration thus comprises a number of layers of material, most preferably more than two layers, along at least a portion of the anchoring frame in cross-section and may include two layers for the stent frame portion and two layers for the valve support portion. The cross-sectional layers of material structure may be reduced to, e.g., two layers of material to reduce outer diameter during delivery by everting the valve portion to a position located outside of the stent portion, followed by inverted reconfiguration back to the anchoring structure with more than two layers in cross section after delivery from the lumen of the delivery catheter and in preparation for implantation.


Description of the Related Art

Prosthetic cardiac valve and left atrial appendage occluding devices are well known in the art. The native heart valves, e.g., aortic, pulmonary, tricuspid and mitral valves, are critical in assuring the forward-only flow of an adequate supply of blood through the cardiovascular system. These heart valves may lose functionality as a result of, inter alia, congenital, inflammatory, infectious diseases or conditions. Early interventions repaired or replaced the dysfunctional valve(s) during open heart surgery. More recently, besides the open heart surgical approach discussed above, gaining access to the valve of interest may be achieved percutaneously via one of at least the following known access routes: transapical; transfemoral; transatrial; and transseptal delivery techniques, collectively transcatheter techniques.


Generally, in a transcatheter technique, the prosthetic valve is mounted within a stented frame that is capable of achieving collapsed and expanded states. The device is collapsed and advanced through a sheath or delivery catheter positioned in a blood vessel of the patient until reaching the implantation site. The stented frame is generally released from the catheter or sheath and, by a variety of means, expanded with the valve to the expanded functional size and orientation within the heart. One of the key issues is ease of delivery of the prosthetic valve, including the stent frame and valve. More specifically the outer diameter of the collapsed device within the catheter is of significant interest. The present invention addresses this issue.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 2 illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 3 illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 4 illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 5A illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 5B illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 5C illustrates a cross-sectional and partial cutaway view of one embodiment of the present invention.



FIG. 5D illustrates a cross-sectional view of one embodiment of the present invention.



FIG. 5E illustrates a cross-sectional view of one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Generally, the prosthetic heart valve comprises a collapsible and expandable stent frame as is commonly known in the art and that may be partially manufactured from a shape memory alloy to facilitate biased expansion, and an internally supported one-way valve. The stent frame comprises a lower aperture and is provided with a valve support substantially surrounding the lower aperture and that comprises a first inverted deployed position inside the stent frame and a second everted delivery position outside the stent frame. The stent frame may comprise a central longitudinal axis that the valve support is generally centered around and along which the valve support may translate to achieve the first inverted and second everted positions. The translation from the first inverted position to the second inverted position, and from the second inverted position to the first inverted position occurs by enabling the valve support to move through the lower aperture. The operative connection of the valve support with the stent frame allows flexion, stretching or hinging movement of the valve support relative to the stent frame to achieve the first inverted and second everted positions. Such flexing, stretching and/or hinging connections may be achieved by the expansion and/or collapse of stent frame cells and are well known to the skilled artisan. Therefore, the stent frame and valve support may comprise a stented structure, wherein the stent frame and valve support comprise stent cells and wherein the valve support may be formed from the same material as the stented structure, wherein the valve support structure is turned inside, or inverted within, the interior of the stent frame.


The valve support may be a cylinder with a height and inner and outer diameters that may be constant or that may vary over the height of the cylinder as in FIG. 2, for example. Alternatively, the valve support may comprise a cone-shaped structure as shown in FIG. 1. The valve support may comprise a separately manufactured structure that is operatively connected with the stent frame. Alternatively, the valve support may be formed from the same continuous layer that forms the stent frame, wherein the valve support is inverted within the stent frame in a deployed configuration. The term “operatively engaged” or “operative engagement” relating to the relationship of the valve support and the frame is defined herein to cover both of these possible arrangements. In each embodiment, the valve support is adapted and configured to transition between an inverted position at least partially within the interior of the stent frame and an everted position wherein the valve support is located outside of the stent frame.


The illustrated cone-shaped structure comprises side walls of non-constant diameter wherein the diameter increases from the top of the valve support to the bottom. Such a cone-shaped valve support may also comprise side walls of substantially constant diameter. Still more alternatively, the valve support may comprise other shaping geometries and/or dimensions. What is minimally required is that the valve support be in operative engagement and connection with the frame and valve and amenable to achieving the first inverted and second everted positions. The walls of the valve support must be sufficiently flexible or compliant to enable the valve support to translate through and/or within the lower orifice to achieve the first inverted, deployed position and/or second everted, delivery position. A flexible polymer or mesh or slidable metal frame construction, or similar may be used, as will be well known to the skilled artisan. In addition, the material may be constructed from a laser cut, wire or braided construction of a self-expandable material.


It is noteworthy that the valve support may be at least partially within the interior of the stent frame when deployed in the first inverted position. In other embodiments, the valve support may be entirely within the stent frame when deployed in the first inverted position. Stated differently, the valve support may at least partially overlap with the stent frame within an overlap region as discussed further below.


Further, the position of the valve as supported by the valve support, once deployed in an exemplary left atrium for supplementing and/or replacing the function of native mitral valve leaflets, the left atrium further comprising an upper annular surface or annular plane and an annulus, may be: (1) collinear with the upper annular plane or surface; (2) may be within the annulus or annular throat, i.e., below the upper annular plane or surface; or (3) above the annular plane or surface.


The prosthetic heart valve may in some embodiments be biased towards achieving the first inverted position and may, for example, be subject to a biasing expanding force that urges the valve support to the first inverted position. The biasing expanding force may be generated by the self-expanding stent frame whereby the biasing expanding force may be overcome by a tensile force applied generally and at least partially in the direction of the longitudinal axis and comprising a magnitude greater than the biasing force in order to transition or translate the prosthetic heart valve, specifically the valve support, to the second everted position. In this case, when the tensile force is less than the biasing force, the prosthetic heart valve will transition back to the first inverted position.


It is noteworthy that the necessary tensile force to drive the valve support from the everted second position to the inverted first position may come from the biasing expansion force provided by the expanding stent frame, so that as the stent frame expands, either by virtue of shape memory material or by physical means, the valve support is drawn at least partially into the interior of the stent frame and, therefore, into the inverted first position for deployment by the expansion and/or tensile forces generated by the expanding stent.


In other embodiments, the valve support may not comprise a bias toward either the first inverted or the second everted position, but instead is translatable along the longitudinal axis by application of force. The required force in this embodiment may be provided by an operator with push or pull wires that are inserted during the delivery process. Alternatively, the required force in this embodiment, in particular for the translation of the valve support from the second everted position to the first inverted position may be provided by the expanding deployment of the stent frame itself when released from the delivery catheter lumen. In this case, the expanding stent frame, in operative connection with the valve support and as discussed above, will draw the valve support from the second everted position into the first inverted position to achieve full deployment within the heart chamber as a result of tensile forces and/or expansion forces generated by the expanding stent frame.


In all cases, the prosthetic valve comprising the stent frame, valve support and one-way valve within the valve support, are configured to be extended or everted into the second everted position. As will now be readily understood, the stent frame in the deployed position may comprise at least two cross-sectional layers taken along a longitudinal axis, a right side wall and a left side wall. Further, the valve support also comprises at least two cross-sectional layers along the longitudinal axis when deployed, i.e., in the first inverted position, a right side wall and a left side wall. Thus, when in the first inverted position, the valve support layers and the stent frame layers overlap with at least four layers of material present where the overlap occurs and along the longitudinal axis. These at least four layers of material create a maximum outer diameter that can make delivery to the subject heart chamber difficult.


When the second everted position is achieved, the stent frame and/or valve support no longer overlap, so that there is no longer an area where at least four layers of material is present along the longitudinal axis, thus reducing the maximum outer diameter accordingly.


The device may be further compressed to bring the stent frame's right and left side walls together and the valve support's right and left side walls together, most preferably along a single plane to provide the most compressive reduction in size in preparation for positioning with a lumen of a delivery catheter.


Therefore, in certain embodiments, the deployed first inverted position of the prosthetic heart valve may comprise four cross-sectional layers of material where the stent frame and valve support overlap: (1) the left side of stent frame; (2) the right side of stent frame; (3) the left side of the valve support; and (4) the right side of the valve support. Achieving the second everted position removes the valve support from the interior of the stent frame and when compressed as described above reduces the number of cross-sectional layers for the prosthetic heart valve.


In some embodiments, the overall length of the prosthetic heart valve may be temporarily increased in the everted second position, compared with the length in the first inverted position, during translation through the delivery catheter, but the cross-sectional maximum diameter of the device in the everted second position may also be lessened as compared with the cross-sectional diameter of the device when in the inverted first position.


The extension of the prosthetic valve to the second everted position may occur just before loading into the proximal end of the delivery catheter lumen for easier delivery to the heart chamber of interest, e.g., the left atrium. Once the prosthetic valve exits the distal end of the delivery catheter lumen, the prosthetic valve moves, or is moved, from the second everted position to the deployed and first inverted position. As discussed above, this deployment transformation may occur automatically by virtue of biasing or other forces as the stent frame expands.


With reference to the Figures, a variety of prosthetic heart valve device embodiments are illustrated as deployed within an exemplary left atrium, anchored over the annulus 202 and wherein the valve support 104 and/or one-way valve 106 therein is/are disposed above the upper annular surface 200. In each embodiment, the one-way valve 106 and valve support 104 do not physically interact with the native mitral valve leaflets 204, though in other embodiments the valve support and/or one-way valve may physically interact with the native mitral valve leaflets 204.



FIG. 1 provides a prosthetic heart valve device 100 with an exemplary cone-shaped valve support 104. FIG. 2 illustrates a prosthetic heart valve device 100 with an exemplary cylinder-shaped valve support 104. FIG. 3 illustrates a prosthetic heart valve device 100 with an exemplary tapered curvilinear valve support 104, while FIG. 4 shows a prosthetic heart valve device 100 comprising a valve support 104 formed from the stent frame 102 material and turned inside the stent frame 102. FIG. 4 illustrates a valve support 104 defined by an inversion of the stent frame 102. In each embodiment shown, the valve support 104 may be separately manufactured and attached to the stent frame 102 or the valve support 104 may be formed from the stent frame 102. In all cases, the valve support 104 is at least partially disposed within the interior of the stent frame 102, wherein at least a portion of the valve support 104 overlaps with a portion of the stent frame 102 in the overlap region as shown.



FIG. 5A illustrates the prosthetic valve of FIG. 4 in the first inverted position wherein the valve support 104 is at least partially inside the interior of the stent frame 102 and wherein the stent frame 102 and valve support 104 are at least partially overlapping each other, creating a number of material layers in the overlap region. In the illustrated case, there are six layers of overlapping material as indicated by the numbers 1-6 in FIG. 5A. As shown, force may be applied, either by pushing or pulling or a combination of push/pull to transition the device 100 to the second everted position of FIG. 5B which may then be configured and inserted into the lumen 220 of delivery catheter 222 as shown in FIG. 5C for translation therethrough to the distal end of the delivery catheter and release into the subject heart chamber. A primary advantage of the present invention is the reduction of layers of material by eliminating the overlap region as shown in the transition between FIGS. 4A and 5B. In FIG. 5B, only two of the original six layers are present, greatly increasing the opportunity to deliver the device 100 in a form with a smaller maximum diameter as compared with the device of FIG. 5A.


Once released from the delivery catheter lumen 220, the device 100 may be transitioned from the second everted configuration of FIGS. 5C and 5D to the first inverted position of FIGS. 5A and 5E for subsequent positioning and anchoring within the heart chamber.


The length L of the device in the first inverted position may be less than the length L′ of the device in the second everted position. Moreover, the diameter D of the device 100 in the first inverted position may be greater than the diameter D′ of the device 100 in the second everted position.


The embodiments of FIGS. 1-3 each comprise four layers of material within the overlap region in the first inverted position along longitudinal axis A, but when transitioned to the second everted position, the cross-sectional layers of material are reduced to two, similar to that shown in FIG. 5B.


Various methods are possible using the above-described embodiments.


For example, a method of manipulating the shape of a prosthetic heart valve is possible, the method comprising:


providing a prosthetic heart valve according to this disclosure, the prosthetic heart valve comprising the self-expandable stent frame configured to generate a biasing expanding force, wherein the prosthetic heart valve is in the second everted position;


transitioning the prosthetic heart valve from the second everted position to the first inverted position using at least the biasing expanding force generated by the self-expandable stent frame.


Further, a method of delivering a prosthetic heart valve to a patient's heart chamber using the inventive prosthetic heart valve, comprising:


providing a prosthetic heart valve according to this disclosure, the prosthetic heart valve in the first inverted position;


providing a delivery catheter with a proximal end, a distal end and a lumen therethrough;


positioning the delivery catheter with the distal end within the heart chamber and the proximal end outside of the patient;


transitioning the prosthetic heart valve from the first inverted position to the second everted position;


inserting the prosthetic heart valve in the second everted position into the lumen of the delivery catheter at the proximal end;


translating the prosthetic heart valve through the lumen to the distal end of the delivery catheter;


releasing the prosthetic heart valve from the distal end of the delivery catheter; and


transitioning the prosthetic heart valve from the second everted position to the first inverted position within the heart chamber.


The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of this invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.

Claims
  • 1. A prosthetic heart valve for delivery to and implantation within a heart chamber comprising: a self-expandable, non-braided, stent frame comprising stent cells and an interior;a valve support defined by an inversion of a continuous layer of material formed by the stent cells of the expandable stent frame, wherein the valve support is at least partially disposed in the interior of the stent frame; anda one-way valve supported within the valve support, the one-way valve configured to allow blood flow in a forward direction and prevent regurgitation through the one-way valve in a backward direction; wherein the prosthetic heart valve configured to transition between: a first inverted position wherein the valve support is positioned at least partially within the interior of the stent frame; anda second everted position wherein the valve support is positioned outside of the stent frame in the downstream direction.
  • 2. The prosthetic heart valve of claim 1, wherein the first inverted position comprises a deployed configuration and the second everted position comprises a delivery configuration.
  • 3. The prosthetic heart valve of claim 2, wherein the self-expandable stent frame is configured to generate an expanding biasing force.
  • 4. The prosthetic heart valve of claim 3, wherein when the prosthetic heart valve is in the second everted position, the expanding biasing force generated by the self-expandable stent frame is alone sufficient to at least partially transition the prosthetic heart valve from the second everted position to the first inverted position.
  • 5. The prosthetic heart valve of claim 3, wherein when the prosthetic heart valve is in the second everted position, the expanding biasing force generated by the self-expandable stent frame in combination with an externally applied force is sufficient to transition the prosthetic heart valve from the second everted position to the first inverted position.
  • 6. The prosthetic heart valve of claim 3, wherein externally applied force is required to transition the prosthetic heart valve from the first inverted position to the second everted position.
  • 7. The prosthetic heart valve of claim 3, wherein when the prosthetic heart valve is in the first inverted position, an externally applied force is required to transition the prosthetic heart valve from the first inverted position to the second everted position.
  • 8. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve in the second everted position comprises a length that is greater than a length of the prosthetic heart valve in the first inverted position.
  • 9. The prosthetic heart valve of claim 8, wherein the prosthetic heart valve in the second everted position comprises a maximum diameter that is smaller than a maximum diameter of the prosthetic heart valve in the first everted position.
  • 10. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve in the second everted position comprises a maximum diameter that is smaller than a maximum diameter of the prosthetic heart valve in the first everted position.
  • 11. The prosthetic heart valve of claim 8, wherein the prosthetic heart valve in the second everted position is further compressible to fit within a lumen of a delivery catheter.
  • 12. The prosthetic heart valve of claim 1, wherein: the prosthetic heart valve in the first inverted position comprises a number of layers of material along a longitudinal cross-section of the prosthetic heart valve;the prosthetic heart valve in the second everted position comprises a number of layers of material along a longitudinal cross-section of the prosthetic heart valve; andthe number of layers of material in the second everted position is less than the number of layers in the first everted position.
  • 13. The prosthetic heart valve of claim 12, further comprising two layers of material along the longitudinal cross-section of the prosthetic heart valve in the second everted position.
  • 14. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve is configured to be delivered via a delivery catheter to the heart chamber using a transcatheter access and delivery technique.
  • 15. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve is configured to be delivered via a delivery catheter to the heart chamber using a transcatheter access and delivery technique selected from the group consisting of: transfemoral, transapical, transseptal, transapical and transatrial.
  • 16. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve is configured to be delivered by surgical implantation.
  • 17. The prosthetic heart valve of claim 1, wherein the prosthetic heart valve is configured to at least one of supplement and replace the function of native valve leaflets from the group consisting of: native mitral valve leaflets, native tricuspid valve leaflets, native aortic valve leaflets, and native pulmonary valve leaflets.
  • 18. The prosthetic heart valve of claim 17, wherein when the prosthetic heart valve is in the first inverted configuration and implanted in the heart chamber, the implanted prosthetic heart valve does not physically interact with the native valve leaflets.
  • 19. The prosthetic heart valve of claim 17, wherein when the prosthetic heart valve is in the first inverted configuration and implanted in the heart chamber, the implanted prosthetic heart valve does physically interact with the native valve leaflets.
  • 20. A prosthetic heart valve for implantation in the left atrium of a patient, with at least partial anchoring on the upper annular surface of the left atrium, for at least one of supplementation and replacement of the function of the patient's native mitral valve, the prosthetic heart valve comprising: a self-expandable, non-braided, stent frame comprising stent cells and an interior;a valve support defined by an inversion of a continuous layer of material forming the stent cells of the expandable stent frame, wherein the valve support is at least partially disposed in the interior of the stent frame; anda one-way valve supported within the valve support, the one-way valve configured to allow blood flow in a downstream direction and prevent regurgitation through the one-way valve in an upstream direction, the prosthetic heart valve configured to transition between: a first inverted deployed position wherein the valve support is positioned at least partially within the interior of the stent frame; anda second everted delivery position wherein the valve support is positioned outside of the stent frame in the downstream direction; wherein:when the prosthetic heart valve is implanted within the left atrium, the one-way valve is positioned in one of the locations in the group consisting of: collinear with the upper annular surface, below the upper annular surface, or above the upper annular surface.
  • 21. A method of manipulating a shape of a prosthetic heart valve, the method comprising: providing a prosthetic heart valve according to claim 1, wherein the self-expandable stent frame is configured to generate a biasing expanding force, wherein the providing is performed when the prosthetic heart valve is in the second everted position; andtransitioning the prosthetic heart valve from the second everted position to the first inverted position using at least the biasing expanding force generated by the self-expandable stent frame.
  • 22. The method of claim 21, wherein the prosthetic heart valve has a length in the second everted position that is less than a length of the prosthetic heart valve in the first everted position.
  • 23. A method of delivering a prosthetic heart valve to a patient's heart chamber, the method comprising providing a prosthetic heart valve according to claim 1 in the first inverted position;providing a delivery catheter with a proximal end, a distal end and a lumen therethrough;positioning the delivery catheter with the distal end within the heart chamber and the proximal end outside of the patient;transitioning the prosthetic heart valve from the first inverted position to the second everted position;inserting the prosthetic heart valve in the second everted position into the lumen of the delivery catheter at the proximal end;translating the prosthetic heart valve through the lumen to the distal end of the delivery catheter;releasing the prosthetic heart valve from the distal end of the delivery catheter; andtransitioning the prosthetic heart valve from the second everted position to the first inverted position within the heart chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/519,576, filed Jun. 14, 2017, and titled DELIVERY OF HEART CHAMBER PROSTHETIC VALVE IMPLANT, the entire contents of which are incorporated herein by reference.

US Referenced Citations (777)
Number Name Date Kind
4424833 Spector Jan 1984 A
4503569 Dotter Mar 1985 A
4733665 Palmaz Mar 1988 A
4878906 Lindemann Nov 1989 A
5190528 Fonger Mar 1993 A
5415667 Frater May 1995 A
5441483 Avitall Aug 1995 A
5693083 Baker Dec 1997 A
5693089 Inoue Dec 1997 A
5776188 Shepherd Jul 1998 A
5843090 Schuetz Dec 1998 A
5928258 Khan Jul 1999 A
5957949 Leonhardt Sep 1999 A
5968070 Bley Oct 1999 A
6123723 Konya Sep 2000 A
6152144 Lesh Nov 2000 A
6231602 Carpentier May 2001 B1
6287334 Moll Sep 2001 B1
6319280 Schoon Nov 2001 B1
6319281 Patel Nov 2001 B1
6332893 Mortier Dec 2001 B1
6371983 Lane Apr 2002 B1
6409758 Stobie Jun 2002 B2
6425916 Garrison Jul 2002 B1
6471718 Staehle Oct 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig Jan 2003 B2
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6589275 Ivancev Jul 2003 B1
6702826 Liddicoat Mar 2004 B2
6738655 Sen May 2004 B1
6790231 Liddicoat Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof Dec 2004 B1
6840957 Dimatteo Jan 2005 B2
6875231 Anduiza Apr 2005 B2
7011671 Welch Mar 2006 B2
7041132 Quijano May 2006 B2
7044966 Svanidze May 2006 B2
7125420 Rourke Oct 2006 B2
7153324 Case Dec 2006 B2
7252682 Seguin Aug 2007 B2
7276077 Zadno-Azizi Oct 2007 B2
7276078 Spenser Oct 2007 B2
7291168 Macoviak Nov 2007 B2
7364588 Mathis Apr 2008 B2
7381220 Macoviak Jun 2008 B2
7442204 Schwammenthal Oct 2008 B2
7445631 Salahieh Nov 2008 B2
7455689 Johnson Nov 2008 B2
7510572 Gabbay Mar 2009 B2
7524331 Birdsall Apr 2009 B2
7611534 Kapadia Nov 2009 B2
7704277 Zakay Apr 2010 B2
7749266 Forster Jul 2010 B2
7758491 Buckner Jul 2010 B2
7780723 Taylor Aug 2010 B2
7789909 Andersen Sep 2010 B2
7935144 Robin May 2011 B2
7959672 Salahieh Jun 2011 B2
7998196 Mathison Aug 2011 B2
8012201 Lashinski Sep 2011 B2
8016877 Seguin Sep 2011 B2
8021420 Dolan Sep 2011 B2
8029556 Rowe Oct 2011 B2
D648854 Braido Nov 2011 S
8052592 Goldfarb Nov 2011 B2
8057493 Goldfarb Nov 2011 B2
8070802 Lamphere Dec 2011 B2
8083793 Lane Dec 2011 B2
D653341 Braido Jan 2012 S
D653342 Braido Jan 2012 S
8092524 Nugent Jan 2012 B2
8142492 Forster Mar 2012 B2
8147541 Forster Apr 2012 B2
D660433 Braido May 2012 S
D660967 Braido May 2012 S
8167932 Bourang May 2012 B2
8236049 Rowe Aug 2012 B2
8246677 Ryan Aug 2012 B2
8252051 Chau Aug 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8308798 Pintor Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8348998 Pintor Jan 2013 B2
8348999 Kheradvar Jan 2013 B2
8366768 Zhang Feb 2013 B2
8398708 Meiri Mar 2013 B2
8409275 Matheny Apr 2013 B2
8414644 Quadri Apr 2013 B2
8414645 Dwork Apr 2013 B2
8439970 Jimenez May 2013 B2
8454686 Alkhatib Jun 2013 B2
8465541 Dwork Jun 2013 B2
8491650 Wiemeyer Jul 2013 B2
8512400 Tran Aug 2013 B2
8518106 Duffy Aug 2013 B2
8535373 Stacchino Sep 2013 B2
8562673 Yeung Oct 2013 B2
8568472 Marchand Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane Nov 2013 B2
8603159 Seguin Dec 2013 B2
8623075 Murray, III Jan 2014 B2
8636764 Miles Jan 2014 B2
8641757 Pintor Feb 2014 B2
8657870 Turovskiy Feb 2014 B2
8663318 Ho Mar 2014 B2
8679176 Matheny Mar 2014 B2
8721715 Wang May 2014 B2
8740976 Tran Jun 2014 B2
8747459 Nguyen Jun 2014 B2
8747461 Centola Jun 2014 B2
8764793 Lee Jul 2014 B2
8764820 Dehdashtian Jul 2014 B2
8778020 Gregg Jul 2014 B2
8790396 Bergheim Jul 2014 B2
8795357 Yohanan Aug 2014 B2
8805466 Salahieh Aug 2014 B2
8814931 Wang Aug 2014 B2
8828043 Chambers Sep 2014 B2
8828051 Javois Sep 2014 B2
8845711 Miles Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8852271 Murray, III Oct 2014 B2
8852272 Gross Oct 2014 B2
8870949 Rowe Oct 2014 B2
8876897 Kheradvar Nov 2014 B2
8906022 Krinke et al. Dec 2014 B2
8926692 Dwork Jan 2015 B2
8956402 Cohn Feb 2015 B2
8956405 Wang Feb 2015 B2
8961518 Kyle et al. Feb 2015 B2
8986372 Murry, III Mar 2015 B2
8986374 Cao Mar 2015 B2
8986375 Garde Mar 2015 B2
8998980 Shipley Apr 2015 B2
8998982 Richter Apr 2015 B2
9005273 Salahieh Apr 2015 B2
9011527 Li Apr 2015 B2
D730520 Braido May 2015 S
D730521 Braido May 2015 S
9023101 Krahbichler May 2015 B2
9050188 Schweich, Jr. Jun 2015 B2
9060855 Tuval Jun 2015 B2
9060857 Nguyen Jun 2015 B2
9060858 Thornton Jun 2015 B2
9061119 Le Jun 2015 B2
9066800 Clague Jun 2015 B2
9072603 Tuval Jul 2015 B2
9101471 Kleinschrodt Aug 2015 B2
9119717 Wang Sep 2015 B2
9132008 Dwork Sep 2015 B2
9132009 Hacohen Sep 2015 B2
9138313 McGuckin, Jr. Sep 2015 B2
9144493 Carr Sep 2015 B2
9144494 Murray Sep 2015 B2
9155619 Liu Oct 2015 B2
9161835 Rankin Oct 2015 B2
9173737 Hill Nov 2015 B2
9192466 Kovalsky Nov 2015 B2
9226820 Braido Jan 2016 B2
9232942 Seguin Jan 2016 B2
9232996 Sun Jan 2016 B2
9248016 Oba Feb 2016 B2
9259315 Zhou Feb 2016 B2
9271856 Duffy Mar 2016 B2
9277993 Gamarra Mar 2016 B2
9289289 Rolando Mar 2016 B2
9289292 Anderl Mar 2016 B2
9295547 Costello Mar 2016 B2
9295549 Braido Mar 2016 B2
9301836 Buchbinder Apr 2016 B2
9301839 Stante Apr 2016 B2
9320597 Savage Apr 2016 B2
9320599 Salahieh Apr 2016 B2
9326853 Olson May 2016 B2
9326854 Casley May 2016 B2
9333075 Biadillah May 2016 B2
9345572 Cerf May 2016 B2
9351831 Braido May 2016 B2
9358108 Bortlein Jun 2016 B2
9364325 Alon Jun 2016 B2
9364637 Rothstein Jun 2016 B2
9370422 Wang Jun 2016 B2
9387106 Stante Jul 2016 B2
9402720 Richter Aug 2016 B2
9414910 Lim Aug 2016 B2
9414917 Young Aug 2016 B2
9427316 Schweich, Jr. Aug 2016 B2
9439763 Geist Sep 2016 B2
9439795 Wang Sep 2016 B2
9480560 Quadri Nov 2016 B2
9498370 Kyle et al. Nov 2016 B2
9504569 Malewicz Nov 2016 B2
9522062 Tuval Dec 2016 B2
9566152 Schweich, Jr. Feb 2017 B2
9579194 Elizondo Feb 2017 B2
9579197 Duffy Feb 2017 B2
9622863 Karapetian Apr 2017 B2
9717592 Thapliyal Aug 2017 B2
9730791 Ratz Aug 2017 B2
9737400 Fish Aug 2017 B2
9737401 Conklin Aug 2017 B2
9750604 Naor Sep 2017 B2
9763780 Morriss Sep 2017 B2
9795477 Tran Oct 2017 B2
9801711 Gainor Oct 2017 B2
9827093 Cartledge Nov 2017 B2
9839517 Centola et al. Dec 2017 B2
9839765 Morris Dec 2017 B2
9861477 Backus Jan 2018 B2
9872765 Zeng Jan 2018 B2
9877830 Lim Jan 2018 B2
9968443 Bruchman May 2018 B2
10004601 Tuval Jun 2018 B2
10016274 Tabor Jul 2018 B2
10016275 Nyuli Jul 2018 B2
10022132 Wlodarski et al. Jul 2018 B2
10034750 Morriss Jul 2018 B2
10039637 Maimon Aug 2018 B2
10039642 Hillukka Aug 2018 B2
10098735 Lei Oct 2018 B2
10098763 Lei Oct 2018 B2
10117742 Braido Nov 2018 B2
10143551 Braido Dec 2018 B2
10182907 Lapeyre Jan 2019 B2
10195023 Wrobel Feb 2019 B2
10226340 Keren Mar 2019 B2
10231834 Keidar Mar 2019 B2
10238490 Gifford, III Mar 2019 B2
10245145 Mantanus Apr 2019 B2
10258464 Delaloye Apr 2019 B2
10299917 Morriss May 2019 B2
10321990 Braido Jun 2019 B2
10327892 O'Connor Jun 2019 B2
10327893 Maiorano Jun 2019 B2
10350065 Quadri Jul 2019 B2
10357360 Hariton Jul 2019 B2
10368982 Weber Aug 2019 B2
10376363 Quadri Aug 2019 B2
10383725 Chambers Aug 2019 B2
10390943 Hernandez Aug 2019 B2
10405974 Hayes Sep 2019 B2
10433961 McLean Oct 2019 B2
10470880 Braido Nov 2019 B2
10492907 Duffy Dec 2019 B2
10500041 Valdez Dec 2019 B2
10507107 Nathe Dec 2019 B2
10512537 Corbett Dec 2019 B2
10512538 Alkhatib Dec 2019 B2
10517726 Chau Dec 2019 B2
10524902 Gründeman Jan 2020 B2
10524910 Hammer Jan 2020 B2
10531951 Spargias Jan 2020 B2
10537427 Zeng Jan 2020 B2
10555809 Hastings Feb 2020 B2
10555812 Duffy Feb 2020 B2
10561495 Chambers Feb 2020 B2
10595992 Chambers Mar 2020 B2
10610362 Quadri Apr 2020 B2
10653523 Chambers May 2020 B2
10667905 Ekvall Jun 2020 B2
10667909 Richter Jun 2020 B2
10702379 Garde Jul 2020 B2
10702380 Morriss Jul 2020 B2
10709560 Kofidis Jul 2020 B2
10751169 Chambers Aug 2020 B2
10751170 Richter Aug 2020 B2
10751172 Para Aug 2020 B2
10758265 Siegel Sep 2020 B2
10758342 Chau Sep 2020 B2
10779935 Scorsin Sep 2020 B2
10779936 Pollak Sep 2020 B2
10779968 Giasolli Sep 2020 B2
10786351 Christianson Sep 2020 B2
10828152 Chambers Nov 2020 B2
10856983 Keränen Dec 2020 B2
10869756 Al-Jilaihawi Dec 2020 B2
10874513 Chambers Dec 2020 B2
10945835 Morriss Mar 2021 B2
10973630 Torrianni Apr 2021 B2
10980636 Delaloye Apr 2021 B2
11000000 Diedering May 2021 B2
11007053 Braido May 2021 B2
11007054 Braido May 2021 B2
11013599 Subramanian May 2021 B2
11026782 Chambers Jun 2021 B2
11026788 Metchik et al. Jun 2021 B2
11033275 Franano et al. Jun 2021 B2
11045202 Amplatz Jun 2021 B2
11065113 Backus Jul 2021 B2
11065116 Tegels Jul 2021 B2
11065138 Schreck Jul 2021 B2
11096781 Gurovich Aug 2021 B2
11147666 Braido Oct 2021 B2
11154239 Toth Oct 2021 B2
11154396 Dibie Oct 2021 B2
11154398 Straubinger Oct 2021 B2
11197754 Saffari Dec 2021 B2
11207176 Delaloye Dec 2021 B2
11278399 Liu Mar 2022 B2
11278406 Straubinger Mar 2022 B2
11351028 Peterson Jun 2022 B2
11389293 Torrianni Jul 2022 B2
11395734 Lee Jul 2022 B2
11413141 Morin Aug 2022 B2
11419716 Braido Aug 2022 B2
11452628 Diedering Sep 2022 B2
11458013 Righini Oct 2022 B2
20010005787 Oz Jun 2001 A1
20020072710 Stewart Jun 2002 A1
20020161377 Rabkin Oct 2002 A1
20030057156 Peterson Mar 2003 A1
20030083730 Stinson May 2003 A1
20030199971 Tower Oct 2003 A1
20030225445 Derus Dec 2003 A1
20030233141 Israel Dec 2003 A1
20040073286 Armstrong Apr 2004 A1
20040088041 Stanford May 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040243107 Macoviak Dec 2004 A1
20050004641 Pappu Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050096739 Cao May 2005 A1
20050113861 Corcoran May 2005 A1
20050137622 Griffin Jun 2005 A1
20050197694 Pai Sep 2005 A1
20050273160 Lashinski Dec 2005 A1
20060142847 Shaknovich Jun 2006 A1
20060184226 Austin Aug 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060229708 Powell Oct 2006 A1
20060271173 Delgado, III Nov 2006 A1
20060276874 Wilson Dec 2006 A1
20070016288 Gurskis Jan 2007 A1
20070173930 Sogard Jul 2007 A1
20070233223 Styrc Oct 2007 A1
20070238979 Huynh Oct 2007 A1
20070239254 Chia Oct 2007 A1
20070239271 Nguyen Oct 2007 A1
20070270931 Leanna Nov 2007 A1
20070275027 Wen et al. Nov 2007 A1
20070293942 Mirzaee Dec 2007 A1
20080039928 Peacock Feb 2008 A1
20080082166 Styrc Apr 2008 A1
20080262592 Jordan Oct 2008 A1
20080269877 Jenson Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080281398 Koss Nov 2008 A1
20080288042 Purdy Nov 2008 A1
20080288055 Paul, Jr. Nov 2008 A1
20080300678 Eidenschink et al. Dec 2008 A1
20090076585 Hendriksen Mar 2009 A1
20090082840 Rusk Mar 2009 A1
20090099640 Weng Apr 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090125096 Chu May 2009 A1
20090143852 Chambers Jun 2009 A1
20090171447 Von Segesser Jul 2009 A1
20090171456 Kveen Jul 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090248134 Dierking Oct 2009 A1
20090248143 Laham Oct 2009 A1
20090270967 Fleming, III Oct 2009 A1
20090276039 Meretei Nov 2009 A1
20090281609 Benichou Nov 2009 A1
20100021726 Jo Jan 2010 A1
20100057192 Celermajer Mar 2010 A1
20100069948 Veznedaroglu Mar 2010 A1
20100168839 Braido Jul 2010 A1
20100174355 Boyle Jul 2010 A1
20100217260 Aramayo Aug 2010 A1
20100217261 Watson Aug 2010 A1
20100217262 Stevenson Aug 2010 A1
20100217263 Tukulj-Popovic Aug 2010 A1
20100217264 Odom Aug 2010 A1
20100217265 Chen Aug 2010 A1
20100217266 Helevirta Aug 2010 A1
20100217267 Bergin Aug 2010 A1
20100217268 Bloebaum Aug 2010 A1
20100217269 Landes Aug 2010 A1
20100256749 Tran Oct 2010 A1
20100262157 Silver Oct 2010 A1
20110022151 Shin Jan 2011 A1
20110046712 Melsheimer Feb 2011 A1
20110082539 Suri Apr 2011 A1
20110082540 Forster Apr 2011 A1
20110208293 Tabor Aug 2011 A1
20110218585 Krinke et al. Sep 2011 A1
20110218619 Benichou Sep 2011 A1
20110251676 Sweeney Oct 2011 A1
20110269051 Wijenberg Nov 2011 A1
20110301702 Rust Dec 2011 A1
20110319988 Schankereli Dec 2011 A1
20110319991 Hariton Dec 2011 A1
20120016468 Robin Jan 2012 A1
20120035719 Forster Feb 2012 A1
20120065728 Gainor Mar 2012 A1
20120078356 Fish Mar 2012 A1
20120083875 Johnson Apr 2012 A1
20120095551 Navia Apr 2012 A1
20120101567 Jansen Apr 2012 A1
20120101571 Thambar Apr 2012 A1
20120109079 Asleson May 2012 A1
20120197193 Krolik et al. Aug 2012 A1
20120197390 Alkhatib Aug 2012 A1
20120209375 Madrid Aug 2012 A1
20120226130 De Graff Sep 2012 A1
20120303048 Manasse Nov 2012 A1
20120323313 Seguin Dec 2012 A1
20130023852 Drasler Jan 2013 A1
20130060329 Agnew Mar 2013 A1
20130066419 Gregg Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130090728 Solem Apr 2013 A1
20130096671 Iobbi Apr 2013 A1
20130123911 Chalekian May 2013 A1
20130138138 Clark May 2013 A1
20130150956 Yohanan Jun 2013 A1
20130184811 Rowe Jul 2013 A1
20130190861 Chau Jul 2013 A1
20130204311 Kunis Aug 2013 A1
20130204360 Gainor Aug 2013 A1
20130226286 Hargreaves Aug 2013 A1
20130231736 Essinger Sep 2013 A1
20130238089 Lichtenstein Sep 2013 A1
20130297010 Bishop Nov 2013 A1
20130297012 Willard Nov 2013 A1
20130304197 Buchbinder Nov 2013 A1
20130310917 Richter Nov 2013 A1
20130310923 Kheradvar Nov 2013 A1
20130317598 Rowe Nov 2013 A1
20130331933 Alkhatib Dec 2013 A1
20140005768 Thomas Jan 2014 A1
20140005773 Wheatley Jan 2014 A1
20140005778 Buchbinder Jan 2014 A1
20140012371 Li Jan 2014 A1
20140018841 Peiffer Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140031924 Bruchman et al. Jan 2014 A1
20140031928 Murphy Jan 2014 A1
20140031951 Costello Jan 2014 A1
20140039613 Navia Feb 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052238 Wang Feb 2014 A1
20140052241 Harks Feb 2014 A1
20140057730 Steinhauser Feb 2014 A1
20140057731 Stephens Feb 2014 A1
20140057732 Gilbert Feb 2014 A1
20140057733 Yamamoto Feb 2014 A1
20140057734 Lu Feb 2014 A1
20140057735 Yu Feb 2014 A1
20140057736 Burnett Feb 2014 A1
20140057737 Solheim Feb 2014 A1
20140057738 Albertsen Feb 2014 A1
20140057739 Stites Feb 2014 A1
20140067050 Costello Mar 2014 A1
20140074151 Tischler Mar 2014 A1
20140081308 Wondka Mar 2014 A1
20140081375 Bardill et al. Mar 2014 A1
20140088696 Figulla Mar 2014 A1
20140114340 Zhou Apr 2014 A1
20140128963 Quill May 2014 A1
20140134322 Larsen May 2014 A1
20140135817 Tischler May 2014 A1
20140135907 Gallagher May 2014 A1
20140142612 Li May 2014 A1
20140142680 Laske May 2014 A1
20140142688 Duffy May 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson Jun 2014 A1
20140172083 Bruchman Jun 2014 A1
20140180397 Gerberding Jun 2014 A1
20140180401 Quill Jun 2014 A1
20140188157 Clark Jul 2014 A1
20140194979 Seguin Jul 2014 A1
20140222140 Schreck Aug 2014 A1
20140228944 Paniagua Aug 2014 A1
20140236288 Lambrecht Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243967 Salahieh Aug 2014 A1
20140243969 Venkatasubramani Aug 2014 A1
20140249564 Daly Sep 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257467 Lane Sep 2014 A1
20140276395 Wilson Sep 2014 A1
20140277074 Kaplan Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277388 Skemp Sep 2014 A1
20140277389 Braido Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277411 Börtlein Sep 2014 A1
20140277417 Schraut Sep 2014 A1
20140277422 Ratz Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277425 Dakin Sep 2014 A1
20140277426 Dakin Sep 2014 A1
20140288634 Shalev Sep 2014 A1
20140288639 Gainor Sep 2014 A1
20140296909 Heipl Oct 2014 A1
20140296969 Tegels Oct 2014 A1
20140296970 Ekvall Oct 2014 A1
20140296975 Tegels Oct 2014 A1
20140309727 Lamelas Oct 2014 A1
20140330366 Dehdashtian Nov 2014 A1
20140330368 Gloss Nov 2014 A1
20140330369 Matheny Nov 2014 A1
20140330370 Matheny Nov 2014 A1
20140331475 Duffy Nov 2014 A1
20140343665 Straubinger Nov 2014 A1
20140343669 Lane Nov 2014 A1
20140343670 Bakis Nov 2014 A1
20140358224 Tegels Dec 2014 A1
20140371844 Dale Dec 2014 A1
20140379020 Campbell Dec 2014 A1
20150005857 Kern Jan 2015 A1
20150018933 Yang Jan 2015 A1
20150025621 Costello Jan 2015 A1
20150025625 Rylski Jan 2015 A1
20150039081 Costello Feb 2015 A1
20150039083 Rafiee Feb 2015 A1
20150066138 Alexander Mar 2015 A1
20150066141 Braido Mar 2015 A1
20150073548 Matheny Mar 2015 A1
20150088248 Scorsin Mar 2015 A1
20150088251 May-Newman Mar 2015 A1
20150094802 Buchbinder Apr 2015 A1
20150094804 Bonhoeffer Apr 2015 A1
20150112428 Daly Apr 2015 A1
20150112430 Creaven Apr 2015 A1
20150119974 Rothstein Apr 2015 A1
20150119978 Tegels Apr 2015 A1
20150119980 Beith Apr 2015 A1
20150119982 Quill Apr 2015 A1
20150127032 Lentz May 2015 A1
20150127093 Hosmer May 2015 A1
20150127097 Neumann May 2015 A1
20150127100 Braido May 2015 A1
20150134054 Morrissey May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150148731 McNamara May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157455 Hoang Jun 2015 A1
20150157458 Thambar Jun 2015 A1
20150173770 Warner Jun 2015 A1
20150173897 Raanani Jun 2015 A1
20150173898 Drasler Jun 2015 A1
20150173899 Braido Jun 2015 A1
20150196300 Tischler Jul 2015 A1
20150196390 Ma Jul 2015 A1
20150196393 Vidlund Jul 2015 A1
20150209140 Bell Jul 2015 A1
20150209143 Duffy Jul 2015 A1
20150223729 Balachandran Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund Aug 2015 A1
20150230921 Chau Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence Aug 2015 A1
20150257879 Bortlein Sep 2015 A1
20150257880 Bortlein Sep 2015 A1
20150257881 Bortlein Sep 2015 A1
20150257882 Bortlein Sep 2015 A1
20150265402 Centola Sep 2015 A1
20150265404 Rankin Sep 2015 A1
20150272730 Melnick Oct 2015 A1
20150272731 Racchini Oct 2015 A1
20150272738 Sievers Oct 2015 A1
20150282931 Brunnett Oct 2015 A1
20150282958 Centola Oct 2015 A1
20150289972 Yang Oct 2015 A1
20150289974 Matheny Oct 2015 A1
20150289977 Kovalsky Oct 2015 A1
20150290007 Aggerholm Oct 2015 A1
20150297346 Duffy Oct 2015 A1
20150297381 Essinger Oct 2015 A1
20150305860 Wang Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150313710 Eberhardt Nov 2015 A1
20150313712 Carpentier Nov 2015 A1
20150320552 Letac Nov 2015 A1
20150320556 Levi Nov 2015 A1
20150327995 Morin Nov 2015 A1
20150327996 Fahim Nov 2015 A1
20150327999 Board Nov 2015 A1
20150335422 Straka Nov 2015 A1
20150342718 Weber Dec 2015 A1
20150342734 Braido Dec 2015 A1
20150351735 Keranen Dec 2015 A1
20150351904 Cooper Dec 2015 A1
20150351905 Benson Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan Dec 2015 A1
20150366665 Lombardi Dec 2015 A1
20150366667 Bailey Dec 2015 A1
20150366690 Lumauig Dec 2015 A1
20150374490 Alkhatib Dec 2015 A1
20150374906 Forsell Dec 2015 A1
20160000559 Chen Jan 2016 A1
20160000562 Siegel Jan 2016 A1
20160008128 Squara Jan 2016 A1
20160008131 Christianson Jan 2016 A1
20160015512 Zhang Jan 2016 A1
20160015515 Lashinski Jan 2016 A1
20160022417 Karapetian Jan 2016 A1
20160022418 Salahieh Jan 2016 A1
20160030165 Mitra Feb 2016 A1
20160030168 Spenser Feb 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030170 Alkhatib Feb 2016 A1
20160030171 Quijano Feb 2016 A1
20160030173 Cai Feb 2016 A1
20160030175 Madjarov Feb 2016 A1
20160038283 Divekar Feb 2016 A1
20160045306 Agrawal Feb 2016 A1
20160045308 Macoviak Feb 2016 A1
20160045309 Valdez Feb 2016 A1
20160045310 Alkhatib Feb 2016 A1
20160045311 McCann Feb 2016 A1
20160051358 Sutton Feb 2016 A1
20160051362 Cooper Feb 2016 A1
20160051364 Cunningham Feb 2016 A1
20160066922 Bridgeman Mar 2016 A1
20160067038 Park Mar 2016 A1
20160067041 Alkhatib Mar 2016 A1
20160074161 Bennett Mar 2016 A1
20160074164 Naor Mar 2016 A1
20160074165 Spence Mar 2016 A1
20160081799 Leo Mar 2016 A1
20160089234 Gifford, III Mar 2016 A1
20160089235 Yellin Mar 2016 A1
20160089236 Kovalsky Mar 2016 A1
20160095700 Righini Apr 2016 A1
20160095701 Dale Apr 2016 A1
20160095702 Gainor et al. Apr 2016 A1
20160095703 Thomas Apr 2016 A1
20160095704 Whitman Apr 2016 A1
20160100844 Li Apr 2016 A1
20160100939 Armstrong Apr 2016 A1
20160100941 Czyscon Apr 2016 A1
20160100942 Morrissey Apr 2016 A1
20160106539 Buchbinder Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160113766 Ganesan Apr 2016 A1
20160113767 Miller Apr 2016 A1
20160113768 Ganesan Apr 2016 A1
20160120642 Shaolian May 2016 A1
20160120643 Kupumbati May 2016 A1
20160120646 Dwork May 2016 A1
20160135951 Salahieh May 2016 A1
20160136412 McKinnon May 2016 A1
20160143730 Kheradvar May 2016 A1
20160143731 Backus May 2016 A1
20160143734 Shaolian May 2016 A1
20160151155 Lutter Jun 2016 A1
20160157999 Lane Jun 2016 A1
20160158001 Wallace Jun 2016 A1
20160158004 Kumar Jun 2016 A1
20160158007 Centola Jun 2016 A1
20160158011 De Canniere Jun 2016 A1
20160158013 Carpentier Jun 2016 A1
20160166381 Sugimoto Jun 2016 A1
20160166382 Nguyen Jun 2016 A1
20160166384 Olson Jun 2016 A1
20160175096 Dienno Jun 2016 A1
20160193044 Achiluzzi Jul 2016 A1
20160193045 Pollak Jul 2016 A1
20160193047 Delaloye Jul 2016 A1
20160199177 Spence Jul 2016 A1
20160199178 Venkatasubramanian Jul 2016 A1
20160199180 Zeng Jul 2016 A1
20160199182 Gorman, III Jul 2016 A1
20160213470 Ahlberg Jul 2016 A1
20160220363 Peter Aug 2016 A1
20160235525 Rothstein et al. Aug 2016 A1
20160235530 Thomas Aug 2016 A1
20160235531 Ciobanu Aug 2016 A1
20160250022 Braido Sep 2016 A1
20160250051 Lim Sep 2016 A1
20160256168 Nielsen Sep 2016 A1
20160256270 Folan Sep 2016 A1
20160262884 Lombardi Sep 2016 A1
20160270910 Birmingham Sep 2016 A1
20160270911 Ganesan Sep 2016 A1
20160278922 Braido Sep 2016 A1
20160296323 Wulfman Oct 2016 A1
20160296333 Balachandran Oct 2016 A1
20160302920 Al-Jilaihawi Oct 2016 A1
20160302921 Gosal Oct 2016 A1
20160302922 Keidar Oct 2016 A1
20160310268 Oba Oct 2016 A1
20160324640 Gifford, III Nov 2016 A1
20160331529 Marchand Nov 2016 A1
20160346081 Zeng Dec 2016 A1
20160354203 Tuval et al. Dec 2016 A1
20160361161 Braido Dec 2016 A1
20160374790 Jacinto Dec 2016 A1
20160374801 Jimenez Dec 2016 A1
20160374802 Levi Dec 2016 A1
20160374803 Figulla Dec 2016 A1
20160374842 Havel Dec 2016 A1
20170079781 Lim Mar 2017 A1
20170079785 Li Mar 2017 A1
20170079787 Benson et al. Mar 2017 A1
20170079790 Vidlund Mar 2017 A1
20170086973 Zeng Mar 2017 A1
20170095256 Lindgren Apr 2017 A1
20170100241 Modine Apr 2017 A1
20170105839 Subramanian Apr 2017 A1
20170165066 Rothstein Jun 2017 A1
20170172737 Kuetting Jun 2017 A1
20170202525 Piazza Jul 2017 A1
20170252191 Pacetti Sep 2017 A1
20170281193 Asirvatham Oct 2017 A1
20170333102 Peterson et al. Nov 2017 A1
20170348098 Rowe Dec 2017 A1
20170360570 Berndt et al. Dec 2017 A1
20180014830 Neumann Jan 2018 A1
20180055629 Oba et al. Mar 2018 A1
20180092744 Von Oepen Apr 2018 A1
20180116843 Schreck May 2018 A1
20180116848 McHugo May 2018 A1
20180133012 Nathe May 2018 A1
20180185184 Christakis Jul 2018 A1
20180193153 Brenzel et al. Jul 2018 A1
20180206983 Noe Jul 2018 A1
20180256329 Chambers Sep 2018 A1
20180296335 Miyashiro Oct 2018 A1
20180311039 Cohen Nov 2018 A1
20180325664 Gonda Nov 2018 A1
20180369006 Zhang Dec 2018 A1
20190053898 Maimon et al. Feb 2019 A1
20190099265 Braido Apr 2019 A1
20190105088 Peterson et al. Apr 2019 A1
20190151067 Zucker May 2019 A1
20190201192 Kruse Jul 2019 A1
20190224028 Finn Jul 2019 A1
20190247189 Dale Aug 2019 A1
20190321530 Cambronne Oct 2019 A1
20190321531 Cambronne Oct 2019 A1
20190365534 Kramer Dec 2019 A1
20190365538 Chambers Dec 2019 A1
20200000592 Lee Jan 2020 A1
20200030088 Vidlund Jan 2020 A1
20200069423 Peterson Mar 2020 A1
20200069449 Diedering Mar 2020 A1
20200100897 McLean Apr 2020 A1
20200113682 Chang Apr 2020 A1
20200113719 Desrosiers et al. Apr 2020 A1
20200129294 Hariton Apr 2020 A1
20200155306 Bonyuet May 2020 A1
20200163765 Christianson May 2020 A1
20200179115 Chambers Jun 2020 A1
20200188101 Chambers Jun 2020 A1
20200222179 Chambers Jul 2020 A1
20200253733 Subramanian Aug 2020 A1
20200261219 Kumar Aug 2020 A1
20200276013 Chambers Sep 2020 A1
20200315678 Mazzio et al. Oct 2020 A1
20200337765 Smith Oct 2020 A1
20200368023 Kheradvar Nov 2020 A1
20200375733 Diedering Dec 2020 A1
20210236274 Benson et al. Aug 2021 A1
20210236276 Diedering Aug 2021 A1
20210275297 Berndt Sep 2021 A1
20210275301 Kumar Sep 2021 A1
20210290383 Chambers Sep 2021 A1
20220031451 Spence Feb 2022 A1
20220338979 Benichou Oct 2022 A1
20230218397 Chambers et al. Jul 2023 A1
20230372089 Kumar Nov 2023 A1
Foreign Referenced Citations (52)
Number Date Country
2014203064 Jun 2015 AU
2015230879 Oct 2015 AU
2013201970 Mar 2016 AU
2820130 Sep 2006 CN
100413471 Aug 2008 CN
100444811 Dec 2008 CN
101953723 Jan 2011 CN
101953724 Jan 2011 CN
101953725 Jan 2011 CN
101953728 Jan 2011 CN
101953729 Jan 2011 CN
101961269 Feb 2011 CN
101961273 Feb 2011 CN
201870772 Jun 2011 CN
203290964 Nov 2013 CN
103431931 Dec 2013 CN
203379235 Jan 2014 CN
103598939 Feb 2014 CN
103610520 Mar 2014 CN
203619728 Jun 2014 CN
203677318 Jul 2014 CN
104287804 Jan 2015 CN
104352261 Feb 2015 CN
204133530 Feb 2015 CN
204181679 Mar 2015 CN
204246182 Apr 2015 CN
204318826 May 2015 CN
104688292 Jun 2015 CN
102985033 Aug 2015 CN
204581598 Aug 2015 CN
204581599 Aug 2015 CN
204683686 Oct 2015 CN
105596052 May 2016 CN
105615936 Jun 2016 CN
205286438 Jun 2016 CN
107252363 Apr 2020 CN
106913909 Sep 2020 CN
107007887 Oct 2020 CN
102010021345 Nov 2011 DE
2596754 May 2013 EP
2967858 Jan 2016 EP
2982336 Feb 2016 EP
2967845 Aug 2018 EP
2950752 Jul 2022 EP
2016531722 Oct 2016 JP
WO1995016476 Jun 1995 WO
WO2009127973 Oct 2009 WO
WO2014210299 Dec 2014 WO
WO2015004173 Jan 2015 WO
WO2016100806 Jun 2016 WO
2016126942 Aug 2016 WO
WO2019006387 Jan 2019 WO
Non-Patent Literature Citations (13)
Entry
International Search Report and Written Opinion, dated Aug. 30, 2018, for PCT Application No. PCT/US18/37536, filed Jun. 14, 2018.
International Preliminary Report on Patentability dated Dec. 17, 2019 for PCT/US2018/037536, filed Jun. 14, 2018.
Supplementary European Search Report and Written Opinion issued by the EPO in application No. 18816952, dated Jan. 26, 2021.
Japanese Office Action in Application No. 2019-569834, May 15, 2023.
Chinese Office Action in Application No. 201880040116.4, Jul. 6, 2021.
Chinese Office Action in Application No. 201880040116.4, Feb. 18, 2022.
Chinese Office Action in Application No. 201880040116.4, Oct. 10, 2022.
Chinese Rejection Decision in Application No. 201880040116.4, Feb. 25, 2023.
European Office Action in Application No. 18816952.8, Jan. 26, 2021.
Indian Examination Report in Application No. 201937052443, Feb. 28, 2022.
Japanese Office Action in Application No. 2019-569834, Jul. 27, 2022.
Reed Miller, Start-Up Spotlight: 4C Addresses Mitral Regurgitation with Unique ‘Dome’ Device, https:/medtech.citeline.com/MT105076/StartUp-Spotlight-4C-Addresses-Mitral-Regurgitation-With-Unique-Dome-Device Published by Citeline on Jun. 29, 2017.
A Novel Transcatheter Mitral Valve Replacement System, Dr. Phillippe Genereux, MD, Jun. 14, 2017.
Related Publications (1)
Number Date Country
20180360602 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
62519576 Jun 2017 US